## 05;06;11;12 Влияние имплантации ионов титана и газовой среды на электрофизические свойства оксида алюминия

## © А.В. Кабышев, Ф.В. Конусов

Научно-исследовательский институт высоких напряжений при Томском политехническом университете, 634050 Томск, Россия e-mail: kabyshev@hvd.tpu.ru

## (Поступило в Редакцию 25 июля 2006 г.)

Исследованы энергетические и кинетические характеристики темновой и фотопроводимости поликристаллического оксида алюминия, облученного ионами титана, до и после отжига в вакууме и на воздухе. Определено влияние температуры на стабильность свойств и механизмы электропереноса. При изменении давления воздуха от 10<sup>5</sup> до 1 Ра наблюдается устойчивая обратимость электрофизических свойств. Отжигом в вакууме на поверхности оксида алюминия может быть сформировано полупроводящее покрытие, которое при нагреве на воздухе вновь приобретает свойства диэлектрика. Возможен и обратный переход. Такие изменения связываются с дефектообразованием, накоплением кислородсодержащих комплексов и изменением стехиометрического состава синтезированных при ионно-термической модификации соединений.

PACS: 81.05.-t

Облучение неорганических диэлектриков ионами и последующая термообработка создают новое неравновесное состояние, отличающееся по структуре и свойствам от исходного. Модификация поверхностной электропроводности  $\sigma$  (10<sup>-15</sup>-10<sup>-4</sup> S) обусловлена образованием новых проводящих или полупроводящих фаз, измельчением кристаллитов (в поликристаллах с доминирующей ковалентной связью вплоть до аморфизации), введением высокой концентрации радиационных дефектов (РД), формированием комплексов на их основе и с участием имплантированных элементов [1-5]. В восстановительной атмосфере и вакууме наблюдается коагуляция имплантированного элемента в металлические кластеры, образуются фазы, соответствующие соединениям имплантированных ионов с атомами матрицы. Однако доминирующее влияние на электроперенос оказывают примесно-вакансионные комплексы (ПВК), дефекты замещения в катионной подрешетке соединений, их кластеры с переменным зарядовым состоянием [3-5]. Параметры полупроводящего слоя стабильны при нагреве в вакууме или инертных газах, но меняются в кислородсодержащих средах [6,7] вследствие электронного обмена между кислородом и радиационными дефектами, изменения зарядового состояния дефектов и ПВК, формирования кислородсодержащих комплексов. При отжиге в кислороде могут образовываться рекристаллизационные слои из твердых растворов на основе оксидов элементов, обладающих высокой степенью замещения катионов решетки [8,9].

Цель работы — исследование энергетических и кинетических характеристик темновой  $\sigma$  и фотопроводимости  $\sigma_{hv}$  в поликристаллическом оксиде алюминия, облученном ионами титана, до и после отжига в вакууме и на воздухе, определение влияния отжига на стабильность свойств и механизмы электропереноса.

После имплантации ионов приповерхностный слой материалов можно рассматривать как неупорядоченный

твердый раствор с высокой концентрацией наведенных дефектов. В облученном ионами Ti<sup>+n</sup> оксиде алюминия доля катионов кристаллической решетки, замещенных внедренными атомами титана, достигает 0.9 [6,8]. Кроме того, исследования электронной структуры и химических реакций показали, что для системы Ti-Al<sub>2</sub>O<sub>2</sub> характерно сильное химическое взаимодействие титана как с кислородом, так и с алюминием [9]. Наведенные РД и химическое взаимодействие титана с атомами матрицы вызывают рост  $\sigma$  облученного поликора (энергия 80–120 keV, флюенс  $\Phi = 10^{16} - 10^{17} \text{ cm}^{-2}$ ) до 10<sup>-9</sup>-10<sup>-6</sup> S. Постимплантационный отжиг в вакууме  $(T_{an} = 700 - 1700 \text{ K}, P \le 1 \text{ Pa})$  способствует ее дальнейшему увеличению до  $10^{-4}$ - $10^{-3}$  S (рис. 1). Поверхность приобретает синий оттенок, характерный для нестехиометрического  $TiO_{2-x}$ .

