05;11;12

Фазовые переходы в системе CN_x + TiN при изменении напряжения смещения в процессе ионно-стимулированного роста

© З.А. Самойленко, Е.И. Пушенко, Н.Н. Ивахненко, Б.Е. Шкуратов, В.Н. Варюхин

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, 83114 Донецк, Украина

(Поступило в Редакцию 29 августа 2006 г.)

С помощью рентгеновского дифракционного анализа проведены исследования структуры аморфных пленок CN_x +TiN, полученных методом ионно-стимулированной конденсации, различающихся напряжением смещения U = 200-500 V. Обнаружено, что в процессе повышения напряжения U = 300-360 V в структуре пленок CN_x + TiN происходит фазовый переход в разномасштабной аморфной фазе (20–50 Å), связанный с увеличением доминирующего содержания фракции среднеячеистых (4Å) углеродных кластеров по сравнению с крупно- (8Å) и мелкоячеистыми (2Å) кластерами.

Показано, что при этом в структуре кристаллических кластеров (80–150 Å) имеет место фазовый переход от предпочтительного развития кластеров карбидной фазы (Ti₂C(N)) к кластерам графитовой (C_g) и алмазной (C_d) фаз размером ~ 100 Å.

PACS: 61.43. Dq

Введение

Аморфный, или как его часто называют алмазоподобный, углерод является перспективным материалом пленочных покрытий. В то же время α -C:H вызывает большой интерес как наноструктурный материал. Пленки аморфного углерода представляют собой весьма хорошо изученный объект, которому посвящено немало работ [1–3].

Легирование углеродной пленки азотом сохраняет все преимущества алмазоподобного углерода. Модифицирование пленок нитрида углерода различными металлическими элементами остается существенно менее изученной областью исследований. В настоящее время возрос интерес к модифицированию пленок нитрида углерода различными элементами с целью создания нового типа электронных и магнитных сред [4,5]. Например, при модифицировании медью кроме образования в углеродной матрице медных нанокластеров происходит легирование графитной составляющей. Поэтому при модифицировании пленок нитрида углерода происходит влияние модификатора на структуру пленок. Пленки нитрида титана получили широкое распространение в качестве барьерных слоев в многослойных контактных системах. Нитрид титана химически и термически очень стабилен, обладает металлическими свойствами [6].

Настоящая работа посвящена выяснению особенностей структуры пленок нитрида углерода, легированных нитридом титана при использовании метода ионностимулированной конденсации.

Методика

Алмазоподобные пленки нитрида углерода, легированные нитридом титана, получены методом ионностимулированной конденсации. В процессе распыления катода Ti+C в азотосодержащей плазме проводилось осаждение композитных пленок на полированные подложки из поликора. Нанесение слоев пленки проводилось в вакуумной установке, оснащенной источником дугового распыления. Вакуумная камера откачивалась до давления 10⁻³, после чего в нее напускался азот до давления 2 · 10⁻² Ра и поджигался дуговой разряд. В атмосфере высокоэнергетической азотной плазмы поверхность составного катода нитритизировалась и расширялась. В ходе эксперимента был применен метод ионно-стимулированной конденсации, заключающийся в возможности подачи на подложку напряжения смещения относительно распыляемого катода. Ускоренные в потенциальном поле напряжения смещения продукты распыления катода и ионы азота конденсируются на подложке, одновременно подвергая ее достаточно интенсивной бомбардировке. Бомбардировка поверхности растущей пленки стимулирует процессы хемосорбции, способствует десорбции азота, не вступившего в химическую связь, в значительной степени позволяет разряжать *s p*²-гибридизацию углерода. Эти факторы ионно-стимулированной конденсации приобретают особый смысл в случае нанесения покрытия на холодную подложку. Напряжение смещения можно менять от 200 до 500 V. Скорость газового потока в течение одного эксперимента была постоянной. Увеличение температуры подложки обычно приводит к значительному снижению содержания азота в пленках, поэтому предварительный нагрев подложек не применялся.

С помощью анализа диффузного рассеяния рентгеновских лучей были проведены экспериментальные исследования структуры пленок CN_x +TiN, различающихся напряжением смещения U = 200-500 V. Использовалось длинноволновое CrK_{α} -излучение с V-фильтром и фотометод, чувствительный к регистрации диффузного рассеяния лучей слабой интенсивности, с последующим микрофотометрированием. Съемка проводилась

Рис. 1. Дифракционные картины пленок CN_x + TiN, различающихся напряжением смещения.

по методу шлифа. Образец устанавливали под углами 25° и 155°. Рентгенограммы фотометрировались с шагом 0.1° (рис. 1).

