Гистерезис магнитосопротивления гранулярного высокотемпературного сверхпроводника YBa₂Cu₃O_{7-δ} в слабых магнитных полях

© В.В. Деревянко, Т.В. Сухарева, В.А. Финкель

Национальный научный центр "Харьковский физико-технический институт" НАН Украины, 61108 Харьков, Украина e-mail: finkel@kipt.kharkov.ua

(Поступило в Редакцию 28 мая 2007 г.)

Изучено поперечное магнитосопротивление керамических образцов высокотемпературного сверхпроводника (ВТСП) YBa₂Cu₃O_{~6.95} при температуре T = 77.3 К при повышении напряженности внешнего магнитного поля H_{ext} от нуля до ~ 500 Oe $\left(\frac{\Delta \rho^+}{\rho_{273 \text{ K}}}\right)$ и последующим понижении H_{ext} от ~ 500 Oe до нуля $\left(\frac{\Delta \rho^-}{\rho_{273 \text{ K}}}\right)$ при различных значениях плотности транспортного тока: от $j/j_c \sim 0.01$ до $j/j_c \sim 0.99$, где $j_c -$ критическая плотность тока в нулевом магнитном поле. Установлено, что полевая зависимость магнитосопротивления ВТСП YBa₂Cu₃O_{~6.95} носит явно выраженный гистерезисный характер, причем значение $\frac{\Delta \rho^+}{\rho_{273 \text{ K}}} - \frac{\Delta \rho^-}{\rho_{273 \text{ K}}}$ растет при увеличении j/j_c . С ростом j/j_c понижаются значения эффективных критических полей джозефсоновских "слабых связей" (weak links) H_{c2J} и нижних критических полей сверхпроводящих гранул H_{c1A} , при росте H_{ext} критические поля ниже, чем при понижении H_{ext} : $H_{c2J}^+ < H_{c2J}^-$

PACS: 74.72.Bk, 74.25.Fy, 74.25.Ha

Введение

05

Изучение явления магнитосопротивления высокотемпературных сверхпроводников (ВТСП), т.е. зависимости относительного электросопротивления, $\frac{\Delta\rho}{\rho}$ (ρ сопротивление в нормальном состоянии), от величины приложенного магнитного поля, $H_{\rm ext}$, началось после открытия явления вчсокотемпературной сверхпроводимости [1]. При этом в широком диапазоне магнитных полей неоднократно наблюдался эффект гистерезиса магнитосопротивления, т.е. необратимости зависимостей $\frac{\Delta\rho}{\rho}(H_{\rm ext})$ для монокристаллических, пленочных и гранулярных (керамических) образцов различных ВТСП при повышении и понижении внешнего магнитного поля $H_{\rm ext}$ (см., например, [2–14]). Изучение гистерезиса магнитосопротивления ВТСП представляет большой научный и практический интерес в силу двух обстоятельств:

1) на основе данных о гистерезисе магнитосопротивления ВТСП возможно развитие представлений о динамике проникновения магнитного поля в джозефсоновские "слабые связи" (wead links) и сверхпроводящие гранулы, о захвате магнитного потока, о критических магнитных полях и токах "слабых связей" и сверхпроводящих гранул и т.п.;

2) разработка получивших в последнее время широкое распространение сенсоров слабых магнитных полей, действие которых основано на измерениях величины эффекта магнитосопротивления ВТСП (см., например, [11,15–20]), требует получения достоверной информации как о характере зависимостей $\frac{\Delta \rho}{\rho}(H_{ext})$, так и о границах областей применения подобных сенсоров. Проведенное нами ранее [21] исследование поперечного (вектор напряженности электрического поля **E** (или вектор тока **I**) перпендикулярен вектору напряженности внешнего магнитного поля \mathbf{H}_{ext} ($\mathbf{I} \perp \mathbf{H}_{\text{ext}}$)) и продольного ($\mathbf{I} \parallel \mathbf{H}_{\text{ext}}$) магнитосопротивления керамических образцов высокотемпературного сверхпроводника YBa₂Cu₃O_{7- δ} в слабых внешних магнитных полях ($T = 77.3 \text{ K} < T_c$, $0 \leq H_{\text{ext}} \leq 500 \text{ Oe}$) позволило обнаружить и надежно интерпретировать ряд эффектов в поведении полевых зависимостей магнитосопротивления, связанных с проникновением магнитного поля в сверхпроводящие гранулы и джозефсоновские "слабые связи":

