05;07;12

Влияние низкотемпературного отжига на кривую намагничивания YBa₂Cu₃O_{6+x}-керамики

© М.К. Алиев, Г.Р. Алимов, Р.Р. Вильданов, Б.Ю. Соколов

Научно-исследовательский институт прикладной физики Национального университета Узбекистана, 100174 Ташкент, Узбекистан e-mail: optic@nuuz.uzsci.net

(Поступило в Редакцию 10 октября 2006 г.)

Исследовано влияние низкотемпературного отжига на кривую намагничивания $YBa_2Cu_3O_{6+x}$ -керамики (с $x \sim 0.9$), находящейся в сверхпроводящем состоянии. Обнаружено, что при достаточно длительных временах отжига на полевой зависимости магнитного момента M исследованных образцов возникает особенность в виде участка, на котором величина M практически не изменяется в некотором интервале полей. Изучено поведение этой особенности кривых намагничивания отожженных образцов в зависимости от времени отжига и температуры. При обсуждении полученных результатов предполагается, что низкотемпературный отжиг приводит к возникновению в $YBa_2Cu_3O_{6+x}$ -керамике метастабильных ферромагнитных кластеров, вклад которых в магнитный момент и определяет появление особенности на кривых намагничивания отожженных образцов.

PACS: 74.25.Ha

Известно, что многие физические свойства соединений $YBa_2Cu_3O_{6+x}$ -системы существенно зависят от значения индекса x ($0 \le x \le 1$). Так, родительское соединение этих купратов — $YBa_2Cu_3O_6$ — антиферромагнитный изолятор Мотта—Хаббарда, в котором строго коррелированная электронная система приобретает диэлектрические свойства благодаря сильному отталкиванию между электронами [1] (обычные диэлектрики, как известно, обязаны своему существованию действию принципа Паули). Диэлектрические и антиферромагнитные свойства YBa_2Cu_3O_6 быстро исчезают с ростом кислородного индекса, уступая место металлическим и сверхпроводящим (при достаточно низкой температуре).

Считается, что при увеличении содержания кислорода в составе $YBa_2Cu_3O_{6+x}$ -купратов (с ростом x) происходит инжекция свободных носителей тока (дырок) в двумерные антиферромагнитные CuO₂-слои, обусловливающая переход диэлектрик-металл в этих соединениях. К настоящему времени надежно установлено, что не только содержание кислорода, но и степень его упорядочения в CuO_x-слоях оказывает сильное влияние на концентрацию дырок: чем выше степень упорядочения кислородной О, подсистемы, тем больше свободных носителей в CuO2-слоях [2,3]. Благодаря высокой подвижности кислорода в О_х-подсистеме степень его разупорядочения, а следовательно и плотность дырок в CuO₂слоях, может изменяться непрерывным образом, например, в результате "старения" образца при его выдержке в течение некоторого времени при температурах порядка комнатной (низкотемпературный отжиг) [4–7]. В [4–7] указанный способ изменения концентрации носителей тока успешно применялся при исследованиях фазовой T-x-диаграммы $YBa_2Cu_3O_{6+x}$ -системы в окрестности ее перехода антиферромагнетик-сверхпроводник. При этом в соответствии с задачей исследований в [4–7] использовались образцы с низким содержанием кислорода (с $x \approx 0.4$).

Целью настоящей работы является исследование влияния низкотемпературного отжига на магнитные свойства $YBa_2Cu_3O_{6+x}$ -керамики в сверхпроводящем состоянии. В отличие от указанных работ [4–7] в наших экспериментах использовались образцы с высоким содержанием кислорода в их составе (с $x \sim 0.9$).

Образцы и методика эксперимента

Были исследованы образцы YBa₂Cu₃O_{6+x}-керамики, полученной по обычной технологии спекания порошков BaCO₃, Y₂O₃ и CuO в твердой фазе. Для удобства измерений образцы обрабатывались в виде прямоугольных параллелепипедов размером ~ 2 × 2 × 3 mm. Как показали рентгеноструктурные исследования, образцы были однородными и однофазными по составу. Исходные образцы характеризовались плотностью порядка 5 g/cm³, удельным сопротивлением при комнатной температуре $\approx 2 \cdot 10^{-3} \Omega \cdot \text{сm}$ и имели характерный размер кристаллитов ~ 10 μ m. Критическая температура T_c образцов, определяемая резистивным методом, составляла \approx 92 К. Образцы имели обычный металлический ход температурной зависимости электросопротивления, который не изменялся в процессе их отжига (см. ниже).