Временная выдержка при фиксированной температуре стабилизирует изменение  $\sigma$  (рис. 2). Отжиг при



**Рис. 1.** Влияние температуры постимплантационного отжига в вакууме на электропроводность поликора (T = 300 K), облученного ионами титана  $\Phi \cdot 10^{15}$  (I) и  $10^{17}$  cm<sup>-2</sup> (2).



**Рис. 2.** Температурная (1) и кинетическая (2, 3) зависимости электропроводности облученного ионами титана ( $\Phi = 10^{17} \,\mathrm{cm}^{-2}$ ) поликора: 2 — 720, 3 — 1450 К. Измерения  $\sigma$  выполнены в вакууме.



**Рис. 3.** Температурная зависимость электропроводности облученного ионами титана ( $\Phi = 10^{17} \text{ cm}^{-2}$ ) поликора после отжига в вакууме при 720 К в течение 10 h (*I*) и при 1450 К в течение 3 h (*2*). Измерения  $\sigma$  выполнены в вакууме.

1400–1700 К изменяет не только величину  $\sigma$ , но и механизм электропереноса: при нагреве до 800–900 К зависимость  $\sigma(T)$  имеет положительный знак температурного коэффициента электропроводности, т.е.  $\sigma$  уменьшается с ростом T (рис. 3). Подобное поведение электропроводности характерно для металлов. Однако отличие численных значений  $\sigma$  от величин, свойственных металлам, наличие возрастающего при  $T \geq 900$  К участка  $\sigma(T)$  (рис. 3), а также высокая плотность глубоких локализованных состояний (ЛС) с

энергией  $\varepsilon \ge 1.5 \,\mathrm{eV}$  [3–6] свидетельствуют, что изменение  $\sigma(T)$  обусловлено перераспределением электронов между уровнями с энергией 0.05–0.3 eV и более глубокими локализованными состояниями с  $\varepsilon \ge 0.1 \,\mathrm{eV}$ . Второй причиной различия в ходе кривых  $\sigma(T)$  и наличия разных механизмов электропереноса, выявленных в Al<sub>2</sub>O<sub>3</sub> после отжига в вакууме при 720 (рис. 3, кривая *I*) и при 1450 K (кривая *2*), может быть смена типа доминирующих носителей заряда (определялся по температурным зависимостям фототермостимулированных токов  $J_{PhTSC}$  и по токам термодеполяризации).

Влияние температуры отжига в вакууме на доминирующий тип дефектов, на концентрацию  $N_i$  (концентрация центров поглощения оценивалась по формуле Смакулы с параметрами, приведенными в [10–12]) и энергетическое положение отвечающих им локализованных в запрещенной зоне (33) состояний ( $\varepsilon_c$  — дно зоны проводимости,  $\varepsilon_v$  — потолок валентной зоны) представлены в табл. 1.

Изменение свойств вызвано объединенными в подзону донорными состояниями с энергией 1.4-3.8 eV, причем определяющее влияние свойственно состояниям, локализованным в интервале 1.6-3.1 eV. Эти состояния с учетом имеющихся в литературе данных об энергетической идентификации полос поглощения, обусловленных  $F_2^{0...n+}$ -центрами [10], уровней дефектов замещения ных  $T_2$  -центрами [10], уровней децентов самента  $Ti_{Al}^{2+...4+}$  [3,11–14], данных теоретических расчетов уров-ней  $Ti_{Al}^{n+}$ - и (Ti)<sup>2+...4+</sup>-центров [12] и уровней ПВК с переносом заряда [13] могут быть наведены комплексами, состоящими из дианионных вакансий и дефектов замещения  $Ti_{A1}^{3+}$  и/или междоузельных ионов  $(Ti)_{i}^{n+}$  [5]. Их стабильность к отжигу до 1300 К определяет экспоненциальный рост  $\sigma(T)$  (рис. 3) и незначительное (в 2–3 раза) изменение  $\sigma(t)$  при фиксированной температуре (рис. 2). Прыжковые переходы электронов между состояниями  $\varepsilon_c - (1.5 - 3.7) \, \text{eV}$  дополняются активационым транспортом *n*-типа при опустошении в зону проводимости слабозаселенных донорных уровней с энергией 0.1-1.0 eV.