1) появление отличного от нуля магнитосопротивления в поле полного проникновения вихрей Джозефсона в "слабые связи" ВТСП $H_{ext} \ge H_{c2I}$;

2) появление точек перегиба на кривых $\frac{\Delta \rho}{\rho}(H_{\text{ext}})$, связанное с началом проникновения вихрей Абрикосова в сверхпроводящие гранулы в поле $H_{\text{ext}} = H_{c1A}$;

3) наличие сильной зависимости эффективных значений критических полей¹ "слабых связей" H_{c2J} от силы транспортного тока и менее существенной — от взаимной ориентации векторов I и \mathbf{H}_{ext} ;

4) наличие относительно слабой зависимости эффективных значений критических полей сверхпроводящих гранул H_{c1A} как от силы транспортного тока, так и от взаимной ориентации векторов I и \mathbf{H}_{ext} .

¹ Очевидно, что речь может идти не об изменении истинных значений критических "слабых связей" и сверхпроводящих гранул под действием транспортного тока, а лишь об изменении значений напряженности внешнего магнитного поля $H_{\rm ext}$, при которых наблюдаются особенности зависимостей $\frac{\Delta \rho}{\rho}(H_{\rm ext})$.

Целью настоящей работы является изучение гистерезиса поперечного магнитосопротивления ($\mathbf{I} \perp \mathbf{H}_{ext}$) керамических образцов ВТСП $YBa_2Cu_3O_{7-\delta}$ при постоянной температуре T = 77.3 К. Суть проводимых экспериментов заключалась в измерении магнитосопротивления образцов ВТСП $YBa_2Cu_3O_{7-\delta}$ при повышении напряженности внешнего магнитного поля от нуля до $H_{ext} = H_{ext}^{max} \sim 500$ Ое и при последующем понижении H_{ext} до нулевого значения в широком диапазоне значений плотности транспортного тока $\sim 0.01 < j/j_c < 0.99$.

1. Образцы и методика эксперимента

Объектами исследования служили образцы ВТСП состава $YBa_2Cu_3O_{\sim 6.95}$, синтезированные "стандартной" керамической технологии (см., например, [22]). Размеры исследуемых образцов составляли $\sim 3 \times 2 \times 20$ mm. Токовые и потенциальные наносились серебряные контакты при помощи проводящего клея на основе серебра. Для аттестации образцов использовались методы рентгеноструктурного резистивных и магнитных анализа, измерений критической температуры перехода в сверхпроводящее состояние T_c , измерений критических токов I_c .

Исследуемые образцы были практически однофазными. На рентгенограммах наблюдалась слабая кристаллографическая текстура, близкая к текстуре базисной плоскости (001) орторомбической решетки ВТСП YBa₂Cu₃O_{7- δ}, формирующаяся, как известно [23], на стадии одноосного прессования порошков, предшествующей заключительной операции синтеза — спеканию в окислительной атмосфере. Для всех образцов температура середины сверхпроводящего перехода, $T_c^{\frac{1}{2}}$, составляла 92.6 К [24], ширина перехода $\Delta T_c = 0.4$ К, удельное электросопротивление $\rho_{273 \text{ K}} \sim 4000 \,\mu\Omega$ сm, значение критической плотности тока $j_c \sim 40 \,\text{A/cm}^2 \,(T = 77.3 \,\text{K}, H_{\text{ext}} = 0).$

Для снятия V-H-характеристик при I = const на базе ЭВМ была разработана специальная установка [25], состоящая из блока управления током источника магнитного поля (соленоида) I_{sol} и блока управления измерительным (транспортным) током I_{meas} , протекающим через образец. Наполненный жидким азотом сосуд Дьюара помещался в соленоид.

Все измерения производились в автоматическом режиме [21,24–27]: при постоянной величине транспортного тока $I = I_{\text{meas}}$ ток через соленоид I_{sol} плавно увеличивался со скоростью, соответствующей скорости изменения напряженности магнитного поля $\frac{dH_{\text{ext}}}{d\tau} \sim 1-2 \text{ Oe/s}$, до определенной величины, соответствующей значению максимальной напряженности магнитного поля $H_{\text{ext}}^{\text{max}} \sim 500 \text{ Oe}$, а затем уменьшался до нуля приблизительно с той же скоростью. Полученная информация в виде зависимостей $\rho(H_{\text{ext}})$ при I = const записывалась в память ЭВМ. Погрешность в измерениях относительного магнитосопротивления $\frac{\Delta \rho}{\rho}(H_{\text{ext}})$ не превышала 10⁻²%. Затем образец нагревался до T > T_c, задавалось следующее значение I_{meas}, и цикл измерений повторялся. Каждая серия измерений включала около 1000 экспе-

риментальных точек в цикле " $0 \rightarrow H_{\text{ext}}^{\text{max}} \rightarrow 0$ ".

