О механизмах интенсификации горения при возбуждении молекул О₂ электрическим разрядом

© А.М. Старик,¹ Б.И. Луховицкий,¹ В.В. Наумов,² Н.С. Титова¹

 Центральный институт авиационного моторостроения им. П.И. Баранова, 111116 Москва, Россия
 Институт фундаментальных проблем высоких технологий НАН Украины, 03028 Киев, Украина e-mail: star@ciam.ru

(Поступило в Редакцию 10 января 2007 г.)

Проанализированы механизмы интенсификации горения водородно-кислородной смеси в сверхзвуковом потоке за фронтом наклонной ударной волны при возбуждении колебаний и электронных состояний $a^1\Delta_g$ и $b^1\Sigma_g^+$ молекулы O_2 в электрическом разряде. Показано, что присутствие колебательно- и электронно- возбужденных молекул O_2 в кислородной плазме позволяет интенсифицировать цепной механизм в смеси H_2-O_2 даже при небольшой энергии, подведенной к молекулам O_2 в электрическом разряде. Возбуждение молекул O_2 в десятки раз эффективней с точки зрения ускорения воспламенения водородно-кислородной смеси, чем простой нагрев газа электрическим разрядом. Более того, реализация низкотемпературного воспламенения смеси при возбуждении молекул O_2 в электрическом разряде позволяет увеличить эффективность преобразования химической энергии реагирующих компонентов в тепловую по сравнению с обычным методом инициирования горения путем нагрева среды.

PACS: 52.80.-s

Введение

03:04

Возможность интенсификации горения различных смесей при воздействии электрического разряда привлекает внимание исследователей. В настоящее время все методы воздействия можно разделить на три группы: равновесный нагрев среды плазменным факелом либо дуговым электрическим разрядом [1,2], формирование значительных концентраций химически активных атомов и радикалов в разрядной плазме [3-5] и, наконец, возбуждение колебательных или электронных состояний отдельных молекул электронами в специально организованном разряде [6-9]. Последний метод наиболее перспективен, его эффективность должна быть существенно выше, чем у других методов. Действительно, для возбуждения молекул O2 в нижнее колебательное состояние требуется энергия 0.193 eV, а для возбуждения молекул O₂ в нижнее электронное состояние $a^{1}\Delta_{g}$ необходимо 0.98 eV. В то же время для образования атомов О при диссоциации молекул О2 электронным ударом требуется энергия $\sim 5.1 \, \text{eV}$.

Известно, что колебательно- и электронно-возбужденные молекулы реагируют в сотни раз быстрее, чем невозбужденные [9–11]. Связано это с уменьшением барьера эндоэргических реакций с участием возбужденных молекул (атомов). Ранее было показано, что возбуждение молекул О₂ в синглетные состояния $a^{1}\Delta_{g}$ и $b^{1}\Sigma_{g}^{+}$ позволяет существенно понизить температуру воспламенения, сократить длину зоны индукции в сверхзвуковом потоке для смесей $H_{2}(CH_{4})-O_{2}(воздух)$ и стабилизировать детонационную волну при обтекании клина на небольших расстояниях (~ 1 m) от зоны воздействия [12–14].

В последние годы был достигнут значительный прогресс в понимании физико-химических процессов, протекающих в кислородной плазме, образованной как самостоятельным, так и несамостоятельным разрядами. Было показано, что в специально организованном электрическом разряде можно получить достаточно высокую концентрацию возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ [15–18]. При этом возбуждаются не только электронные, но и колебательные состояния молекул O_2 [19]. Как будет показано ниже, наличие в смеси электронно- и колебательно-возбужденных молекул O_2 позволяет значительно сократить длину зоны индукции при горении смеси H_2 + воздух в сверхзвуковом потоке по сравнению с чисто тепловым способом инициирования горения.

Постановка задачи и кинетическая модель

Анализ проведем на примере инициирования горения в сверхзвуковом потоке ударной волной. Схема течения, принятая для анализа, представлена на рис. 1. Здесь потоки молекулярного кислорода и водорода подаются по внутреннему и внешнему соосным каналам, при этом поток O_2 активируется электрическим разрядом. Параметры невозмущенного потока могут изменяться в следующих пределах: температура $T_0 = 300-400$ К, давление $P_0 = 10^3 - 10^5$ Ра, число Маха $M_0 = 4 - 7$. При рассматриваемых параметрах характерное время смешения двух потоков (H₂ и кислородной плазмы) не превышает 10^{-4} s. После смешения однородный поток, состоящий из молекулярного водорода и компонентов,

35

Рис. 1. Схема течения при инициировании горения ударной волной.

образующихся в зоне разряда, взаимодействует со стационарной ударной волной, фронт которой наклонен под углом $\beta = 10-30^{\circ}$ к вектору скорости набегающего потока. При этом скорость газа за ударной волной остается сверхзвуковой.

Проведенные в последние годы теоретические и экспериментальные исследования процессов в кислородной плазме, создаваемой несамостоятельным разрядом [16-19], показали, что при рассматриваемых параметрах потока возможно получение значительных концентраций (~4%) электронно-возбужденных молекул синглетного кислорода $O_2(a^1\Delta_g)$. Параметры и состав разрядной плазмы определяются начальной температурой и давлением среды, величиной приведенного электрического поля *E*/*N* (*E* — напряженность электрического поля, *N* — числовая плотность молекул в газе) и удельной энергией, подводимой к газу в разряде E_s (или мощностью разряда). В данной работе для расчета состава кислородной плазмы использовалась модель [19]. Эта модель основана на совместном решении уравнения Больцмана для функции распределения электронов по энергии, кинетических уравнений, описывающих различные плазмохимические процессы для реагирующих компонентов кислородной плазмы, и квазиодномерных уравнений газовой динамики в приближении невязкого нетеплопроводного газа.

Плазмохимическая модель, принятая в работе, включает более 100 процессов с участием следующих компонентов: e, O^+ , O^- , O_2^+ , O_2^- , O_3^- , O_4^+ , $O_2(X^3\Sigma_g^-)$, $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$, $O_2(A^3\Sigma_u^+, C^3\Delta_u, c^1\Sigma_u^-)$, $O_2(B^3\Sigma_u^-)$, $O(^3P)$, $O(^1D)$, $O_3(^1A_1)$. Также учитывалась и возможность колебательного возбуждения молекул $O_2(X^3\Sigma_g^-)$ электронным ударом. Константы скорости процессов возбуждения электронных и колебательных состояний молекулы O_2 , а также реакций диссоциации и ионизации электронным ударом зависят от величины E/N и электронной температуры, T_e , и определяются на основе осреднения соответствующих сечений электронов по энергии.