Диссоциация ПВК, содержащих  $Ti_{Al}^{3+}$ , и изменение зарядового состояния дефектов замещения  $Ti_{Al}^{4+} \rightarrow Ti_{Al}^{3+}$  при  $T_{an} = 1000-1300 \, \text{K}$  способствуют накоплению кла-

**Таблица 1.** Параметры локализованных состояний комплексов РД в облученном ионами титана ( $\Phi = 10^{17} \text{ cm}^{-2}$ ) поликристаллическом Al<sub>2</sub>O<sub>3</sub> после отжига в вакууме

| _                          |                                                                |                                                                                          |                                          |
|----------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------|
| <i>T</i> <sub>an</sub> , K | ε, eV                                                          | Вид дефекта (комп-<br>лекса) по [5,10–16]                                                | $N_i \cdot 10^{-18}, \ \mathrm{cm}^{-3}$ |
| 300-1100                   | $\varepsilon_c - (1.6 - 3.1)$                                  | ΠΒΚ $F_2^{0n+}$ $\text{Ti}_{A1}^{3+}$<br>ΠΒΚ $F_2^{0n+}$ $\text{Ti}_i^{n+}$              | $1-2 \\ 3-6$                             |
| 1200-1400                  | $\epsilon_c - (1.4 - 1.8)$<br>$\epsilon_c - (3.1 - 3.7)$       | Кластеры $Ti_{A1}^{3+} \dots Ti_{A1}^{3+}$<br>Дивакансии $F_2^{0\dots 2+}$               | $^{8-9}_{1-5}$                           |
| 1500-1700                  | $\epsilon_c - (1.4 - 3.8)$<br>$\epsilon_v + (1.8 - 4.2)$       | Кластеры $Ti_{A1}^{3+} \dots Ti_{A1}^{3+}$<br>Кластеры $Ti_{A1}^{3+} \dots Ti_{A1}^{4+}$ | $1-12 \\ 3-21$                           |
| 1700-1800                  | $\varepsilon_c - (1.4 - 2.2)$<br>$\varepsilon_c - (2.8 - 3.8)$ | Кластеры $Ti_{A1}^{3+} \dots Ti_{A1}^{3+}$<br>ПВК $F \dots 2 (Ti^{3+})_i$                | 50-90<br>3-10                            |
|                            | $\varepsilon_c - (4.4 - 5.0)$                                  | HBK $F \dots$ $\Pi_{Al}^{S+}$                                                            | 1-8                                      |

| лица 2. Блияние температуры отжига на воздухе на электрофизические своиства поликора после ионно-термичес.<br>ификации <sup>1</sup> . Измерения выполнены на воздухе |                       |                                         |                            |                           |                      |           |                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|----------------------------|---------------------------|----------------------|-----------|--------------------------|--|--|
| $T_{an}, \mathbf{K},$                                                                                                                                                | $T_{an}, \mathbf{K},$ | Электропроводность                      |                            |                           | Фоточувствительность |           | $J_{PhTSC} \cdot 10^{1}$ |  |  |
| ри <i>P</i> $\leq$ 1 Ра                                                                                                                                              | при $P = 10^5$ Ра     | $\sigma$ , S, при $T = 300  \mathrm{K}$ | $\varepsilon_{\sigma}, eV$ | Температурный интервал, К | $K_i/K$ , a.u.       | hv,eV     | А                        |  |  |
| 720                                                                                                                                                                  | 300                   | $2.5\cdot 10^{-10}$                     | 0.12-0.18                  | 300-400                   | 0.5-0                | 3.3-4.0   | -(7-10)                  |  |  |
|                                                                                                                                                                      |                       |                                         | 0.20 - 0.30                | 400-600                   | 20-25                | 1.6 - 2.0 |                          |  |  |
|                                                                                                                                                                      | 970                   | $7\cdot 10^{-12}$                       | 0.20 - 0.25                | 300-400                   | 4.0 - 0              | 3.3 - 4.0 | +(2-4)                   |  |  |
|                                                                                                                                                                      |                       |                                         | 0.30 - 0.35                | 400-600                   | 40-50                | 1.6 - 2.0 |                          |  |  |
|                                                                                                                                                                      | 1220                  | $1\cdot 10^{-16}$                       | 0.20 - 0.28                | 300-400                   | 10-5                 | 3.3 - 4.0 | +0.25                    |  |  |
|                                                                                                                                                                      |                       |                                         | 0.50 - 0.60                | 400-600                   | 10-12                | 1.6 - 2.0 |                          |  |  |
| 1450                                                                                                                                                                 | 670                   | $5 \cdot 10^{-7}$                       | 0.005                      | 300-600                   |                      |           | +25000                   |  |  |
|                                                                                                                                                                      | 820                   | $2\cdot 10^{-14}$                       | 0.33                       | 300-400                   | 8-12                 | 3.3 - 4.0 | -(10-15)                 |  |  |
|                                                                                                                                                                      |                       |                                         | 0.78                       | 400-600                   | 2                    | 2.3       | , ,                      |  |  |
|                                                                                                                                                                      | 920                   | $1\cdot 10^{-13}$                       | 0.46                       | 330-430                   | 5-8                  | 2.8 - 3.2 | +(6-8)                   |  |  |
|                                                                                                                                                                      |                       |                                         | 1.1                        | 430-600                   | 0                    | 2.3       |                          |  |  |
|                                                                                                                                                                      | 1070                  | $6 \cdot 10^{-17}$                      | 0.53                       | 400-530                   | 16                   | 3.3 - 3.5 | -30                      |  |  |
|                                                                                                                                                                      |                       |                                         | 1.4 - 1.6                  | 500-600                   | 2-10                 | 2.2 - 2.9 |                          |  |  |
|                                                                                                                                                                      | 1220                  | $2\cdot 10^{-16}$                       | 0.50                       | 400-500                   | 15                   | 3.3 - 4.0 | +(2-7)                   |  |  |
|                                                                                                                                                                      |                       |                                         |                            |                           |                      |           |                          |  |  |