2. Результаты исследования

Некоторые результаты измерений полевых зависимостей магнитосопротивления $\frac{\Delta \rho}{\rho_{273 \, \mathrm{K}}}(H_{\mathrm{ext}})$ при $T=77.3 \, \mathrm{K}$ для типичного образца керамического ВТСП состава $\mathrm{YBa_2Cu_3O_{\sim 6.95}}$ при повышении и понижении значения H_{ext} представлены на рис. 1.

Более подробно результаты измерений магнитосопротивления при достаточно низких значениях транспортных токов (I = 200 mA, $j/j_c \sim 0.2$) и высоких (I = 800 mA, $j/j_c \sim 0.8$) показаны на рис. 2, *a*. На рис. 2, *b* представлены полевые зависимости производной $\frac{dR}{dH_{\text{ext}}}$. Полевые зависимости величин $\frac{\Delta \rho^+}{\rho_{273\text{K}}} - \frac{\Delta \rho^-}{\rho_{273\text{K}}}$ от напряженности внешнего магнитного поля H_{ext} представлены на рис. 2, *c* (здесь и далее индексы "+" и "-" означают соответственно повышение и понижение поля H_{ext}).

Как видно из рис. 1 и 2, независимо от величины j/j_c все кривые $R(H_{\text{ext}}), \frac{dR}{dH_{\text{ext}}}(H_{\text{ext}})$ и $\left(\frac{\Delta \rho^+}{\rho_{273 \text{ K}}} - \frac{\Delta \rho^-}{\rho_{273 \text{ K}}}\right)(H_{\text{ext}})$ имеют следующие характерные особенности:

1) значения магнитосопротивления при повышении магнитного поля существенно превышают значения R при понижении H_{ext} ;

2) появление магнитосопротивления при повышении напряженности магнитного поля происходит в критических полях "слабых связей" H_{c2J}^+ , значительно меньших полей, при которых магнитосопротивление исчезает при понижении H_{ext} (H_{c2J}^-);

понижении $H_{\text{ext}}(H_{c2J}^{-});$ 3) на кривых $\frac{dR}{dH_{\text{ext}}}(H_{\text{ext}})$, полученных при повышении напряженности магнитного поля, наблюдаются харак-

Рис. 1. Зависимости $R(H_{ext})$ для керамического образца ВТСП УВа₂Cu₃O_{~6.95} при T = 77.3 К при различных значениях транспортных токов *I*.

 $H_{\rm ext}$, Ое **Рис. 2.** Зависимости $R(H_{\rm ext})$ (*a*), $\frac{dR}{dH_{\rm ext}}(H_{\rm ext})$ (*b*) и $\left(\frac{\Delta\rho^+}{\rho_{273\,\rm K}}-\frac{\Delta\rho^-}{\rho_{273\,\rm K}}\right)(H_{\rm ext})$ (*c*) для керамического образца ВТСП УВа₂Cu₃O_{~6.95} при $T = 77.3\,\rm K.~j/j_c \sim 0.2$ (темные маркеры) и $j/j_c \sim 0.8$ (светлые маркеры). Стрелками указано направление изменения величины магнитного поля $H_{\rm ext}$.

200

400

0

терные максимумы, соответствующие полю проникновения в сверхпроводящие гранулы H_{c1A}^+ ; при понижении H_{ext} подобные максимумы выражены довольно слабо; при этом $H_{c1A}^+ < H_{c1A}^-$;

4) на всех кривых $(\frac{\Delta \rho^+}{\rho_{273\,\mathrm{K}}} - \frac{\Delta \rho^-}{\rho_{273\,\mathrm{K}}})(H_{\mathrm{ext}})$ наблюдается характерный максимум.