Численный анализ процессов в зоне действия разряда показывает, что максимальное возбуждение синглетных

состояний $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ (энергии этих состояний 0.98 и 1.63 eV соответственно) электронным ударом реализуются при $E/N = 1.1 \cdot 10^{-16} \text{ V} \cdot \text{cm}^2$ ($T_e \approx 2 \text{ eV}$). При этом на выходе из зоны разряда в плазме помимо $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ содержатся также колебательновозбужденные молекулы $O_2(X^3\Sigma_g^-, V)$, атомы $O(^3P)$ и $O(^1D)$ и молекулы O_3 . В то же время мольная концентрация заряженных компонентов: e, O^+ , O_2^+ , O_4^+ , O^- , O_2^- , O_3^- не превышает 10^{-6} , и поэтому их наличие в плазме при моделировании процессов горения не учитывалось.

В табл. 1 представлены результаты расчета состава кислородной плазмы, колебательной температуры $O_2(X^3\Sigma_{\sigma}^-)$, T_V , и поступательной температуры газа, Т, для разных значений энергии, подведенной к единице объема газа в разряде, E_s, при $E/N = 1.1 \cdot 10^{-16} \,\mathrm{V} \cdot \mathrm{cm}^2$ и параметрах невозмущенного потока $T_0 = 300 \,\mathrm{K}$ и $P_0 = 10^4 \,\mathrm{Pa}$. Видно, что даже при небольших значениях подведенной к газу удельной энергии $E_s = 1.8 \cdot 10^{-2} \,\text{J/cm}^3$ концентрация синглетного кислорода в состояниях $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ достаточно велика ($\gamma_{O_2(a^1\Delta_e)} = 1.94 \cdot 10^{-2}$ и $\gamma_{O_2(b^1\Sigma_e^+)} = 4.6 \cdot 10^{-3}$), в то же время колебательное возбуждение молекул О2 становится существенным только при $E_s > 3 \cdot 10^{-2} \, \text{J/cm}^3$. Тем не менее даже при малых Е_s колебательная температура О2 отличается от газовой. Это диктует необходимость использования термически неравновесной модели химической кинетики при анализе процессов воспламенения и горения смеси, состоящей из кислородной плазмы и газообразного топлива. Кроме того, реакционный механизм для описания воспламенения смеси Н2-О2 в этом случае должен дополнительно содержать элементарные процессы с участием возбужденных атомов $O({}^{1}D)$ и молекул $O_{2}(a{}^{1}\Delta_{g}), O_{2}(b{}^{1}\Sigma_{g}^{+})$. Такой механизм был разработан ранее в [20]. Он включает 74 обратимые реакции с участием следующих компонентов: H₂, O₂($X^{3}\Sigma_{g}^{-}$), O₂($a^{1}\Delta_{g}$), O₂($b^{1}\Sigma_{g}^{+}$), H₂O, HO₂, H₂O₂, O_3 , OH, H, O(³P), O(¹D). Эта модель была расширена на случай термически неравновесных химических реакций. При этом для описания процессов колебательной релаксации, так же как и в разрядной плазме, использовалась модель локальных колебательных температур, которая предполагает наличие больцмановского распределения молекул по колебательным уровням в каждой отдельной моде со своей колебательной температурой Т_е $(\xi = 1, ..., n,$ где n — число мод в молекулах смеси).

В табл. 2 приведен список химических реакций, включенных в модель. В данной модели электронно-возбужденные молекулы $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$ и атомы $O(^1D)$ рассматриваются как отдельные химические компоненты со своими энтальпией образования и термодинамическими свойствами. Следует отметить, что в термически неравновесной модели реакции №№ 68, 69, 70 являются по сути процессами электронно-колебательного (E-V)обмена, в которых энергия электронно-возбужденных молекул $O_2(b^1\Sigma_g^+)$ и $O_2(a^1\Delta_g)$ переходит в колебания молекул $O_2(a^1\Delta_g)$ и $O_2(X^3\Sigma_g^-)$. Помимо хи-

Таблица 1. Мольные доли основных компонентов кислородной плазмы, а также значения T и T_V при различных E_s ($E/N = 1.1 \cdot 10^{-16} \,\mathrm{V} \cdot \mathrm{cm}^2$, $T_0 = 300 \,\mathrm{K}$, $P_0 = 10^4 \,\mathrm{Pa}$)

Πορομοτριι	E_s , J/cm ³				
Параметры	$1.2\cdot 10^{-2}$	$1.8\cdot 10^{-2}$	$3 \cdot 10^{-2}$	$6 \cdot 10^{-2}$	
$\gamma_i: i = \mathcal{O}_2(X^3\Sigma_g^-) \ \mathcal{O}_2(a^1\Delta_g)$	0.995 $2.95 \cdot 10^{-3}$	0.921 $1.94 \cdot 10^{-2}$	0.958 $3.22 \cdot 10^{-2}$	0.917 $6.43 \cdot 10^{-2}$	
$O_2(b^1\Sigma_g^*)$ $O(^3P)$	${\begin{array}{*{20}c} 1.32 \cdot 10^{-3} \\ 4.0 \cdot 10^{-4} \end{array}}$	$4.6 \cdot 10^{-3} \\ 6.4 \cdot 10^{-4}$	$7.66 \cdot 10^{-3} \\ 1.2 \cdot 10^{-3}$	$\frac{1.55 \cdot 10^{-2}}{3.09 \cdot 10^{-3}}$	
O_3	$3.38\cdot 10^{-5}$	$3.56 \cdot 10^{-5}$	$3.52\cdot 10^{-5}$	$3.18\cdot 10^{-5}$	
T_V, K	686	789	985	1566	
Т,К	322	333	354	400	