на электр Таб кой мод

<sup>1</sup> Ионно-термическая модификация включает две стадии: облучение ионами  $Ti^{n+}$  флюенсом  $10^{17}$  cm<sup>-2</sup> и последующий отжиг в вакууме (P < 10 Pa) при температуре 720 или 1450 К.

стеров Ti<sub>A1</sub><sup>3+</sup>... Ti<sub>A1</sub><sup>3+</sup>. Нестабильность отвечающих им центров связана с влиянием на их заселенность уровней комплексов на основе анионных вакансий и дырочных V-центров. Снижение проводимости при  $T_{an} = 1300 - 1500 \,\mathrm{K}$  (рис. 1) коррелирует с перераспределением электронной плотности от уровней 2.1-3.6 eV донорной подзоны на уровни 1.5-1.7 eV кластеров  $Ti_{A1}^{3+} \dots Ti_{A1}^{3+}$  [5] и уровни 4.6–5.4 eV *F*<sup>+</sup>-центров [6,10], которые могут играть роль глубоких центров захвата неравновесных носителей заряда.

Накопление ЛС в энергетической области 1.5-4.0 eV при *T<sub>an</sub>* = 1350–1650 К вызвано изменением зарядового состояния дефектов замещения  $Ti_{Al}^{3+} \to Ti_{Al}^{4+}$ , формированием ПВК на основе  $Ti_{Al}^{4+}$  и стабильных донорно-акцепторных пар  $Ti_{A1}^{3+} \dots Ti_{A1}^{4+}$  [5,13]. Корреляция между увеличением  $\sigma$  (рис. 1) и изменением оптических параметров не исключает влияния сильно взаимодействующих донорных и акцепторных состояний 1.5-4.0 eV на транспорт носителей заряда. Металлический характер  $\sigma(T)$ (рис. 3, кривая 2), нестабильность  $\sigma(t)$  (рис. 2, кривая 3) и преобладание р-типа фоточувствительности указывают на присутствие механизмов переноса, альтернативных прыжковому и активационному р-типа.

Таким образом, трансформация дефектов из одного типа в другой и изменение их зарядового состояния при отжиге в вакууме определяют температурные и временные характеристики электропроводности облученного ионами титана  $Al_2O_3$ .