Результаты и обсуждение

Для анализа атомной структуры дальнего и мезоскопического порядков были получены и проанализированы дифракционные картины от пленок $CN_x + TiN$. Рентгеновские дифракционные картины всех исследуемых образцов представляют собой суперпозицию рассеяния рентгеновских лучей от атомных группировок с различным масштабом упорядочения (рис. 1): 1) узкие дифракционные линии от структурных групп с дальним порядком в расположении, 2) дифракционные максимумы между дебаевскими линиями от кластеров с мезоскопическим атомным порядком, 3) некогерентное рассеяние в виде фона, возрастающего с увеличением угла, от неупорядоченно расположенных атомов. Из результатов исследованных ранее особенностей кластерных превращений в различных материалах [7,8], можно предположить, что при легировании веществ, кроме образования примесных кластеров, возможны и структурные фазовые

переходы, что было обнаружено ранее при исследовании влияния температуры роста пленок на структуру аморфных пленок $CN_x + Co$ [3]. Присутствие кластеров связано с дебаевской дифракцией рентгеновских лучей от кластеров по закону $2d \sin \theta = n\lambda$, что позволило сделать интерпретацию их кристаллографической структуры. Из известных литературных данных можно считать, что структурные фракции сформированы на основе графита (C_g), карбида ($Me_2C(N)$) и алмаза (C_g) (рис. 1). При этом, как видно из рис. 1, наблюдаются изменения формы и соотношения интенсивностей структурных фракций плоскостей (110) C_g , (200) $Me_2C(N)$ и (111) C_d , что свидетельствует о гибком характере эволюции структуры при изменении напряжения смещения.

Необычность дифракционных картин от пленок $CN_x + TiN$ изучаемых в настоящей работе, заключается в том, что имеют место сразу три полосы — гало, расположенные рядом и изменяющиеся по величине интенсивности, угловому положению максимума и ширине гало друг относительно друга в зависимости от применяющегося напряжения смещения при росте пленок (рис. 1).

Само появление гало в виде основного дифракционного элемента означает, что пленки имеют аморфную

Рис. 2. Схематическое представление кластеров, соответствующих дифракционным гало I, II, III, для пленок $CN_x + TiN$.

структуру, представляющую собой суперпозицию группировок атомов мезоскопического масштаба (кластеров) с намечающимся дальним порядком в расположении и разупорядоченной межкластерной среды (на дифракционной картине проявляется в виде фона). Структура пленок претерпевает существенные изменения с увеличением напряжения смещения при росте пленок. При этом, как видно на рис. 1, наблюдается изменение формы и соотношения интенсивностей гало, что свидетельствует о гибком характере эволюции структуры при изменении внешних условий.

Интерференционные максимумы являются результатом когерентного рассеяния рентгеновских лучей от повторяющихся структурных элементов в виде молекулярных ячеек с определенной длиной межатомной связи (L), объединенных друг с другом в своеобразные группы (кластеры), насчитывающие десятки и даже сотни элементарных ячеек. Межкластерные связи представляют собой наиболее дефектные зоны структуры. Анализ проводился в соответствии с законом Вульфа-Брэггов, учитывая, что повторяющийся структурный элемент L равен $L = n\lambda/2\sin\theta$, где λ — длина волны, θ — угол дифракционного максимума. Из экспериментальных дифракционных картин по положению угла θ для максимумов гало были определены длины (L) молекулярных связей, формирующих ячейки в кластеры. Измерения ширины гало с использованием методики Л.И. Китайгородского [10] позволили вычислить размеры кластеров (m) для гало I, II, III и затем рассчитать количество ячеек шестиугольной формы (N) в кластерах. На рис. 2 представлены схематические изображения кластеров на основе экспериментальных результатов для гало I, II, III. Как видно из рис. 2 гало I формируется кластерами с малым количеством крупных ($L = 8 \text{ \AA}$) ячеек. Кластеры, проявляющиеся в гало II, содержат уже более десятка ячеек среднего размера (L = 4 Å). Гало III сформировано кластерами с большим количеством ячеек малых размеров (L = 2 Å).

Таким образом, из представленных результатов следует, что три гало соответствуют трем разномасштабным структурным группам аморфных кластеров, дискретно различающихся величиной и количеством элементарных ячеек в кластерах (рис. 3). Поскольку силы связи между атомами в ячейке обратно пропорциональны квадрату расстояния между ними $(1/L^2)$, то выявленная закономерность объединения малого числа крупных ячеек в кластеры с большой длиной связи, но большого числа мелких ячеек в кластеры с малой длиной связи, имеет следующий характер числа ячеек (N) в кластерах в углеродных аморфных фазах от длины связи в ячейке $N \approx 1/L^2$, что следует из экспериментальных результатов (рис. 1) и представлено на рис. 3.