Таблица 2. Реакции, включенные в кинетическую схему

N₂	Реакция	N⁰	Реакция
1	$H_2O + M = OH + H + M$	38	$H + H_2O_2 = H_2 + HO_2$
2	$H_2 + M = 2H + M$	39	$H + H_2O_2 = H_2O + OH$
3	$O_2(X^3\Sigma_g^-) + M = O(^3P) + O(^3P) + M$	40	$2HO_2 = H_2O_2 + O_2(X^3\Sigma_g^-)$
4	$O_2(a^1\Delta_g) + M = O({}^3P) + O({}^3P) + M$	41	$2\mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(a^1\Delta_g)$
5	$O_2(b^1\Sigma_g^+) + M = O({}^3P) + O({}^3P) + M$	42	$2\mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(b^1\Sigma_g^+)$
6	$\mathbf{OH} + \mathbf{M} = \mathbf{O}(^{3}P) + \mathbf{H} + \mathbf{M}$	43	$HO_2 + H_2O = H_2O_2 + OH$
7	$\mathbf{H}_2 + \mathbf{O}(^3P) = \mathbf{OH} + \mathbf{H}$	44	$\mathbf{OH} + \mathbf{HO}_2 = \mathbf{H}_2\mathbf{O}_2 + \mathbf{O}({}^3P)$
8	$\mathbf{H}_2 + \mathbf{O}(^1D) = \mathbf{OH} + \mathbf{H}$	45	$H_2O + O_2(X^3\Sigma_g^-) = H_2O_2 + O(^3P)$
9	$O_2(X^3\Sigma_g^-) + H = OH + O(^3P)$	46	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}(^{3}P)$
10	$O_2(a^1\Delta_g) + H = OH + O({}^3P)$	47	$H_2O + O_2(b^1\Sigma_g^+) = H_2O_2 + O(^3P)$
11	$O_2(b^1\Sigma_g^+) + H = OH + O(^3P)$	48	$O_3 + M = O({}^3P) + O_2(X^3\Sigma_g^-) + M$
12	$H_2O + O(^3P) = 2OH$	49	$\mathrm{O}_3 + M = \mathrm{O}({}^3P) + \mathrm{O}_2(a^1\Delta_g) + M$
13	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}(^{1}D) = 2\mathrm{OH}$	50	$\mathrm{O}_3+M=\mathrm{O}({}^3P)+\mathrm{O}_2(b{}^1\Sigma^+_g)+M$
14	$\mathrm{H_2O} + \mathrm{H} = \mathrm{OH} + \mathrm{H_2}$	51	$O_3 + H = OH + O_2(X^3\Sigma_g^-)$
15	$H_2 + O_2(X^3\Sigma_g^-) = 2OH$	52	$\mathrm{O}_3 + \mathrm{O}({}^3P) = 2\mathrm{O}_2(X^3\Sigma_g^-)$
16	$H_2 + O_2(a^1\Delta_g) = 2OH$	53	$O_3 + O({}^3P) = O_2(X^3\Sigma_g) + O_2(a^1\Delta_g)$
17	$\mathrm{H}_2 + \mathrm{O}_2(b^1\Sigma^+_g) = 2\mathrm{OH}$	54	$O_3 + O({}^3P) = O_2(X^3\Sigma_g^-) + O_2(b^1\Sigma_g^+)$
18	$\mathrm{HO}_2 + M = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{H} + M$	55	$O_3 + O(^1D) = 2O_2(X^3 \tilde{\Sigma}_g^-)$
19	$HO_2 + M = O_2(a^1\Delta_g) + H + M$	56	$O_3 + O(^1D) = O_2(X^3\Sigma_g) + O_2(a^1\Delta_g)$
20	$\mathrm{HO}_2 + M = \mathrm{O}_2(b^1\Sigma_g^+) + \mathrm{H} + M$	57	$\mathrm{O}_3 + \mathrm{O}(^1D) = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(b^1\Sigma_g^+)$
21	$H_2 + O_2(X^3\Sigma_g^-) = H + HO_2$	58	$O_3 + O(^1D) = O_2(X^3\Sigma_g^-) + O(^3P) + O(^3P)$
22	$\mathrm{H}_{2} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{H} + \mathrm{HO}_{2}$	59	$O_3 + OH = HO_2 + O_2(X^3\Sigma_g^-)$
23	$\mathrm{H}_2 + \mathrm{O}_2(b^1\Sigma^+_g) = \mathrm{H} + \mathrm{HO}_2$	60	$O_3 + OH = HO_2 + O_2(a^1\Delta_g)$
24	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}(^{3}P) = \mathrm{H} + \mathrm{HO}_{2}$	61	$\mathrm{O}_3 + \mathrm{OH} = \mathrm{HO}_2 + \mathrm{O}_2(b^1\Sigma_g^+)$
25	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}(^{1}D) = \mathrm{H}_{2} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-})$	62	$O_3 + H_2 = OH + HO_2$
26	$H_2O + O_2(X^3\Sigma_g^-) = OH + HO_2$	63	$O_3 + HO_2 = OH + 2O_2(X^3\Sigma_g^-)$
27	$H_2O + O_2(a^1\Delta_g) = OH + HO_2$	64	$O_3 + HO_2 = OH + O_2(X^3\Sigma_g) + O_2(a^1\Delta_g)$
28	$H_2O + O_2(b^1\Sigma_g^+) = OH + HO_2$	65	$O_3 + HO_2 = OH + O_2(X^3\Sigma_g^-) + O_2(b^1\Sigma_g^+)$
29	$H_2O + OH = H_2 + HO_2$	66	$O_3 + O_2(a^1\Delta_g) = 2O_2(X^3\Sigma_g^-) + O(^3P)$
30	$2OH = H + HO_2$	67	$O_3 + O_2(b^1\Sigma_g^+) = 2O_2(X^3\Sigma_g^-) + O(^3P)$
31	$OH + O_2(X^3\Sigma_g^-) = O(^3P) + HO_2$	68	$2\mathrm{O}_2(a^1\Delta_g) = \mathrm{O}_2(b^1\Sigma_g^+) + \mathrm{O}_2(X^3\Sigma_g^-)$
32	$OH + O_2(a^1\Delta_g) = O({}^3P) + HO_2$	69	$O_2(a^1\Delta_g) + M = O_2(X^3\Sigma_g) + M$
33	$OH + O_2(b^1\Sigma_g^+) = O({}^3P) + HO_2$	70	$O_2(b^1\Sigma_g^+) + M = O_2(a^1\Delta_g) + M$
34	$OH + O_2(X^3 \Sigma_g^{-}) = O(^1 D) + HO_2$	71	$O(^{1}D) + O_{2}(X^{3}\Sigma_{g}^{-}) = O(^{3}P) + O_{2}(a^{1}\Delta_{g})$
35	$OH + O_2(a^1\Delta_g) = O(^1D) + HO_2$	72	$O({}^{1}D) + O_{2}(X^{3}\Sigma_{g}^{-}) = O({}^{3}P) + O_{2}(b^{1}\Sigma_{g}^{+})$
36	$OH + O_2(b^1\Sigma_g^+) = O(^1D) + HO_2$	73	$O(^{1}D) + O_{2}(a^{1}\Delta_{g}) = O(^{3}P) + O_{2}(b^{1}\Sigma_{g}^{+})$
37	$H_2O_2 + M = 2OH + M$	74	$O(^{1}D) + M = O(^{3}P) + M$

мических реакций в модель были включены процессы колебательно-колебательного (V-V') обмена и колебательно-поступательной (V-T) релаксации, в том числе и с участием электронно-возбужденных молекул $O_2(b^1\Sigma_g^+)$ и $O_2(a^1\Delta_g)$, которые даны в табл. 3. Здесь же даны обозначения соответствующих констант

Таблица З. Каналы обменов V-	V' и $V-T$, включенные в модель
------------------------------	----------------------------------