При увеличении транспортного тока имеет место заметное увеличение общего уровня магнитосопротивления $R(H_{\rm ext})$, появляется тенденция к насыщению на кривых $R(H_{\rm ext})$ и происходит сдвиг максимума $H_{\rm peak}$ на зависимостях $\left(\frac{\Delta\rho^+}{\rho_{273\,\rm K}} - \frac{\Delta\rho^-}{\rho_{273\,\rm K}}\right)(H_{\rm ext})$ в сторону низких магнитных полей (см. рис. 2, c). Заметим, что ход зависимости $H_{\rm peak}(H_{\rm ext})$ подобен ходу зависимостей $H_{c2J}^-(H_{\rm ext})$ и $H_{c1A}^-(H_{\rm ext})$ (см. ниже).

На основании измерений магнитосопротивления при повышении и понижении внешнего магнитного поля $H_{\rm ext}$ получены зависимости эффективных значений критических полей H_{c2J}^+ , H_{c2J}^- , H_{c1A}^+ и H_{c1A}^- от приведенных значений транспортных токов j/j_c (рис. 3), а

Рис. 3. Зависимость эффективных значений критических полей, $H_{\rm cr}$, керамического образца ВТСП $YBa_2Cu_3O_{\sim 6.95}$ при T = 77.3 К от приведенного транспортного тока I/I_c . H_{c2J} (\bigcirc) и H_{c1A} (\bigcirc). Светлые маркеры — повышение $H_{\rm ext}$, темные маркеры — понижение $H_{\rm ext}$. Пунктир — зависимость положения максимума $H_{\rm peak}$ на зависимостях $\left(\frac{\Delta \rho^+}{\rho_{273\,\rm K}} - \frac{\Delta \rho^-}{\rho_{273\,\rm K}}\right)(H_{\rm ext})$.

Рис. 4. Полевые зависимости критических токов, I_c , керамического образца ВТСП $YBa_2Cu_3O_{\sim 6.95}$ при T = 77.3 К. Светлые маркеры — повышение H_{ext} , темные маркеры — понижение H_{ext} .

Журнал технической физики, 2008, том 78, вып. 3

$H_{\rm cr}$	A, Oe	B,Oe	C,Oe	$H_{\rm cr}(0), { m Oe}$	Коэффициент корреляции, <i>R</i> ²
$\begin{array}{c}H_{c2J}^{+}\\H_{c1A}^{+}\\H_{c2J}^{-}\\H_{-1A}^{-}\end{array}$	$\begin{array}{c} 18.0 \pm 4.8 \\ 74 \pm 8.2 \\ 106.6 \pm 12.9 \\ 152.7 \pm 86.3 \end{array}$	$79.1 \pm 5.7 \\288.5 \pm 20.0 \\238.3 \pm 17.7 \\288.5 \pm 74.4$	$0.182 \pm 0.045 \\ 0.0803 \pm 0.0143 \\ 0.149 \pm 0.038 \\ 0.454 \pm 0.185$	$\begin{array}{c} 97.1 \pm 10.5 \\ 362.9 \pm 28.2 \\ 344.9 \pm 30.6 \\ 441.3 \pm 160.7 \end{array}$	0.95 0.97 0.95 0.83

Параметры уравнения $H_{\rm cr} = A + Be^{-\frac{I/I_c}{C}}$

также непосредственно вытекающие из зависимостей $H_{c2J}^+(H_{\rm ext})$ и $H_{c2J}^-(H_{\rm ext})$ зависимости критических токов от напряженности внешнего магнитного поля при росте и уменьшении внешнего магнитного поля $H_{\rm ext}$ (рис. 4). Как видно из рис. 4, критические токи при уменьшении $H_{\rm ext}$ существенно ниже, чем при увеличении напряженности внешнего магнитного поля: $I_c^+ \gg I_c^-$.

Зависимости эффективных значений критических полей H_{c2J}^+ , H_{c2J}^- , H_{c1A}^+ и H_{c1A}^- от приведенных значений транспортных токов j/j_c удовлетворительно описываются экспоненциальной функцией $H_{cr} = A + Be^{-\frac{IIIc}{C}}$ (см. таблицу).

