Краткие сообщения

05;11;12

Влияние размера зерна на формирование нанофазной структуры и трибологические свойства поверхности трения керамики из частично стабилизированного диоксида циркония

© Г.Я. Акимов, Г.А. Маринин, Э.В. Чайка, В.Н. Варюхин

Донецкий физико-технический институт НАН Украины, 83114 Донецк, Украина e-mail: gencer47@mail.ru

(Поступило в Редакцию 20 декабря 2006 г.)

Установлено, что при сухом трении скольжения керамики $ZrO_2 + 3 mol%Y_2O_3$ о сталь износ керамики с размером зерна 180 nm в 20–60 раз меньше, чем износ керамики со средним размером зерна 700 nm. Показано, что этот эффект связан с тем, что в процессе периодического трения на трущейся поверхности керамики с размером зерна 180 nm формируется нанофазная структура, состоящая из ферроупругих нанодоменов нетрансформируемой T'-фазы.

PACS: 46.55.+d, 81.40.Pq

Известно [1], что характерной особенностью нанокристаллических (наноструктурных, нанофазных) материалов (HM) является размер отдельных объектов, составляющих их структурную основу, который не должен превышать ≈ 100 nm хотя бы в одном измерении. Переход материала в наноструктурное состояние сопровождается значительным повышением уровня физикомеханических свойств. Так, например, в работе [2] методом прессования и спекания ультрадисперсного порошка получен нанокристаллический никель с повышенной твердостью.

Керамику из частично стабилизированного диоксида циркония (ЧСДЦ), как правило, изготавливают из порошков методом их прессования и спекания. Есть много исследований [3-5], показывающих, что при быстром охлаждении от температуры образования кубической (F) фазы (для $ZrO_2 + 3 \mod Y_2O_3$ это $\geq 1600 \text{ K}$) происходит бездиффузионное превращение F фазы в промежуточную тетрагональную (T') фазу [3]. При этом увеличиваются внутренние напряжения, и образуется текстура $I_{(002)}/I_{(200)}$ [4]. T'-фаза двойникуется [3–5], но не превращается в моноклинную (М) даже при механическом разрушении образца [3]. При трении о сталь ЧСДЦ керамики с размером зерна от 600 до 2000 nm со скоростями > 2 m/s на поверхности трения образца не наблюдается М-фазы [6], но формируется текстура I₍₀₀₂₎/I₍₂₀₀₎. Сравнение поведения при трении образцов ЧСДЦ керамики с различной пористостью показало [7], что образцы с большей пористостью при одинаковом размере зерна $\approx 700 \, \text{nm}$ при скорости трения 2.5 m/s изнашиваются меньше. При этом F-фаза необратимо трансформируется в Т'-фазу, формируется текстура $I_{(002)}/I_{(200)}$, а *T*-фаза частично переходит в *M*-фазу.

Целью настоящей работы является исследование износа мелкозернистой ЧСДЦ керамики в системе

 $ZrO_2 + 3 mol%Y_2O_3$ при трении о сталь. Для сравнения была выбрана крупнозернистая ЧСДЦ керамика $ZrO_2 + 3 mol%Y_2O_3$, использованная ранее в работе [7]. Таким образом, исследование проводилось на двух образцах: мелкозернистом № 1 со средним размером зерна 180 nm и крупнозернистом № 2 с размером зерна 700 nm. При сухом трении скольжения изучался износ керамики, эволюция фазового состава материала, образование текстуры и наноструктуры на поверхности трения.

В соответствии с методикой, описанной ранее в работах [7,8], из порошка TZ-3Y фирмы TOSOH с помощью холодного изостатического прессования и спекания на воздухе были изготовлены цилиндрические образцы диаметром 8 mm. Образец № 1 спекался при T = 1623 K, а № 2 — при T = 1773 К. Поверхности трения образцов перед экспериментом полировались. Исходные данные образцов приведены в табл. 1. Плотность керамики измерялась методом гидростатического взвешивания. Размер зерна определялся с помощью растровой микроскопии. Твердость HV_{10} и трещиностойкость $K_{IC}(RT)$ измерялись методом микроиндентирования.

Таблица 1. Физико-механические свойства исходных образцов

№ об- разца	d, nm	$ ho_{\rm ex},$ g/cm ³	P*, %	HV ₁₀ , GPa	$K_{IC}(RT),$ MPa · m ^{1/2}	Средняя скорость износа за 30 min, mg/s
1	180	6.04	0.98	12.0	3.60	$3.3 \cdot 10^{-2}$
2	700	6.08	0.33	12.3	3.94	$5 \cdot 10^{-2}$

* Пористость $P = (1 - \rho_{ex}/\rho_t) \cdot 100\%$; теоретическая плотность $\rho_t = 6.1$ g/cm³, при содержании *M*-фазы 0%.