1V	$O_2(X^3\Sigma_g^-, V=1) + M = O_2(X^3\Sigma_g^-, V=0) + M$	$W_{1,0}^M$
2V	$\mathrm{O}_2(a^1\Delta_{\!\scriptscriptstyle g},V=1)+M=\mathrm{O}_2(a^1\Delta_{\!\scriptscriptstyle g},V=0)+M$	$W_{2,0}^M$
3V	$O_2(a^1\Delta_g, V=1) + O_2(X^3\Sigma_g^-, V=0) = O_2(a^1\Delta_g, V=0) + O_2(X^3\Sigma_g^-, V=1)$	$W_{2,1}$
4V	$O_2(b^1\Sigma_g^+, V=1) + M = O_2(b^1\Sigma_g^+, V=0) + M$	$W_{3,0}^{M}$
5V	$O_2(b^1\Sigma_g^+, V=1) + O_2(X^3\Sigma_g^-, V=0) = O_2(b^1\Sigma_g^+, V=0) + O_2(X^3\Sigma_g^-, V=1)$	$W_{3,1}$
6V	$O_2(b^1\Sigma_g^+, V=1) + O_2(a^1\Delta_g^-, V=0) = O_2(b^1\Sigma_g^+, V=0) + O_2(a^1\Delta_g^-, V=1)$	W _{3,2}
7V	$H_2O(010) + M = H_2O(000) + M$	$W_{5,0}^{M}$
8V	$H_2O(001) + M = H_2O(100) + M$	$W_{6,4}^{\dot{M}}$
9V	$H_2O(001) + M = H_2O(020) + M$	$W_{6.5}^{M}$
10V	$H_2O(100) + M = H_2O(020) + M$	$W_{4.5}^{M}$
11V	$H_2O(010) + O_2(X^3\Sigma_g^-, V = 0) = H_2O(000) + O_2(X^3\Sigma_g^-, V = 1)$	$W_{5,1}$
12V	$H_2(V = 1) + M = H_2^{\circ}(V = 0) + M$	$W^{M}_{7,0}$
13V	$H_2(V = 1) + H_2O(000) = H_2(V = 0) + H_2O(001)$	W _{7,6}
14V	$H_2(V = 1) + H_2O(000) = H_2(V = 0) + H_2O(100)$	$W_{7,4}$
1 <i>5V</i>	OH(V = 1) + M = OH(V = 0) + M	$W_{8.0}^{M}$
16V	$H_2O(001) + OH(V = 0) = H_2O(000) + OH(V = 1)$	$W_{6,8}$
17V	$H_2O(100) + OH(V = 0) = H_2O(000) + OH(V = 1)$	$W_{4,8}$
18V	$H_2(V = 1) + OH(V = 0) = H_2(V = 0) + OH(V = 1)$	$W_{7,8}$
19V	$HO_2(001) + M = HO_2(000) + M$	$W_{11,0}^{M}$
20V	$HO_2(100) + M = HO_2(003) + M$	$W_{9,11}^{M}$
21V	${ m HO}_2(010)+M={ m HO}_2(001)+M$	$W^{M}_{10,11}$
22V	$O_2(X^3\Sigma_g^-, V=1) + HO_2(000) = O_2(X^3\Sigma_g^-, V=0) + HO_2(010)$	$W_{1,10}$
23V	$H_2O(100) + HO_2(000) = H_2O(000) + HO_2(100)$	$W_{4,9}$
24V	$H_2O(010) + HO_2(000) = H_2O(000) + HO_2(010)$	$W_{5,10}$
25V	${ m O}_3(010)+M={ m O}_3(000)+M$	$W^{M}_{13,0}$
26V	$O_3(001) + M = O_3(010) + M$	$W^{M}_{14,13}$
27V	$O_3(001) + M = O_3(100) + M$	$W^{M}_{14, 12}$

скоростей межмодового межмолекулярного V-V', $W_{\xi,p}$, межмодового внутримолекулярного V-V', $W_{\xi,p}^{M}$ и V-T, $W_{\xi,0}^{M}$ обменов. Индексы ξ и p принимают значения 1, ..., 19. Цифры 1, 2, 3 отвечают колебаниям молекулы O₂ в основном $X^{3}\Sigma_{g}^{-}(v_{1})$ и в возбужденных синглетных $a^{1}\Delta_{g}(v_{2})$ и $b^{1}\Sigma_{g}^{+}(v_{3})$ состояниях, $\xi(p) = 4$, 5, 6 соответствуют симметричным, деформационным и асимметричным колебаниям молекул H₂O, $\xi(p) = 7$, 8 — колебаниям молекул H₂ и OH, и $\xi(p) = 9$, 10, 11 и 12, 13, 14 — симметричной, деформационной и асимметричной модам молекул HO₂ (v_{9} , v_{10} , v_{11}) и O₃ (v_{12} , v_{13} , v_{14}). Для колебаний молекул H₂O₂ полагалось, что ее колебательные степени свободы находятся в равновесии с поступательными.

Константы скорости процессов №№ 1V, 7V-27V были взяты из [21], а для процессов V-T релаксации мод v_2 и v_3 №№ 2V и 4V определялись по формуле

$$W_{j,0}^{M} = W_{1,0}^{M} \frac{W_{j,0}^{M}(O_{2}^{*})}{W_{1,0}^{M}(O_{2})}, \quad j = 2, 3.$$

Здесь $W_{j,0}^{M}(O_{2}^{*})$ и $W_{1,0}^{M}(O_{2})$ — константы скорости V-T релаксации для моды v_{j} (j = 2, 3) и моды v_{1} , рассчитанные по формуле Миликена–Уайта. Константы скоростей процессов №№ 3V, 5V и 6V рассчитывались на основе модели [22].

В термически неравновесной модели химической кинетики константы скоростей химических реакций k_q зависят не только от поступательной, но и от колебательных температур вступающих в реакцию компонентов

$$k_q = \varphi_q(T, T_\xi) k_q^e(T),$$

где $k_q^e(T)$ — константа скорости q-й химической реакции при $T_{\xi} = T$, $\varphi_q(T, T_{\xi})$ — фактор неравновесности. В данной работе его значение вычислялось так же, как и в [21]. Для барьерных реакций с участием электронно-возбужденных молекул величина $k_a^e(T)$ зависит от энергии возбужденного состояния [12,13]. Для рассматриваемой смеси газов зависимости $k_a^e(T)$ были взяты такими же, как и в [20]. При использовании модового приближения в модели термически неравновесной химической кинетики важным параметром является колебательная энергия молекулы, образующейся в элементарной химической реакции, E_q . В данной работе ее величина определалась так же, как и в [23]. При этом число колебательных квантов, приходящих в моды v1 и v₂ в результате процессов *E*−V обмена № 69 и 70, соответственно равно E_a/hv_1 и $(E_b-E_a)/hv_2$, где E_b и E_a — энергия молекулы O₂ в состояниях $b^1 \Sigma_a^+$ и $a^1 \Delta_g$.

Система уравнений, описывающая течение реагирующего колебательно-неравновесного газа за фронтом ударной волны вдоль направления движения (*OX*), включает уравнение неразрывности, импульса, энергии, уравнения для изменения концентрации компонентов и уравнения для изменения среднего запаса колебательных

квантов в каждой моде молекулярных компонентов реагирующей смеси [21]. Граничными условиями для данной системы уравнений служат параметры газа за фронтом ударной волны, которые определяются по известным соотношениям Гюгонио в предположении неизменности химического состава и колебательных температур при переходе через фронт ударной волны. Как и в [20,21], данная система уравнений решалась численно с использованием неявной разностной схемы второго порядка аппроксимации.