При отжиге на воздухе в результате электронно-ионных реакций между дефектами и кислородом сформированные после облучения и отжига в вакууме комплексы диссоциируют на более простые дефекты, изменяется их зарядовое состояние [6,10,13–16], формируются кислородсодержащие комплексы на основе РД и адсорбированного кислорода [7,13]. Следствием накопления таких комплексов является преобразование непрерывно распределенных по энергии ЛС в набор сильно локализованных уровней отдельных дефектов [6,7,13]. Наибольшим изменениям подвержены параметры донорных состояний 0.1-4.0 eV [6,13,14]. Влияние их изменения на относительную спектральную фоточувствительность  $K_i/K$  ( $K = (\sigma_{hv} - \sigma)/\sigma$ , где  $\sigma_{hv}$  — фотопроводимость), электропроводность и ее энергетические параметры, на величину и знак фототермостимулированных токов J<sub>PhTSC</sub> отражено в табл. 2. Стабильность электропроводности модифицированной поверхности Al<sub>2</sub>O<sub>3</sub> в значительной степени зависит от перераспределения ЛС в запрещенной зоне, изменения типа дефектов, степени их взаимодействия и зарядового состояния.

Приповерхностный слой, сформированный после отжига в вакууме при  $T_{an} \leq 1300$  K, устойчив к нагреву на воздухе и обладает слабой зависимостью  $\sigma$  от давления (рис. 4, кривая 1). Электроперенос в температурном интервале до 700 К обусловлен ПВК на основе  $Ti_{A1}^{3+}$ и  $(Ti)_{i}^{0...2+}$ , а слабо изменяющаяся фоточувствительность локализованных состояний 2.1-2.4 eV — отдельными дефектами замещения Ti<sub>A1</sub><sup>3+</sup>. При более высокой температуре (а также после отжига на воздухе при  $T_{an} \ge 700 \, {
m K})$ концентрация дефектов этого типа уменьшается: наблюдается снижение  $\sigma$  и  $\sigma_{hv}$  при сохранении их энергии активации.

Образовавшиеся в модифицированном слое после отжига в вакууме при 1450-1650 К кластеры дефектов  $Ti_{A1}^{3+} \dots Ti_{A1}^{4+}$  и дефекты  $Ti_{A1}^{4+}$  при нагреве на воздухе выше 700 К изменяют зарядовое состояние  $Ti^{3+}_{Al}\ldots\,Ti^{4+}_{Al}\to Ti^{3+}_{Al}\ldots\,Ti^{3+}_{Al}$  за счет электронного обмена с адсорбированным кислородом:  $Ti^{n+} + O^{2-} \rightarrow$  $\rightarrow$  Ti<sup>(n-1)+</sup> + O<sup>-</sup>.

Такие реакции вызывают уменьшение  $\sigma(T_{an})$  (рис. 4, кривые 2, 2', 2"). При этом изменение электропроводности зависит от давления газа (рис. 5, кривые 1, 1' и 2, 2'), ионизирующего воздействия и энергии фотонов (рис. 5, кривые 3, 3'). По данным фоточувствительности, существуют, по крайней мере, две стадии смены типа носителей заряда  $(p \rightarrow n \rightarrow p)$ . Смещение уровня Ферми в сторону валентной зоны выражено неоднозначно. Влияние на проводимость фоточувствительных донорных уровней с энергией 2.1-2.4 eV и 2.8-3.0 eV (nтип  $\sigma_{hv}$ ) выявлено при  $T_{an} = 800 - 850$  и 1000-1100 К. Эти температурные интервалы совпадают с положением пиков на кривых  $\sigma(T_{an})$  (рис. 4). Изменение электропроводности при нагреве на воздухе (рис. 5, кривые 1, 1') обусловлено и обменом электронами между валентной зоной и акцепторными уровнями с энергией 0.4-0.6 eV (T = 330-530 K) и более глубокими уровнями с  $\varepsilon_{\sigma} \ge 1.0 \text{ eV} (T \ge 550 \text{ K})$  (табл. 2). Эти акцепторные уровни имеют низкую степень заселенности, что подтверждается значениями энергии активации темновой электропроводности  $\varepsilon_{\sigma} = 0.08 - 0.12 \, \mathrm{eV}$  после возбуждения белым светом ( $h\nu = 1.5 - 4.2 \,\text{eV}$ ) (рис. 5, кривая 3) и нестабильностью  $\sigma(T)$  (кривая 3'). Нельзя исключить, что влияние газовой среды на  $\sigma(T)$  (рис. 5) может быть обусловлено и изменением стехиометрического состава соединений, образованных имплантированными атомами титана и атомами решетки. Последнее подтверждается восстановлением параметров электропроводности повторным отжигом в вакууме при  $T = 1450 - 1650 \,\mathrm{K}$  и