	ወ	азорый сост	ab						
N₂	Ψ		ав		Т-ф	<i>F-</i> фазы	Текстура		
образца	<i>M</i> , vol.%	<i>T</i> , vol.%	F, vol.%	a, nm	c, nm	$\sqrt[3]{a^2c}$, nm	c/a	a, nm	I_{002}/I_{200}
1 2	0 0	90 79	10 21	0.5091 0.5078	0.5167 0.5155	0.5116 0.5104	1.015 1.015	0.5121 0.5121	0.63 0.60

Таблица 2. Данные РФА, параметры решетки, текстура образцов до испытания

Таблица 3. Данные РФА, параметры решетки, текстура и износ образцов через 180 min трения

	Средняя	Фазовый состав				Параметры решетки					
N₂	скорость					<i>Т</i> - и <i>T′</i> -фазы				<i>F-</i> фазы	Текстура
образца	износа, mg/s	<i>M</i> , vol.%	<i>T</i> , vol.%	<i>T'</i> , vol.%	<i>F</i> , vol.%	a, nm	c, nm	$\sqrt[3]{a^2c}$, nm	c/a	a, nm	I_{002}/I_{200}
1	$1.7\cdot 10^{-2}$	0	70		0	0.5088	0.5159	0.5111	1.014	_	1.14
2	1.02	0	81	30 -	19	0.5108 0.5091	0.5147 0.5160	0.5121 0.5114	1.008 1.014	0.5121	0.6

При трении в качестве контртела использовался шлифованный диск из стали 40ХН ГОСТ 4543-71, закаленный до твердости 55HRC. Скорость скольжения керамического образца по стали равнялась 2.5 m/s. Движение осуществлялось по окружности диаметром 100 mm. Давление прижима керамического образца к контртелу равнялось 1.4 MPa. Износ керамики определялся взвешиванием образцов через каждые 30 min трения.

Рентгенография образцов проводилась на установке ДРОН-3М в СоК_{α}-излучении. Исследовались рефлексы от плоскостей (111) *М*-, *Т*- и *F*-фаз и рефлексы тетрагональных дуплетов (002)–(200) и (004)–(400) для определения текстуры $I_{(002)}/I_{(200)}$ и содержания *М*-, *Т*- и *F*-фаз. Рентгенофазовый анализ (РФА) проводился в соответствии с методикой, описанной в работах [9,10]. Сравнивался фазовый состав и текстура поверхности трения керамики в исходном состоянии и после испытания на износ в течение 3 h. Результаты исследований приведены в табл. 1–3, а также на рис. 1 и 2.

Данные РФА (табл. 2, 3 и рис. 1) показывают, что как в мелкозернистом образце № 1, так и в крупнозернистом № 2 в исходном состоянии присутствуют *T*- и *F*-фазы. При этом содержание кубической фазы в образце № 1 в два раза меньше, чем в образце № 2, что полностью соответствует данным, приведенным в работе [11], где также исследовались образцы, изготовленные из порошка TZ-3Y фирмы TOSOH. Данные РФА показывают также, что объемный параметр решетки $\sqrt[3]{a^2c}$ *T*-фазы выше в мелкозернистой керамике, а это значит, что в ней содержание стабилизирующей примеси Y₂O₃ несколько больше. Однако текстура $I_{(002)}/I_{(200)} \approx 0.6$ и тетрагональность c/a = 1.015 у обоих образцов в исходном состоянии примерно одинаковы.

Износ исследуемых образцов за первые 30 min отличается незначительно. При дальнейшем увеличении

времени эксперимента происходит значительное снижение износа образца № 1 по сравнению с износом образца № 2. После 60–180 min трения износ первого образца в ≈ 20–60 раз меньше второго (рис. 2).

После 180 min трения (рис. 1, табл. 3) в образце № 1 содержание *F*-фазы уменьшается, но увеличивается до 30% содержание нетрансформируемой двойникующейся T'-фазы с тетрагональностью c/a = 1.008. Моноклинная фаза не регистрируется, а текстура увеличивается от 0.6 до 1.14. В образце № 2 после 180 min трения изменение фазового состава и текстуры практически не происходит. Как было показано в работах [6,7], это может быть связано с обратимостью фазовых превращений $F \to T'$ и $T \to M$ в образцах с плотностью, близкой к теоретической. При этом текстура не изменяется и моноклинная фаза не появляется.