В экспериментах исследовалась полевая зависимость магнитного момента **М** образцов в температурной области 78 K $\leq T \leq T_c$. При измерениях образцы охлаждались до некоторой заданной температуры в нулевом магнитном поле, после чего осуществлялось их намагничивание (режим диамагнитного экранирования). Все измерения были выполнены на вибрационном магни-

тометре, имеющем чувствительность по M на уровне $10^{-6} \,\mathrm{G} \cdot \mathrm{cm}^3/\mathrm{g}$ [8]. Для намагничивания образцов использовалось постоянное однородное магнитное поле напряженностью $H \leq 40$ Ое, создаваемое парой катушек Гельмгольца.

Всего было исследовано четыре образца, изготовленных из одного общего. Каждый образец подвергался отжигу на воздухе в течение длительного времени при одной из фиксированных температур — 100, 150, 200 или 250°С с последующей закалкой в жидком азоте. Как было показано в [3], при температуре отжига $T_{\rm an} < 300^{\circ}$ С практически не происходит обмена кислородом между образцами и окружающей средой. Поэтому все обнаруженные в наших экспериментах изменения магнитных (диамагнитных) свойств образцов в результате их отжига можно считать целиком связанными с разупорядочением кислородной О_x-подсистемы.

Экспериментальные результаты

В результате выполненных исследований были установлены две закономерности влияния отжига на магнитные свойства YBa2Cu3O6+x-керамики. Во первых, все изменения кривой M(H), наблюдаемые в эксперименте, могли быть достигнуты либо за счет более длительной выдержки образца при более низкой T_{an} (из интервала 100-250°С), либо наоборот — за счет менее длительного отжига при более высокой T_{an}. Вовторых, после отжига в течение 0.5-1 h (в зависимости от T_{an}) и последующей закалки образцов сначала их T_{c} практически скачком уменьшалась с 92 до 89 K, после чего в течение достаточно длительного времени отжига $au_{\rm an}$ (например, при $T_{\rm an}=200^{\circ}{\rm C}$ — до $au_{\rm an} \approx 6\,{\rm h}$) в пределах ошибки эксперимента ($\sim 0.2\,{\rm K}$) оставалась неизменной. При дальнейшем увеличении времени отжига Т_с образцов монотонно смещалась в область низких температур. Последняя закономерность наблюдалась как при резистивных измерениях, так и при определении температуры выхода захваченного образцом магнитного потока. При этом во всех случаях отжиг приводил к повышению электросопротивления образцов в нормальном состоянии (мы не будем останавливаться на результатах исследований влияния отжига на электропроводность YBa₂Cu₃O_{6+x}-керамики; эти результаты будут опубликованы отдельно).

Как уже отмечалось, увеличение времени отжига τ_{an} свыше некоторого критического приводило к смещению T_c образцов ниже 89 K, что, в свою очередь, вызывало резкое падение измеряемого магнитного момента. Последнее обстоятельство вследствие недостаточной чувствительности нашего магнитометра и ограниченности температурной области эксперимента ($T \ge 78$ K) не позволило надежно исследовать поведение зависимости M(H) образцов с $T_c < 89$ K. Поэтому ниже будут представлены лишь экспериментальные результаты, полученные на отожженных образцах, имеющих $T_c \approx 89$ K.

Рис. 1. Полевые зависимости магнитного момента образца, отожженного при $T_{\rm an} = 250^{\circ}$ С, полученные при различной длительности отжига: I = 0 (неотожженный образец); 2 = 1; 3 = 2; 4 = 2.5; 5 = 3; 6 = 5 h. Пунктир — зависимость M(H), наблюдаемая после длительной выдержки при комнатной температуре образца, первоначально отожженного в течение 5 h. Время развертки магнитного поля ~ 15 s, температура измерений T = 78 K.