Динамика воспламенения смеси за ударной волной

Рассмотрим, к каким особенностям в кинетике воспламенения стехиометрической смеси Н2-О2 приводит активация молекулярного кислорода в электрическом разряде с $E/N = 1.1 \cdot 10^{-16} \, \text{V} \cdot \text{cm}^2$ по сравнению со случаем обычного нагрева среды энергией разряда. На рис. 2 показано изменение мольных долей компонентов смеси за фронтом ударной волны для двух рассматриваемых случаев при одинаковой удельной энергии, подведенной к газу $E_s = 3 \cdot 10^{-2} \, \text{J/cm}^3$. В первом случае температура газа после зоны смешения составляет 354 (см. табл. 1), а во втором — 429 К. При переходе через фронт ударной волны температура смеси в первом случае возрастает до 613, а во втором — до 742 К. Однако несмотря на то что при простом нагреве смеси Н2-О2 температура за фронтом существенно выше, чем при активации О2 в электрическом разряде, воспламенение смеси в последнем случае происходит значительно быстрее. Длина зоны индукции здесь $L_{in} = 15 \text{ cm}$, а при нагреве — $L_{in} = 107 \,\mathrm{m}$ (длина зоны индукции определялась как расстояние от фронта ударной волны до сечения, в котором достигается максимальный градиент температуры). Заметим, что в обычной смеси H_2-O_2 с $T_0 = 354 \,\mathrm{K}$ (температура разрядной плазмы при $E_s = 3 \cdot 10^{-2} \,\text{J/cm}^3$) и теми же значениями P_0 и M_0 длина зоны индукции составляет 6 · 10² m, т.е. активация молекул О2 электрическим разрядом, приводящая в основном к образованию возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$, позволяет в 4 · 10³ раз сократить длину зоны индукции при невысоких температурах за фронтом ударной волны ($T_1 \approx 600 \text{ K}$).

Ускорение процесса воспламенения при воздействии на поток O_2 специально организованного электрического разряда обусловлено интенсификацией цепных реакций в водородно-кислородной смеси вследствие присутствия в кислородной плазме колебательно- и электронно-возбужденных молекул O_2 и в небольших количествах атомов О и молекул O_3 . Из представленных на рис. 2 зависимостей видно, что в случае активации молекул O_2 электрическим разрядом за фронтом ударной волны очень быстро образуются радикалы ОН и атомы Н. При этом практически сразу начинается падение концентрации O_3 и $O_2(b^1\Sigma_g^+)$. В то же время концентрация О остается на достаточно протяженном

Рис. 2. Изменение мольных долей компонентов, γ_i , и температуры газа (сплошные и штриховые линии) за фронтом ударной волны при активации молекул O₂ электрическим разрядом с $E_s = 3 \cdot 10^{-2} \text{ J/cm}^3$ (*a*) и в случае, когда вся энергия, выделившаяся в разряде, идет на нагрев смеси (*b*) (M₀ = 6, $\beta = 20^\circ$, $P_0 = 10^4$ Pa).

интервале постоянной, а концентрация $O_2(a^1\Delta_g)$ даже растет. При нагреве смеси электрическим разрядом с $E_s = 3 \cdot 10^{-2} \text{ J/cm}^3$ ($T_0 = 429 \text{ K}$) наибольшие значения концентраций компонентов реализуются на начальном этапе для HO₂, H₂O и H. Это означает, что каналы развития цепного механизма при активации молекул O₂ и при нагреве смеси существенно отличаются.

Напомним, что при нагреве смеси H_2-O_2 до не слишком высоких температур ($T \le 1200 \text{ K}$) основной реакцией инициирования цепи является $H_2 + O_2 = 20$ H. Далее радикалы OH реагируют с H_2 в реакции продолжения цепи OH + $H_2 = H_2O$ + H, а образовавшиеся атомы H участвуют в реакции разветвления цепи H + $O_2 = OH + O$. Атомы O, взаимодействуя с молекулярным водородом, опять дают атомы H в реакции O + $H_2 = OH + H$, являясь, таким образом, как и атомы H, важнейшими носителями цепного механизма. Молекулы HO₂ образуются вследствие протекания при относительно низкой температуре за фронтом ударной волны реакции обрыва цепи $H + O_2 + M = HO_2 + M$.

В случае активации молекулярного кислорода электрическим разрядом, когда в смеси за фронтом ударной волны присутствуют возбужденные молекулы $O_2(X^3\Sigma_{\rho}^-, V), O_2(a^1\Delta_g), O_2(b^1\Sigma_{\rho}^+),$ а также в небольших количествах атомы О и молекулы О3 развитие цепного механизма происходит следующим образом. Уже на начальной стадии образование активных атомов О, Н и радикалов ОН происходит по нескольким каналам. Так, например, атомы О дополнительно образуются в реакции между электронно-возбужденными молекулами О2 и озоном: $O_2(a^1\Delta_g, b^1\Sigma_g^+) + O_3 = 2O_2(X^3\Sigma_g^-) + O.$ Именно поэтому несмотря на то что имевшиеся изначально в смеси атомы О интенсивно вступают в реакцию с молекулами H₂ их концентрация остается постоянной и сверхравновесной вплоть до $x = 1 \, \text{сm}$. Только перед воспламенением, когда концентрация О₃ уменьшилась в 8 раз, а концентрация $O_2(b^1\Sigma_g^+)$ упала более чем в 10^3 раз (это происходит в основном вследствие Е-V обмена $O_2(b^1\Sigma_g^+) + M = O_2(a^1\Delta_g, V) + M)$ концентрация атомов О начинает уменьшаться, с тем чтобы перед самым воспламенением опять возрасти за счет протекания реакции $O_2(a^1\Delta_g) + H = OH + O$. Основными процессами, приводящими к появлению радикалов ОН, на начальной стадии являются реакции с возбужденными молекулами O₂: O₂($X^{3}\Sigma_{g}^{-}, V$) + H₂ = 2OH, O₂($a^{1}\Delta_{g}$) + H₂ = 2OH и $O_2(a^1\Delta_g) + H_2 = H + HO_2$. Атомы H кроме последней реакции образуются также в реакциях разветвления цепи $H_2 + O = OH + H$, $H_2 + OH = H + H_2O$. Поскольку скорости реакций с участием возбужденных молекул $O_2(X^3\Sigma_g^-, V), O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ существенно выше, чем с невозбужденными, их присутствие в исходной смеси приводит к резкому ускорению процесса воспламенения. Схема образования активных частиц и развития цепного механизма в смеси Н2-О2 при активации молекул О₂ электрическим разрядом представлена на рис. 3. Здесь жирными линиями показаны каналы формирования О, Н и ОН, доминирующие на начальной стадии процесса, а тонкими — реакции, доминирующие перед моментом воспламенения.