Такой эффект можно, по-видимому, объяснить тем, что в процессе трения образца №1 при мартенситном $F \to T'$ превращении образуются ферроупругие домены, представляющие собой двойники с постоянной тетрагональностью [3-5,12]. Домены разделены когерентной границей с переменной тетрагональностью, т.е. с переменной концентрацией стабилизатора. Ширина когерентных границ с переменной тетрагональностью зависит от тетрагональности доменов — со снижением тетрагональности ширина двойниковых границ уменьшается [12]. Согласно данным работы [13], ширина двойниковой полосы (домена) зависит от размера зерна и при росте зерна она может изменяться от нескольких nm до $\approx 1 \,\mu$ m. Однако отношение ширины двойника к размеру зерна остается постоянным. Это значит, что с уменьшением размера зерен на поверхности трения может образовываться нанофазная Т'-структура, свойства которой и будут определять поведение поверхности трения ЧСДЦ керамики. По-видимому, повышение

Рис. 1. Рентгенограммы керамических образцов: до трения — верхние кривые; после трения 180 min — нижние.

концентрации стабилизирующей примеси на границах зерен в мелкозернисном образце [11] и обнаруженное нами образование T'-нанофазы увеличивают стабильность T-фазы на поверхности трения и уменьшают износ керамики.

Таким образом, с ЧСДЦ керамике, спеченной при температуре 1623 К (размер зерна 180 nm), кубической фазы мало и, согласно работе [11], она практически вся локализована в приграничной зоне зерна. При трении *F*-фаза и часть *T*-фазы необратимо переходят в *T'*-фазу, двойникующуюся, но не трансформируемую в *M*-фазу. Это приводит к формированию на поверхности трения нанофазной *T'*-структуры, образованию текстуры, росту внутренних напряжений и упрочению поверхности трения. Отсутствие $T \rightarrow M$ -превращения, по-видимому, обусловлено тем, что возникшие в процессе трения внутренние напряжения делают метастабильную *T*-фазу более устойчивой по отношению к действию приложенных при трении внешних напряжений.

Спекание ЧСДЦ керамики при температуре 1773 К приводит к росту размера зерна до 770 nm и увеличению содержания стабилизирующей примеси в зерне

Рис. 2. Уменьшение относительного износа $\Delta m_1/\Delta m_2$ в зависимости от времени трения, где Δm_1 и Δm_2 — износ первого и второго образцов соответственно.

Журнал технической физики, 2007, том 77, вып. 10

Список литературы

поверхности трения; растет износ образца.

- Андриевский Р.А., Глейзер А.М. // ФММ. 1999. Т. 88. № 1. С. 50–73.
- [2] Яковлев Е.Н., Грязнов Г.М., Сербин В.И. и др. // Поверхность. Физика, химия, механика. 1983. № 4. С. 138–141.
- [3] Yoshimura M. // J. Am. Ceram. Soc. Bull. 1988. Vol. 67. N 12. P. 1950–1955.
- Jue J.F., Virkar A.V. // J. Am. Ceram. Soc. 1990. Vol. 73 (12).
 P. 3650–3657.
- [5] Sakuma T. // J. of Mat. Sci. 1987. Vol. 22. N 12. P. 4470-4475.
- [6] Королев П.В., Савченко Н.В., Кульков С.Н. // Письма в ЖТФ. 2004. Т. 30. Вып. 1. С. 28–34.
- [7] Акимов Г.Я., Маринин Г.А., Чайка Э.В. // Письма в ЖТФ. 2006. Т. 32. Вып. 3. С. 49–54.
- [8] Акимов Г.Я., Маринин Г.А., Тимченко В.М. // Огнеупоры и техническая керамика. 2005. № 5. С. 34–37.
- [9] Кабанова М.И., Дубок В.А. // Порошковая металлургия. 1992. № 5. С. 85–89.
- [10] Акимов Г.Я., Маринин Г.А., Каменева В.Ю. // ФТТ. 2004. Т. 46. Вып. 2. С. 250–252.
- Koji Matsui, Hideharu Horikoshi, Nobukatsu Ohmichi, and Michiharu Ohgai // J. Am. Ceram. Soc. 2003. T. 86 (8). P. 1401–1408.
- [12] Устинов А.И., Олиховский Л.А., Ниепс Ж.-К., Бернар Ф. // Успехи физ. мет. 2002. Т. 2. С. 51–84.
- [13] Зинер К. Упругость и неупругость металлов / Под ред. С.В. Вонсовского. М.: ИЛ, 1954. 396 с.