Увеличение напряжения смещения (U) при росте пленок $CN_x + TiN$, в соответствии с положением углов $\theta_{I,II,III}$ диффузных максимумов (рис. 1) сопровождается изменениями длины связи флуктуирующего характера для ячеек всех трех типов кластеров (рис. 4). При этом для крупных ячеек отклонения от среднего значения $L_I = 8$ Å наиболее значительны: 0.6–1.3 Å, что составляет 7–16%, достигая критической величины, при которой решетка может разрушаться, в пленках, полученных в режиме U = 360 V. Для кластеров с ячейкой среднего размера (4 Å) имеем $\Delta L = 0.3-0.5$ Å, что соответствует 4–6%, т.е. эта группа обладает большей устойчивостью (рис. 4). Для мелкоячеистых кластеров (L = 2 Å) $\Delta L = 0.07-0.3$ Å, что составляет 3–15%, при этом наибольшее отклонение от среднего значения приходится

Рис. 3. Зависимость количества ячеек в кластерах разных групп, соответствующих гало I, II, III, от напряжения смещения.

Рис. 4. Зависимость длины связи в ячейке для трех групп кластеров, соответствующих гало I, II, III.

Рис. 5. Зависимость долевого соотношения интенсивностей гало I, II, III от напряжения смещения.

на структуру кластеров этого типа, выращенных при напряжении смещения U = 300 V (рис. 4).

Таким образом, проведенные исследования показали, что наиболее подвержены разрушению структуры ячеек крупных и мелких кластеров, формирующихся в условиях напряжения смещения U = 300-360 V.

С учетом того, что интегральная интенсивность от трех гало принималась за 100%, были исследованы изменения интенсивности рассеяния рентгеновских лучей кластерами с большой (I_1), средней (I_{II}) и мелкой (I_{III}) молекулярными ячейками, соответствующих гало I, II, III при увеличении напряжения смещения в процессе роста пленок (рис. 5). Результаты рис. 5 показывают, что концентрация крупноразмерных ячеек с самыми длинными связями в ячейке (формирует гало I) от 10 до 27%, увеличиваясь в 3 раза при U = 300 V (кривая I, рис. 5). Для самых мелких ячеек с короткими (≈ 2 Å) связями (формирует гало III) картина симметричная, концентрация мелкоячеистых кластеров в пленке флуктуирует от 45 до 10%, уменьшаясь при U = 300 V (кривая III, рис. 5). В то же время для кластеров со средним размером (3–4Å) молекулярных ячеек (формируется гало II) имеет место непрерывный рост концентрации от 50 до 80% во всем интервале увеличения напряжения, что доказывает стимулирующее действие ионной активности плазмы на процесс формирования преимущественно этой фракции структуры в растущих пленках (кривая II, рис. 5). Именно из нее "прорастает" алмазная модификация в виде отражения (111) C_d на рис. 1.

На рис. 6 представлены зависимости относительных интенсивностей когерентного $(I_{\rm coh}/I)$ и некогерентного $(I_{\rm incoh}/I)$ рассеяний от напряжения смещения (U). При увеличении напряжения смещения (U = 300 V) увеличивается интенсивность некогерентного рассеяния при одновременном снижении интенсивности когерентного рассеяния, что свидетельствует об увеличении беспорядка в системе. При U = 360 V усиливается порядок в системе, о чем свидетельствует рост интенсивности когерентного лассеяния с увеличением интенсивности когерентного рассеяния с увеличением интенсивности линий над гало.

Выявленные изменения фазы углерода в атомном порядке трех фракций низкоразмерной (10-100 Å) аморфной кластерной структуры (рис. 5) инициировали изменение и в сопутствующей среднемасштабной (100-200 Å) кластеризованной фракции (рис. 7), представляющей собой кристаллические кластеры (видны в виде диффузных линий над гало, рис. 1). При этом для структурной группы кристаллических кластеров имеет место фазовый переход (рис. 7) при U = 300 V от преимущественного развития карбидной фазы (U = 200 V) к преимущественному развитию графитной (C_g) и алмазной (C_d) фаз U = 360-500 V с кристаллическими кластерами размером ~ 100 Å (рис. 7). Следует заметить, что и фазовый переход беспорядок – порядок в

Рис. 6. Зависимость соотношений интенсивностей (a) — когерентного I_{coh} и (b) — некогерентного I_{incoh} рассеяния на дифракционных картинах пленок CN_x + TiN, различающихся напряжением смещения.