Длина зоны индукции как при активации O_2 , так и в случае, когда вся вкладываемая в разряде энергия идет на нагрев смеси, существенным образом зависит от величины E_s , газодинамических параметров потока (P_0, T_0, M_0) и от угла наклона фронта ударной волны (β).

На рис. 4 показано изменение температуры газа за фронтом ударной волны с $\beta = 15^{\circ}$, 20° и 30° при различных значениях E_s в случае активации молекул O₂ электрическим разрядом и в случае, когда вся подведенная к молекулярному кислороду в разряде энергия идет на нагреве смеси (при $\beta = 15^{\circ}$ зависимости T(x) при $E_s = 0$ и $1.2 \cdot 10^{-2}$ J/cm³ лежат вне масштаба рисунка, для таких параметров $L_{in} > 10^6$ cm). Из представленных на рис. 4 результатов видно, что,

Рис. 3. Схема образования активных атомов О, Н и радикалов ОН при активации молекул О₂ электрическим разрядом.

чем меньше величина β , тем большую энергию надо подводить к газу с тем, чтобы получить приемлемые значения длины зоны индукции ($L_{in} \leq 1 \text{ m}$). Например, при $\beta = 30^{\circ}$ в случае активации молекул O₂ электрическим разрядом удается воспламенить стехиометрическую смесь, состоящую из молекулярного водорода и кислородной плазмы, даже при $E_s = 1.2 \cdot 10^{-2} \text{ J/cm}^3$ на расстоянии 11 ст от фронта ударной волны. В то же время при нагреве смеси (для $E_s = 1.2 \cdot 10^{-2} \text{ J/cm}^3$ температура $T_0 = 338 \text{ K}$) $L_{in} = 1.25 \text{ m}$. Заметим, что при отсутствии разряда ($E_s = 0$) для смеси с $T_0 = 300 \text{ K}$ длина зоны индукции превышает 20 m.

Увеличение E_s до $3 \cdot 10^{-2}$ J/cm³ позволяет воспламенить смесь при активации молекул О2 даже на расстоянии 3 ст от фронта. В этом случае даже нагрев смеси позволяет получить L_{in} = 9 сm. Обусловлены такие малые значения $L_{\rm in}$ тем, что при $\beta = 30^\circ$ температура газа за фронтом достаточно велика и даже слабое воздействие электрическим разрядом, и соответственно небольшое содержание электронно-возбужденных молекул О2 в смеси (вследствие того что при рассматриваемых параметрах $T_V^0(O_2) < T_1$ влияние колебательного возбуждения молекул О2 на процесс воспламенения пренебрежимо мало) приводит к быстрому воспламенению смеси. Так, например, при активации молекул О2 с $E_s = 1.2 \cdot 10^{-2} \,\text{J/cm}^3$ температура газа за фронтом $T_1 = 860 \,\mathrm{K}$, а при $E_s = 3 \cdot 10^{-2} \,\mathrm{J/cm^3}$ ее величина достигает 950 К. Отметим, что, хотя при чисто тепловом воздействии разряда на поток температура газа за фронтом заметно выше: $T_1 = 900$ и 1150 К соответственно, тем не менее даже при $E_s = 3 \cdot 10^{-2} \, \text{J/cm}^3$ в случае активации молекул О2 длина зоны индукции в 3 раза меньше, чем при простом нагреве смеси. Чем меньше значение β , а следовательно, и температура газа за фронтом ударной волны, тем при больших Е_s достигаются приемлемые значения длины зоны индукции. Так, например, при $\beta = 15^{\circ}$ значение $L_{\rm in} \leq 1\,{
m m}$ можно получить только при активации молекул О2 в электрическом разряде с $E_s \ge 3 \cdot 10^{-2} \text{ J/cm}^3$. При этом для $E_s = 3 \cdot 10^{-2} \text{ J/cm}^3$

Рис. 4. Изменение температуры газа за фронтом ударной волны с $\beta = 15^{\circ}$ (*a*), 20° (*b*), 30° (*c*) при активации молекул O₂ электрическим разрядом и в случае, когда вся энергия, выделившаяся в разряде, идет на нагрев смеси (сплошные и пунктирные линии) с M₀ = 6, $P_0 = 10^4$ Ра при $E_s = 1.2 \cdot 10^{-2}$, $3 \cdot 10^{-2}$ и $6 \cdot 10^{-2}$ J/cm³ (кривые 1-3). Штриховая линия отвечает случаю $E_s = 0$.

Рис. 5. Изменение поступательной, *T*, и колебательных температур, T_{ξ} ($\xi = 1, ..., 8$), основных компонентов смеси в релаксационной зоне ударной волны ($\beta = 20^{\circ}$, $M_0 = 6$, $P_0 = 10^4$ Pa) при активации молекул O₂ электрическим рязрядом с $E_s = 6 \cdot 10^{-2}$ J/cm³.

отличие в длине зоны индукции при активации молекул O₂ и при нагреве газа достигает $3 \cdot 10^3$ раз, а для $E_s = 6 \cdot 10^{-2}$ J/cm³ это отличие заметно меньше (230 раз), но существенно выше, чем при $\beta = 30^\circ$. Таким образом, изменяя величину вкладываемой в газ энергии, можно обеспечить одинаковые значения L_{in} при изменении угла наклона фронта ударной волны, т.е. эффективно управлять горением в сверхзвуковом потоке при меняющихся условиях.

Для химических процессов за фронтом ударной волны характерна достаточно сильная термическая неравновесность. На всем интервале [0, Lin] колебательные температуры различных мод отличны от поступательной. Причем такая неравновесность характерна как для малых, так и для больших значений E_s . На рис. 5 показано изменение поступательной, Т, и колебательных температур для основных компонентов смеси $O_2(X^3\Sigma_g^-)$ (T_1), $O_2(a^1\Delta_g)$ (T_2), $O_2(b^1\Sigma_g^+)$ (T_3), $H_2O(T_4, T_5, T_6), H_2(T_7), OH(T_8)$ за фронтом ударной волны для стехиометрической смеси, состоящей из H₂, и активированного в разряде O₂ для $E_s = 6 \cdot 10^{-2} \,\text{J/cm}^3$. Видно, что помимо колебательновозбужденных молекул О2 в основном и электронном состояниях, которые образуются в разряде (см. табл. 1) и изначально присутствуют в смеси, за фронтом ударной волны образуются также и колебательновозбужденные молекулы $O_2(a^1\Delta_g), O_2(b^1\Sigma_g^+), OH, H_2O.$ Эти возбужденные молекулы возникают в результате протекания химических реакций: $H_2 + O_2(X^3\Sigma_g^-, V) =$ = 2OH(V), H₂ + O₂($a^{1}\Delta_{g}, b^{1}\Sigma_{g}^{+}$) = 2OH(V), OH + H₂ = = H₂O(V₁V₂V₃) + H и O + O + M = O₂($a^{1}\Delta_{e}, V$) + M, $O + O + M = O_2(b^1 \Sigma_g^+, V) + M$, a $O_2(a^1 \Delta_g)$ — также и вследствие E-V обмена $O_2(b^1\Sigma_g^+)+M=$ $= O_2(a^1 \Delta_g, V) + M$. При этом колебательная температура $O_2(a^1 \Delta_g)$ достигает 2000 К. Однако после релаксации

Рис. 6. Зависимость длины зоны индукции, $L_{\rm in}$, от начального давления стехиометрической смеси H_2-O_2 при $T_0 = 300$ K, $M_0 = 6$, $\beta = 20^\circ$ в случае активации молекул O_2 электрическим разрядом и в случае, когда вся вложенная в разряде энергия идет на нагрев смеси (сплошные и пунктирные линии) для $E_s = 1.2 \cdot 10^{-2}$, $3 \cdot 10^{-2}$ и $6 \cdot 10^{-2}$ J/cm³ (кривые I-3). Штриховая линия соответствует зависимости $L_{\rm in}(P_0)$ при $E_s = 0$.