На рис. 1 в качестве примера показана эволюция кривой намагничивания образца, подвергнутого отжигу при $T_{\rm an} = 250^{\circ}$ С, в зависимости от времени $\tau_{\rm an}$. Заметим, что в процессе измерений образец отогревался до комнатной температуры, вынимался из криостата магнитометра, отжигался в течение 0.5 h, закалялся в жидком азоте, после чего снова размещался в магнитометре. Поэтому под временем $\tau_{\rm an}$, после которого получены приведенные на рис. 1 кривые M(H), понимается суммарное время отжига образца.

Как видно из рис. 1, при увеличении τ_{an} значение M падает, при этом уменьшается длина начального квазилинейного участка зависимости M(H). Обращает на себя внимание появление на кривой M(H) (начиная с $\tau_{an} = 2 \text{ h}$) особенности ("ступеньки") в виде участка, на котором M практически не изменяется в некотором интервале полей. По мере роста τ_{an} ширина этой "ступеньки" увеличивается, а ее положение на кривых M(H) сдвигается в область более слабых полей. Существенно, что после выдержки этого (подвергутого пятичасовому отжигу) образца в течение семи суток при комнатной температуре "ступенька" на кривой M(H) исчезала, а значение M возрастало примерно на 15% (рис. 1).

Влияние температуры измерения на кривую намагничивания образца, отожженного при $T_{\rm an} = 250^{\circ}{\rm C}$ в течение $\tau_{\rm an} = 2$ h, иллюстрирует рис. 2 (каждая кривая M(H) получена после отогрева образца до $T = 110 \,{\rm K} > T_c$ с последующим его охлаждением при H = 0 до температуры измерения). Из приведенных на рис. 2 графиков, в

Рис. 2. Полевые зависимости магнитного момента образца, отожженного в течение 2 h при $T_{an} = 250^{\circ}$ C, полученные при разной T: I - 78; 2 - 79; 3 - 82; 4 - 86 K. Время развертки магнитного поля ~ 15 s. На вставке: схематическое изображение кривой намагничивания отожженного образца: сплошная линия — зависимость M(H), пунктир и штрихпунктир — соответственно ферромагнитный и диамагнитный вклады в интегальный момент $M. H_{c1}$ — первое критическое поле, H_s — поле насыщения.

частности, следует, что повышение T (в исследованном температурном интервале) приводит к увеличению ширины "ступеньки" за счет смещения ее начала к H = 0.

Насколько нам известно, обнаруженные "ступеньки" на кривых намагничивания $YBa_2Cu_3O_{6+x}$ -керамики ранее не наблюдались, поэтому представляет интерес обсудить возможную причину появления этой особенности на зависимости M(H) отожженных образцов.

Обсуждение результатов

Наличие "ступеньки" на кривой M(H) можно объяснить, если предположить, что помимо диамагнитного вклада в магнитный момент образца имеется вклад иной природы, отличающийся от диамагнитного как по знаку, так и по полевой зависимости. Тогда, в принципе, возможна ситуация, при которой в некотором интервале магнитных полей этот дополнительный вклад компенсирует рост диамагнитной составляющей магнитного момента, в результате чего величина М становится не зависимой от *H*. Обратим внимание (рис. 1 и 2), что "ступенька" возникает в конце начального квазилинейного участка кривой намагничивания либо вблизи *H* = 0 (если говорить о длительных временах отжига). Поэтому, чтобы определить возможный источник дополнительного вклада в М, сначала остановимся на механизме диамагнетизма YBa₂Cu₃O_{6+x}-керамики.

Согласно общепринятой модели (см., например, [9]), начальный участок зависимости M(H) гранулированного сверхпроводника, охлажденного при H = 0 до $T < T_c$, характеризует почти идеальное диамагнитное экранирование внутренней части образца от внешнего магнитного поля, обусловленное циркулирующим по поверхности образца сверхпроводящим током J.¹ При этом критическое значение циркулирующего тока $J = J_c$ определяется критическими токами *j*_c джозефсоновских контактов между гранулами керамики. Поскольку в среднем $j_c \propto 1/H$, то при возрастании внешнего магнитного поля до некоторого критического $H_{c1}~(H_{c1} \propto J_c)$ джозефсоновские контакты в приповерхностном слое образца, имеющие минимальное значение j_c , разрываются, и поле Н начинает проникать внутрь образца. В слабых полях $H > H_{c1}$ (используемых в наших экспериментах) диамагнитный момент керамики формируется токами джозефсоновского типа, циркулирующими по не связанным между собой замкнутым электрическим цепям, включающим в себя сверхпроводящие гранулы, объединенные джозефсоновскими контактами, имеющими при данном H критические токи $j_c \neq 0$ [9].