3. Обсуждение результатов

Прежде всего отметим, что качественно результаты изучения гистерезиса магнитосопротивления ВТСП YBa₂Cu₃O_{~6.95} в слабых магнитных полях ($H_{ext} \ll H_{c2A}$, где H_{c2A} — верхнее критическое поле сверхпроводящих гранул) принципиально не отличаются от ранее полученных данных, относящихся к различным ВТСП [2–14]. Гистерезисный характер зависимостей $I_c(H_{ext})$ в цикле " $0 \rightarrow H_{ext}^{max} \rightarrow 0$ " для различных гранулярных (керамических) ВТСП наблюдался и ранее (см., например, [14,28,29]). В основном предметом обсуждения может служить природа влияния силы транспортного тока I на гистерезис магнитосопротивления, т.е. на эволюцию зависимостей $\frac{\Delta \rho^+}{\rho_{273 \rm K}}(H_{ext})$ и $\frac{\Delta \rho^-}{\rho_{273 \rm K}}(H_{ext})$ и эффективные значения критических полей H_{c2J}^+ , H_{c2J}^- , H_{c1A}^+ и H_{c1A}^- , при изменении значения j/j_c в широком диапазоне (~ 0.01 < $j/j_c < \sim 0.99$).

Очевидно, что величина магнитосопротивления образца ВТСП фактически зависит не от приложенного к образцу внешнего магнитного поля \mathbf{H}_{ext} , а от внутреннего магнитного поля \mathbf{H}_{int} — суммы поля \mathbf{H}_{ext} , полей размагничивания \mathbf{H}_{demagn} , возникающих в образце под действием внешнего магнитного поля и полей \mathbf{H}_{trac} , захваченных образцом в результате обработки магнитным полем. Таким образом, в каждом цикле измерений по схеме "0 — H_{ext}^{max} — 0" участвует два типа образцов ВТСП YBa₂Cu₃O_{~6.95}:

1) керамические образцы, охлажденные в отсутствие магнитного поля (*ZFC*-режим), которые при повышении напряженности внешнего магнитного поля \mathbf{H}_{ext} ($H_{\text{ext}}^+ > H_{c1A}$) могут захватывать магнитный поток;

2) образцы, которые при понижении напряженности внешнего магнитного поля $H_{\rm ext}(H_{\rm ext}^-)$ несут магнитное

поле *H*_{trap}, захваченное сверхпроводящими гранулами и, возможно, "слабыми связями" ВТСП (*FC*-режим).

Это означает, что внутреннее магнитное поле образца \mathbf{H}_{int} в случае приложения в измерительном цикле "0 $\rightarrow H_{\text{ext}}^{\text{max}} \rightarrow 0$ " внешних полей H_{ext}^+ и H_{ext}^- должно быть различным. Другими словами, в цикле "0 $\rightarrow H_{\text{ext}}^{\text{max}} \rightarrow 0$ " происходит изменение плотности и геометрии распределения джозефсоновских и абрикосовских вихрей в образце ВТСП (см., например, [30–32]).

Как известно [28], достаточно корректный расчет напряженности внутренних магнитных полей сверхпроводника **H**_{int} возможен лишь в двух простейших случаях: 1) при $H_{\text{ext}} < H_{c1A}$ (а в случае ВТСП при $H_{\text{ext}} < H_{c1J}$ [11]²) материал находится в диамагнитном состоянии, магнитная восприимчивость сверхпроводника $\chi = \text{const} = -\frac{1}{4\pi}$, и поле H_{int} составляет

$$H_{\rm int} = \frac{H_{\rm ext}^+}{1 - D^+},\tag{1}$$

где D^+ — эффективный размагничивающий фактор для поля H_{ext}^+ ;

2) при высоких значениях $H_{\text{ext}}^{\text{max}}$ гранулы керамического образца ВТСП полностью пронизаны магнитными вихрями Абрикосова, и определение намагниченности сверхпроводника M возможно в рамках модели критического состояния (см., например, [36–38]); в таком случае поле H_{int} составляет

$$H_{\rm int} = H_{\rm ext}^- - D^- 4\pi M, \qquad (2)$$

где D^- — эффективный размагничивающий фактор для поля H^-_{ext} (как правило, $D^+ \neq D^-$).

рассматриваемой области магнитных $0 \le H_{\rm ext} \le \sim 500 \, {\rm Oe}$ полей корректный расчет намагниченности М, а следовательно и величин внутренних магнитных полей H_{int} , практически невозможен. Надо полагать, что сравнительное изучение магнитосопротивления ВТСП YBa₂Cu₃O_{~6.95} при "0 \rightarrow $H_{\text{ext}}^{\text{max}}$ " и при " $H_{\text{ext}}^{\text{max}} \rightarrow$ 0", которому и посвящена настоящая работа, дает возможность оценить величину захваченного магнитного поля $H_{\rm trap}$ и на ее основе интерпретировать наблюдаемые гистерезисные эффекты.