**Рис. 4.** Влияние температуры отжига на воздухе на изменение электропроводности поликора (T = 300 K) после ионно-термической модификации (флюенс ионов титана  $10^{17} \text{ cm}^{-2}$ , температура отжига в вакууме 720 (I, I', I'') и 1450 К (2, 2', 2'')). Измерения электропроводности выполнены в вакууме (I, 2) и на воздухе: I', 2' — первые измерения после отжига; I'', 2'' повторные измерения.



**Рис. 5.** Влияние среды (воздуха (1, 1') и вакуума (2, 2', 3, 3')) и освещения белым светом (3, 3') на температурную зависимость электропроводности поликора после ионно-термической модификации (флюенс ионов титана  $10^{17}$  cm<sup>-2</sup>, температура постимплантационного отжига в вакууме 1450 К) и дополнительной температурной обработки на воздухе при 970 К. Электропроводность измерена при увеличении (1-3) и снижении (1'-3') температуры.

восстановлением синего цвета модифицированной поверхности оксида алюминия.

Таким образом, характеристики темновой и фотопроводимости предварительно облученного ионами титана и отожженного в вакууме  $Al_2O_3$ , их стабильность при нагреве на воздухе определяются накоплением кислородсодержащих комплексов с различной термической стабильностью, изменением зарядового состояния примесно-вакансионных комплексов и кластеров дефектов замещения, а также изменением стехиометрического состава синтезированных при ионно-термической модификации соединений.

## Список литературы

- [1] Cherenda N.N., Uglov V.V., Litvinovich G.V. et al. // Nucl. Instr. Meth. Phys. Res. 2003. Vol. B211. P. 219–226.
- Ji H., Evans P.J., Samandi M. // J. Mat. Sci. 2000. Vol. 35.
   P. 3681–3684.
- [3] Morpeth L.D., McCallum J.C. // Nucl. Instr. Meth. Phys. Res. 2001. Vol. B175–177. P. 537–541.
- [4] Marques C., Alves E., McHargue C. et al. // Nucl. Instr. Meth. Phys. Res. 2002. Vol. B191. P. 644–648.
- [5] Кабышев А.В., Конусов Ф.В. // Физ. хим. обраб. мат. 2002.
   № 6. С. 15–20.

- [6] Molnar G., Borossay J., Benabdesselam M. et al. // Phys. Stat. Sol. (a). 2000. Vol. 179. P. 249–260.
- [7] Kabyshev A.V., Konusov F.V., Lopatin V.V. // Surface Investigation. 2001. Vol. 16. N 5. P. 723–729.
- [8] McHargue C.J., Sklad P.S., White C.W. // Nucl. Instr. Meth. Phys. Res. 1990. Vol. B46. N 1–4. P. 79–88.
- [9] Ohuchi Fumio S., Kohyama Masanori // J. Amer. Ceram. Soc. 1991. Vol. 74. N 6. P. 1163–1187.
- [10] Evans B.D. // J. Nucl. Mater. 1995. Vol. 219. P. 202-223.
- [11] Wong W.C., McClure D.S., Basun S.A. et al. // Phys. Rev. 1995. Vol. 51. N 9. P. 5682–5692.
- Marsunaga Katsuyuku, Nakamura Atsutomo, Yamamoto Takahisa et al. // Phys. Rev. B, 3 Series. 2003. Vol. 68. N 21. P. 214 102/1–214 102/8.
- [13] Левин Д.М., Герасимов В.П., Гусейнов Ф.Х. // ЖПС. 2001. Т. 68. № 3. С. 376–379.
- [14] Багдасаров Х.С., Карягин В.Ф., Кеворков А.М. и др. // Кристаллография. 1994. Т. 39. № 4. С. 656–658.
- [15] Коневский В.С., Кривоносов Е.В., Литвинов Л.А. и др. // ЖПС. 1989. Т. 50. № 4. С. 651–654.
- [16] Бессонова Т.С., Станиславский М.П., Хаимов-Мальков В.Я. // Опт. и спектр. 1976. Т. 41. Вып. 1. С. 152–154.