При $H > H_{c1}$ магнитное поле проникает в керамику через области с пониженными сверхпроводящими свойствами (в данной модели гранулы керамики остаются сверхпроводящими до некоторого значения поля $H_{c2} > H_{c1}$, поэтому при $H < H_{c2}$ поле в них не проникает [9]). Таковыми, в частности, являются межгранулярные прослойки. Поскольку появление "ступеньки" наблюдается в конце начального квазилинейного участка кривых намагничивания (рис. 1, 2), т.е. только после того как поле начинает проникать в глубь керамики, именно в этих ее областях с пониженными сверхпроводящими свойствами, вероятно, и следует искать источник дополнительного вклада в M отожженных образцов.

Источником дополнительного магнитного момента, имеющего знак, противоположный диамагнитному, могут служить ферромагнитные кластеры, возможность существования которых в купратных сверхпроводниках вытекает из теории электронного разделения фаз [10]. Такие ферромагнитные кластеры, образованные обменно-связанными парами ионов Cu²⁺, относительно недавно были обнаружены методом электронного парамагнитного резонанса в недодопированных, но сверхпроводящих YBa₂Cu₃O_{6+x}-монокристаллах и керамике [11]. По данным [11], ферромагнитные кластеры в YBa2Cu3O6+x-купратах имеют температуру упорядочения выше T_c и возникают при значении индекса $x \sim 0.5$. Кластеры формируются из ионов Cu^{2+} , расположенных в цепочках Cu-O (по нашей терминологии — в CuO_xслоях) и имеют магнитный порядок типа "легкая плоскость" с ориентацией ферромагнитного момента т параллельно CuO₂-слоям. Существенно, что необходимым структурным элементом кластеров является кислородная вакансия между двумя соседними ионами Cu²⁺ в цепочке. Поскольку считается (см., например, [12]), что межгранулярные прослойки в YBa2Cu3O6+x-керамике образуют материал с меньшим по сравнению с материалом гранул содержанием кислорода, то исходя из

¹ Наклон линейного участка зависимости M(H) определяется относительной долей сверхпроводящей фазы в объеме керамики [9].

результатов [11] можно ожидать, что именно в межгранулярных прослойках в первую очередь и формируются ферромагнитно упорядоченные кластеры из ионов Cu²⁺.

Мы предполагаем, что низкотемпературный отжиг $YBa_2Cu_3O_{6+x}$ -керамики, приводя к разупорядочению кислорода в O_x -подсистеме (на что косвенно указывает наблюдаемый экспериментально рост сопротивления образца при увеличении времени τ_{an}), создает условия для возникновения цепочек Cu^{2+} -вакансия кислорода – Cu^{2+} , формирующих в исследованных нами образцах ферромагнитные кластеры, подобные обнаруженным в [11]. Как будет показано ниже, такое предположение позволяет описать (на качественном уровне) все выявленные закономерности в поведении зависимостей M(H), представленных на рис. 1 и 2.

Естественно считать, что при достаточно низкой концентрации кластеров они не взаимодействуют между собой. Поэтому в нетекстурированной керамике при H = 0 моменты **m** отдельных кластеров ориентированы в пространстве хаотично. При наложении внешнего магнитного поля $H > H_{c1}$ векторы **m** разворачиваются в "легкой" плоскости к направлению Н. Вследствие этого полевая зависимость суммарного ферромагнитного момента совокупности кластеров будет иметь вид, близкий к кривой намагничивания обычного поликристаллического ферромагнетика (рис. 2, где на вставке схематически представлена полевая зависимость ферромагнитного вклада в магнитный момент керамики). Если принять, что магнитокристаллическая анизотропия в "легкой" плоскости невелика, то насыщение ферромагнитного момента совокупности кластеров произойдет в относительно слабом магнитном поле H_s (см. вставку на рис. 2).² При этом в области полей $H_{c1} < H < H_s$ полевая зависимость интегрального магнитного момента образца должна иметь особенность ("ступеньку"), что и наблюдается экспериментально (рис. 1, 2).