Понижение общего уровня магнитосопротивления $\frac{\Delta \rho^{-}}{\rho_{273 \, \mathrm{K}}}$ и повышение эффективных значений критических

² Фактически в случае ВТСП (ввиду крайне низких значений полей H_{c1J} [33–35]) возможно применение менее жесткого критерия $H_{ext} < H_{2cJ}$.

полей "слабых связей" H_{c2J}^- и сверхпроводящих гранул H_{c1A}^- при понижении напряженности магнитного поля от $H_{\text{ext}}^{\text{max}} \sim 500$ Ое до нуля по сравнению с величинами $\frac{\Delta \rho^+}{\rho_{273\,\text{K}}}$, H_{c2J}^+ и H_{c1A}^+ (см. рис. 1–3) качественно согласуется с появлением эффекта захвата магнитного поля H_{trap} , ориентированного противоположно внешнему магнитному полю ($\mathbf{H}_{\text{trap}} \uparrow \downarrow \mathbf{H}_{\text{ext}}$) и возрастающего при увеличении транспортного тока (см., например, [14]).

Необходимо отметить, что физический смысл критических полей H_{c2J}^+ и H_{c1A}^+ с одной стороны, и H_{c2J}^- и H_{c1A}^- , с другой, принципиально различен. Дело в том, что критические поля "слабых связей" и сверхпроводящих гранул ВТСП имеют достаточно сильную ориентационную зависимость, и в керамических (поликристаллических) образцах присутствуют гранулы и межгранульные границы, различным образом ориентированные по отношению к внешнему магнитному полю H_{ext}. При повышении напряженности поля $\mathbf{H}_{\mathrm{ext}}$ ("0 \rightarrow $H_{\mathrm{ext}}^{\mathrm{max}}$ ") исходные образцы находятся в мейсснеровской фазе и процессы перехода "слабых связей" в резистивное состояние и проникновения магнитного поля в серхпроводящие гранулы протекают при минимально возможных значениях критических полей *H*_{c2J} и *H*_{c1A}. При понижении напряженности поля $\mathbf{H}_{\mathrm{ext}}$ (" $\mathcal{H}_{\mathrm{ext}}^{\mathrm{max}}
ightarrow 0$ ") исходные образцы находятся в смешанном состоянии, и в эксперименте последовательно фиксируются процессы выхода магнитного поля из сверхпроводящих гранул в поле $H_{c1A}^- > H_{c1A}^+$ и перехода "слабых связей" в сверхпроводящее состояние в поле $H_{c2I}^- > H_{c2I}^+$ (см. рис. 3).

Обнаруженные в работе эффекты понижения эффективных значений критических полей "слабых связей" и сверхпроводящих гранул ВТСП YBa2Cu3O~695 при увеличении плотности транспортного тока обусловлены исключительно эффектами захвата магнитного поля как под действием внешнего магнитного, так и в результате протекания в гранулярном образце достаточно сильных локальных токов, плотность которых существенно превосходит плотность макроскопических транспортных токов $(j_{local} > j)$, и приводящих к возникновению под действием этих токов достаточно сильных локальных магнитных полей $(H_{local} > H_{ext})$ [39]. Сами значения критических полей H_{c2J}^+ и H_{c1A}^+ для образцов, находящихся в ZFC-режиме (т.е. на полуцикле " $0 \rightarrow H_{\mathrm{ext}}^{\mathrm{max}}$ "), могут быть определены экстраполяцией полученных значений $H_{\rm cr}(I/I_c)$ на нулевое значение плотности транспортного тока (см. таблицу, столбец $H_{cr}(0)$).