Рис. 7. Долевое соотношение диффузных максимумов от графитовой (110) C_g , алмазной (111) C_d и карбидной (200) $Ti_2C(N)$ фаз пленок $CN_x + TiN$.

Рис. 8. Зависимость размеров (a) — аморфных (гало I, II, III) и (b) — кристаллических кластеров графитовой (C_g) , алмазной (C_d) и карбидной $(Ti_2C(N))$ фаз от напряжения смещения.

исследуемых структурах пленок $CN_x + TiN$ проявляется также при U = 300 V (рис. 6).

Измерив полуширину β флуктуационных максимумов и углы θ из рис. 1, зная длину волны λ для Cr K_{α} -излу-

чения, по методике А.И. Китайгородского [10] оценивали линейный размер кластеров в (Å): $m = \lambda/4\pi\eta$, η — безразмерный коэффициент, связывающий размеры кластеров с шириной диффузного максимума при учете геометрических параметров регистрирующей рентгеновской камеры [10]; η определяется из формулы

$$B/D = \frac{19\eta}{(0.004 + 0.084\cos\theta)} + 0.0064\theta,$$

где β — ширина диффузного максимума (deg), D — диаметр фокусного пятна на образце (mm). Немонотонный ход зависимости размеров аморфных (рис. 8, *a*) и кристаллических (рис. 8, *b*) кластеров от напряжения смещения свидетельствует об эволюции структуры. С ростом напряжения смещения увеличиваются размеры аморфных кластеров, достигая максимума (m = 50-80 Å) при U = 360 V. При этом происходит уменьшение размеров кристаллических алмазных и карбидных кластеров ($m_{C_d} = 90$; $m_{Me} = 50$ Å) и увеличение графитных ($m_{C_g} = 160$ Å) кластеров. Дальнейший рост напряжения смещения приводит к ослаблению различий размеров кристаллических кластеров всех фаз (m = 90-100 Å).

Выводы

1. Впервые выявлены три структурные группы аморфных кластеров мезоскопического размера (20–50 Å), соответствующих трем гало и дискретно различающихся величиной длин связи разновеликих углеродных элементарных ячеек в виде трех фракций (8, 4, 2 Å).

2. Показано, что при напряжении смещения U = 300-360 V в структуре пленок $CN_x + TiN$ происходит фазовый переход в разномасштабной аморфной фазе (20–50 Å), связанный с увеличением доминирующего содержания фракции среднеячеистых (4 Å) углеродных кластеров по сравнению с крупно-(8 Å) и мелкоячеистыми 2 Å.

3. Показано, что в пленках $CN_x + TiN$ при увеличении напряжения смещения формируется аморфная неупорядоченная и мелкокластерная (аморфные кластеры) структуры с появлением кристаллических кластеров (50–200 Å) в виде графитной, алмазной и карбидной фаз.

4. Доказано, что при напряжении смещения U = 300 V имеет место фазовый переход от преимущественного развития карбидной фазы (Me₂C(N)) к преимущественному развитию графитной (C_g) и алмазной (C_d) фаз в виде кристаллических кластеров размером ~ 100 Å.

Список литературы

- Гладкий А.Н., Суздальцев С.Ю., Яфаров Р.К. // ЖТФ. 2000. Т. 70. Вып. 5. С. 133–135.
- [2] Одинцов В.В., Пепекин В.И. // ДАН. 1995. Т. 343. № 2. С. 210–213.

- [3] Самойленко З.А., Пушенко Е.И., Ивахненко Н.Н. и др. // ЖТФ. 2005. Т. 75. Вып. 8. С. 132–135.
- [4] Weilizhang, Xia Y., Ju J. // Solid State Comm. 2003. Vol. 126.
 P. 163–166.
- [5] Hu I., Yang P., Lieber C.M. // Phys. Rev. 1998. Vol. 157. N 6.
 P. 3185–3191.
- [6] Андриевский Р.А. // Усп. химии. 1997. Т. 66. № 1. С. 57–76.
- [7] Окунев В.Д., Самойленко З.А.// ФТТ. 1989. Т. 13. Вып. 9. С. 257–260.
- [8] Окунев В.Д., Самойленко З.А. // Письма в ЖЭТФ. 1991.
 Т. 53. № 1. С. 42–47.
- [9] David M. // Science. 1996. Vol. 271. P. 53-55.
- [10] Китайгородский А.И. Рентгеноструктурный анализ мелкокристаллических и аморфных тел. М.: Наука, 1952. 588 с.