Согласно принятой модели, положение "ступеньки" на кривой M(H) определяется полем H_{c1} , а ее ширина — плотностью кластеров (плотностью ферромагнитного момента) и относительной долей сверхпроводящей фазы в образце: чем меньше доля сверхпроводящей фазы, тем более пологий вид имеет зависимость M(H) и, как следствие, — шире (при прочих равных условиях) "ступенька".

Как отмечалось выше, низкотемпературный отжиг практически не влияет на значение индекса x в YBa₂Cu₃O_{6+x}-керамике, т.е. не изменяет содержание сверхпроводящей фазы в образце. Поэтому кривые M(H), полученные при различных временах τ_{an} , имеют примерно одинаковый наклон начального квазилинейного участка (рис. 1). В то же время с ростом τ_{an} возрастает степень разупорядочения O_x-подсистемы и, как следствие, — уменьшается плотность свободных

носителей в CuO₂-слоях, что в конечном счете ведет к снижению величины критических токов j_c (к уменьшению H_{c1}). По этой причине положение "ступеньки" на кривых M(H), представленных на рис. 1, смещается в область слабых полей.

Повышение температуры приводит к уменьшению доли гранул, находящихся при данной T в сверхпроводящем состоянии, чем и обусловливается уменьшение угла наклона начального участка кривых M(H) относительно оси абсцисс (рис. 2). Принимая во внимание температурную зависимость критического поля H_{c1} ($H_{c1} \propto (1 - T/T_c)$ [14]) и предполагая, что зависимость m(T) имеет вейсовский вид, т.е. вдали от температуры ферромагнитного упорядочения (которая, согласно принятой модели, выше T_c) величина суммарного ферромагнитного момента практически не зависит от T, можно связать наблюдаемое экспериментально смещение положения "ступеньки" и изменение ее ширины на кривых M(H) (рис. 2) с уменьшением значения H_{c1} при $T \rightarrow T_c$.

По данным работы [11], ферромагнитные кластеры метастабильны, что согласуется с результатами наших экспериментов: как уже отмечалось, после длительной выдержки при комнатной температуре отожженных образцов "ступенька" на кривых их намагничивания исчезает (рис. 1).

Работа выполнена при финансовой поддержке УНТЦ (грант № 3505).

Список литературы

- [1] *Gebhard F.* The Mott Metal-Insulator Transition. Berlin: Springer-Verlag, 1997. 206 p.
- [2] Veal B.W., You H., Paulikas A.P. et al. // Phys. Rev. B. 1990.
 Vol. 42. N 7. P. 4470–4473.
- [3] Veal B.W., Paulikas A.P., You H. et al. // Phys. Rev. B. 1990. Vol. 42. N 10. P. 6305–6316.
- [4] Lavrov A.N., Kozeeva L.P. // Physica C. 1995. N 248.
 P. 365–381.
- [5] Lavrov A.N., Kozeeva L.P. // Physica C. 1995. N 252.
 P. 315–324.
- [6] Лавров А.Н., Козеева А.П. // Письма в ЖЭТФ. 1995. Т. 62. Вып. 7. С. 562–566.
- [7] Лавров А.Н., Козеева А.П. // Письма в ЖЭТФ. 1996. Т. 63.
 Вып. 10. С. 788–791.
- [8] Сигал Г.П., Соколов Б.Ю. // ПТЭ. 1995. № 1. С. 132–135.
- [9] Мейлихов Е.З. // СФХТ. 1989. Т. 2. № 9. С. 5–29.
- [10] Нагаев Э.Л. // УФН. 1995. Т. 165. № 3. С. 27–54.
- [11] Баранов П.Б., Бадалян А.Г., Азамат Д.В. // ФТТ. 2001.
 Т. 43. Вып. 1. С. 96–107.
- [12] Мейлихов Е.З. // УФН. 1993. Т. 163. № 3. С. 27-54.
- [13] Соколов Б.Ю. // ФТТ. 2005. Т. 47. Вып. 9. С. 1644–1650.
- [14] Мейлихов Е.З., Шапиро В.Г. // СФХТ. 1991. Т. 4. № 8. С. 1437–1479.

² Такая ситуация вполне вероятна. Так, например, для хорошо известного легкоплоскостного слабого ферромагнетика FeBO₃, имеющего температуру магнитного упорядочения $T_N \approx 350$ K, при азотной температуре $H_s \sim 1$ Oe [13].