колебательной энергии молекул $O_2(X^3\Sigma_g^-)$ (заметное падение колебательной температуры T_1 начинается при x = 0.1 cm) резко уменьшается и колебательная температура моды ν_2 , T_2 . Достаточно быстро происходит релаксация энергии и других колебательно-возбужденных молекул. К моменту воспламенения термическая неравновесность исчезает (здесь $T_{\xi} = T$). Таким образом, можно констатировать, что термически неравновесные химические процессы протекают в основном на интервале $[0, L_{in}]$. Расчеты также показывают, что колебательновозбужденные молекулы $O_2(X^3\Sigma_g^-)$ и $O_2(a^1\Delta_g)$ играют существенную роль в интенсификации цепных реакций, поскольку реакции с участием этих молекул протекают значительно быстрее, чем с участием колебательноневозбужденных молекул $O_2(X^3\Sigma_g^-)$ и $O_2(a^1\Delta_g)$.

Помимо угла наклона ударной волны, а следовательно и температуры газа за фронтом, значительное влияние на процесс воспламенения оказывает давление смеси. На рис. 6 показано изменение длины зоны индукции в зависимости от P_0 при разных E_s для стехиометрической смеси H_2-O_2 для двух способов подвода энергии к газу в электрическом разряде:

(1) активация молекул O₂ (в этом случае энергия электронов тратится в основном на возбуждение электронных состояний O₂ $(a^{1}\Delta_{g})$ и O₂ $(b^{1}\Sigma_{e}^{+})$);

(2) вся вкладываемая энергия идет на нагрев смеси.

При проведении расчетов процессов в электрическом разряде полагалось, что при изменении P_0 величина приведенной напряженности электрического поля E/N остается постоянной и равной $1.1 \cdot 10^{-16} \,\mathrm{V} \cdot \mathrm{cm}^2$. Из представленных на рис. 6 зависимостей видно, что во всем диапазоне изменения P_0 ($P_0 = 10^3 - 10^6 \,\mathrm{Pa}$) и

 E_s ($E_s = 1.2 \cdot 10^{-2} - 6 \cdot 10^{-2} \, \text{J/cm}^3$) активация молекулярного кислорода электрическим разрядом намного эффективней с точки зрения сокращения длины зоны индукции, чем нагрев газа. Для каждого значения E_s существует свой диапазон изменения Ро в котором отличие в величине Lin для этих двух методов весьма значительно (более 100 раз) и правая граница этого диапазона увеличивается с ростом E_s. Так, при $E_s = 3 \cdot 10^{-2} \, \text{J/cm}^3$ такое отличие в длине зоны индукции реализуется в диапазоне $P_0 = 10^3 - 2 \cdot 10^4$ Ра, а для $E_s = 6 \cdot 10^{-2} \,\text{J/cm}^3$ — при изменении P_0 от $5 \cdot 10^3$ до 9.104 Ра. Существование некоторого граничного значения $P_0(P_{0b})$, начиная с которого происходит резкое увеличение L_{in} в смесях H₂-O₂ (воздух), как при тепловом методе воздействия, так и при возбуждении молекул О₂ в состояния $a^1\Delta_g$ и $b^1\Sigma_g^+$ уже отмечалось ранее в [20,21] и обусловлено тем, что при высоких давлениях и относительно низких температурах образуются молекулы H₂O₂, играющие роль резервуара, куда уходят носители цепного механизма — атомы Н. Однако и при $P_0 > P_{0b}$ возбуждение молекул О₂ в электрическом разряде позволяет в несколько раз сократить значение Lin по сравнению с тепловым методом воздействия. Так, например, при $E_s = 6 \cdot 10^{-2} \,\text{J/cm}^3$ даже при $P_0 = 1 \,\text{MPa}$ в случае (1) длины зоны индукции вдвое меньше, чем в случае (2). Возбужение молекул O₂ электрическим разрядом позволяет даже при относительно высоких давлениях смеси $P_0 = 10^5$ Ра и низкой температуре газа за фронтом ударной волны ~ 600 К воспламенить смесь на расстоянии $\sim 1 \,\mathrm{m}$ от фронта при $E_s = 6 \cdot 10^{-2} \,\mathrm{J/cm^3}$. Тепловое воздействие дает $L_{in} = 20 \text{ m}.$

Сравним теперь количество химической энергии, выделившейся в тепло при низкотемпературном инициировании горения смеси Н2-О2 путем возбуждения молекул О2 электрическим разрядом и при обычном тепловом способе инициирования горения, когда оба метода дают одинаковую длину зоны индукции. Расчеты показывают, что для того чтобы обеспечить в потоке H_2-O_2 с $M_0 = 6$, $P_0 = 10^4$ Ра и $T_0 = 300$ К ту же длину зоны индукции за фронтом ударной волны с $\beta = 20^{\circ}$, что и при возбуждении молекул О2 электрическим разрядом с $E_s = 3 \cdot 10^{-2} \text{ J/cm}^3$, необходимо нагреть смесь до $T_0 = 745$ К. При этом температура газа за фронтом ударной волны в случае возбуждения молекул О2 составляет 613, а при нагреве смеси — 1289 К. Длина зоны индукции при этом для обоих рассматриваемых случаев составляет 15 cm.

В табл. 4 приведены значения удельной энергии E_m $(E_m = E_s / \rho,$ где ρ — плотность газа), подведенной к

Таблица 4. Характерные параметры газа при различных методах инициирования горения

Методы инициирования	Параметры				
горения	T_e, \mathbf{K}	P_e , kPa	Me	$\Delta H_{\rm ch}, {\rm J/g}$	$E_m, J/g$
Возбуждение О ₂ Нагрев газа	3242 3154	262 109	1.67 2.79	5411 4181	315 1107

газу в разряде и при его нагреве и необходимой для обеспечения $L_{in} = 15 \text{ cm}$, значения химической энергии, выделяющейся при горении $\Delta H_{\rm ch}$, а также конечные значения температуры, Te, давления Pe и числа Маха потока, М_е, реализующиеся при горении стехиометрической смеси за фронтом ударной волны для двух рассматриваемых способов подвода энергии. Видно, что при возбуждении молекул О2 электрическим разрядом требуется в 3.5 раза меньше энергии для воспламенения смеси на расстоянии L_{in} = 15 cm, чем при нагреве газа. При этом большая доля химической энергии реагентов переходит в тепловую энергию при горении смеси H_2-O_2 (энергетический выигрыш по ΔH_{ch} составляет при рассматриваемых параметрах ~ 30%). При низкотемпературном инициировании горения возбужденными молекулами О2 также реализуются большие значения температуры и давления в продуктах сгорания, а число Маха и скорость газа, наоборот, становятся меньше, чем в случае инициирования горения предварительным нагревом газа.

Заключение

При воздействии разряда с $E/N = 1.1 \cdot 10^{-16} \,\mathrm{V} \cdot \mathrm{cm}^2$ на молекулярный кислород образуются не только электронно-возбужденные молекулы О2 в синглетных состояниях $a^{1}\Delta_{g}$ и $b^{1}\Sigma_{g}^{+}$, но и колебательновозбужденные молекулы $O_2(X^3\Sigma_g^-, V)$. Присутствие колебательно- и электронно-возбужденных молекул в кислородной плазме позволяет значительно интенсифицировать цепной механизм воспламенения смеси H₂-O₂ при активации молекулярного кислорода специально организованным электрическим разрядом. Даже при небольших значениях энергии, вкладываемой в единицу объема газа, $E_s = 3 \cdot 10^{-2} \, \text{J/cm}^3$ удается воспламенить смесь в сверхзвуковом потоке на малых расстояниях от фронта ударной волны (Lin ~ 10 cm) при низкой температуре газа за фронтом ($T = 613 \, \text{K}$) и невысоком давлении ($P_0 = 10^4 \text{ Pa}$), хотя в случае отсутствия активации молекул О2 разрядом воспламенение при данных условиях вообще не реализуется ($L_{in} = 600 \,\mathrm{m}$). Возбуждение молекул О2 намного эффективней (в десятки раз) с точки зрения интенсификации воспламенения водородно-кислородной смеси, чем простой нагрев газа электрическим разрядом. Более того, возможность реализации низкотемпературного воспламенения смеси при возбуждении электронных и колебательных состояний молекул О2 электрическим разрядом позволяет увеличить эффективность преобразования химической энергии реагирующих молекул в тепловую по сравнению с обычным тепловым методом инициирования горения. Энергетический выигрыш по выделившейся в тепло в процессе горения энергии может при этом составлять 30%. При низкотемпературном инициировании горения в сверхзвуковом потоке достигаются также большие значения температуры и давления продуктов сгорания.

Работа выполнена при финансовой поддержке РФФИ (гранты 06-08-81038 и 05-02-16419), а также при частичной поддержке МНТЦ (проект № 2740).

Список литературы

- [1] *Kato R. and Kimura I.* // 26th Symp. (Int.) on Combustion. 1996. P. 2941–2947.
- [2] Takita K. // Combust. Flame. 2002. Vol. 128. N 3. P. 301-313.
- [3] Starikovskaia S.M., Kukaev E.N., Kuksin A.Yu., Nudnova M.M., Starikovskii A.Yu. // Combust. Flame. 2004. Vol. 139. N 3. P. 177–187.
- [4] Chintala N., Meyer R., Hicks A., Bao A., Rich J.W., Lempert W.R., Adamovich I.V. // J. Propul. Power. 2005. Vol. 21. N 4. P. 583–590.
- [5] Chintala N., Bao A., Lou G., and Adamovich I.V. // Combust. Flame. 2006. Vol. 144. N 4. P. 744–756.
- [6] Старик А.М., Даутов Н.Г. // ДАН. 1994. Т. 336. № 5. С. 617-622.
- [7] Старик А.М., Титова Н.С. // ДАН. 2001. Т. 380. № 3. С. 332–337.
- [8] Starik A.M., Titova N.S. In High-Speed Defragration and Detonation: Fundamentals and Control. Moscow: Elex-KM Publishers, 2001. P. 63–78.
- [9] Light G.G. // J. Chem. Phys. 1978. Vol. 68. N 6. P. 2831–2843.
- [10] Lifshitz A., Teitelbaum H. // Chem. Phys. 1997. Vol. 219. N 2/3. P. 243–256.
- [11] Wodtke A.M. // Phys. Chem. Earth (C). 2001. Vol. 26. N 7.
 P. 467–471.
- [12] Старик А.М., Титова Н.С. // ДАН. 2003. Т. 391. № 4. С. 471–477.
- [13] Старик А.М., Титова Н.С. // ЖТФ. 2004. Т. 74. Вып. 9. С. 15–22.
- [14] Безгин Л.В., Копченов В.И., Старик А.М., Титова Н.С. // ЖТФ. 2007. Т. 77. Вып. 1. С. 42–49.
- [15] Ionin A.A., Klimachev Yu.M., Kotkov A.A., Kochetov I.V., Napartovich A.P., Seleznev L.V., Sinitsyn D.V., and Hager G.D. // J. Phys. D: Appl. Phys. 2003. Vol. 36. N 8. P. 982–989.
- [16] Vasiljeva A.N., Klopovskiy K.S., Kovalev A.S., Lopaev D.V., Mankelevich Y.A., Popov N.A., Rakhimov A.T., and Rakhimova T.V. // J. Phys. D: Appl. Phys. 2004. Vol. 37. N 17. P. 2455–2468.
- [17] Hicks A., Norberg S., Shawcross P., Lempert W.R., Rich J.W., Adamovich I.V. // J. Phys. D.: Appl. Phys. 2005. Vol. 38. P. 2812.
- [18] Pliavaka K.F., Gorbatov S.V., Shushkov S.V., Pliavaka F.V., Chernukho A.P., Zhdanok S.A., Naumov V.V., Starik A.M., Bourig A., Martin J.-P. // Nonequilibrium Processes in Combustion and Plasma Based Technologies. Contributed Papers. Minsk, 2006. P. 186–191.
- [19] Naumov V.V., Zhdanok S.A., Starik A.M., Cenian A., Chernukho A.P. // Nonequilibrium Processes and Their Applications. Contributed Papers. Minsk, 2002. P. 62–66.
- [20] Старик А.М., Титова Н.С. // Кинетика и катализ. 2003. Т. 44. № 1. С. 35-46.
- [21] Старик А.М., Титова Н.С. // ЖТФ. 2001. Т. 71. Вып. 8. С. 1–12.
- [22] Adamovich I.V., Macheret S.O., Rich J.W., Treanor C.E. // J. of Thermophysics and Heat Transfer. 1998. Vol. 12. N 1. P. 57–65.
- [23] Луховицкий Б.И., Старик А.М., Титова Н.С. // ФГВ. 2005. Т. 41. № 4. С. 29–38.