Отличие между значениями $H_{\rm cr}(0)$ и $H_{\rm cr}(H_{\rm ext})$ позволяет определить значения полей $H_{\rm trap}$, захваченных "слабыми связями" $H_{\rm trap}^{wl}$ и свехрпроводящими гранулами $H_{\rm trap}^{g}$ ВТСП УВа₂Си₃О_{~6.95} (рис. 5). При этом величины $H_{\rm trap}^{wl}(H_{\rm ext})$ удается определять непосредственно как разности между $H_{c2J}^+(H_{\rm ext})$ и $H_{c2J}^+(0)$, поскольку всегда $H_{c2J}^+(H_{\rm ext}) < H_{c1A}^+(H_{\rm ext})$ и захват магнитного поля связан только с взаимодействием "слабых полей" с внешним магнитным полем и локальными магнитными полями $H_{\rm local}$ [39]. При $H_{\rm ext} > H_{c2J}^+$ можно определять лишь

Рис. 5. Магнитные поля H_{trap} , захваченные "слабыми связями" (\bigcirc) и сверхпроводящими гранулами (пунктир) ВТСП УВа₂Cu₃O_{~6.95}; \bigcirc — суммарные значения H_{trap} .

суммарные захваченные поля

$$H_{\text{trap}}^{\Sigma}(H_{\text{ext}}) = H_{\text{trap}}^{wl}(H_{\text{ext}}) + H_{\text{trap}}^{g}(H_{\text{ext}}),$$

откуда и находится зависимость $H_{\text{trap}}^g(H_{\text{ext}})$.

4. Заключение

Проведенное в настоящей работе изучение гистерезиса магнитосопротивления керамических образцов высокотемпературного сверхпроводника YBa₂Cu₃O_{7-δ} в относительно слабых внешних магнитных полях при различных значениях плотности транспортного тока позволило надежно установить наличие следующих эффектов:

1) величина магнитосопротивления $\frac{\Delta \rho^+}{\rho}$ при повышении напряженности внешнего магнитного поля существенно превышает $\frac{\Delta \rho^-}{\rho}$ при понижении поля, гистерезис магнитосопротивления существенно возрастает при повышении плотности транспортного тока;

2) во всем диапазоне величины плотности транспортного тока эффективные значения критических магнитных полей "слабых связей" H_{c2J} и нижних критических полей сверхпроводящих гранул H_{c1A} при понижении напряженности поля значительно выше, чем значения H_{c2J} и H_{c1A} при повышении напряженности внешнего магнитного поля;

3) значение захваченного магнитного поля возрастает при повышении плотности транспортного тока, но уже при относительно невысоких значениях j/j_c величина H_{trans} выходит на насыщение.

Обнаруженные в работе сильные гистерезисные эффекты в магнитосопротивлении гранулярных ВТСП ограничивают возможности их практического применения в качестве рабочего тела сенсоров магнитного поля, поскольку

1) из-за гистерезиса магнитосопротивления применение гранулярных ВТСП, охлажденных в *ZFC*-режиме, 2) область возможного применения гранулярных ВТСП простирается от $H_{\text{meas}} = H_{c2J}^+$ до H_{meas} , соответствующего выходу зависимости $\frac{\Delta \rho^+}{\rho}(H_{\text{meas}})$ на насыщение;

3) расширение области использования в сторону достаточно высоких значений H_{meas} может быть достигнуто только путем понижения транспортных токов (и, наоборот, — для измерений слабых полей H_{meas} необходимо повышение силы транспортного тока, приводящее к снижению нижнего порога измерений — поля H_{c21}^+).

Список литературы

- Bednorz J.G., Müller K.A. // Zs. Phys. B. 1986. Vol. 64. S. 1986.
- [2] Ekin J.W., Braginski A.I., Panson A.J., Janoko M.A. et al. // J. Appl. Phys. 1987. Vol. 62. P. 4821.
- [3] Chen K.Y., Qian Y.J. // Physica C. 1989. Vol. 159. P. 131.
- [4] Каримов Ю.С., Кикин А.Д. // СФХТ. 1990. Т. З. С. 631; Karimov Yu.S., Kikin A.D. // Physica C. 1990. Vol. 169. Р. 50.
- [5] Cai X.Y., Gurevich A., Tsu I.-F. et al. // Phys. Rev. B. 1998. Vol. 57. P. 10951.
- [6] Ovchinikov Yu.N., Wolf S.A., Kresin V.Z. // Phys. Rev. B. 2001.
 Vol. 63. P. 064 524.
- [7] Ji L., Rzchowski M.S., Annand N., Tinkham M. // Phys. Rev. B. 1993. Vol. 47. P. 470.
- [8] Kiliç A., Kiliç K., Yetiş H., Çetin O. // J. Appl. Phys. 2004. Vol. 95. P. 1924.
- [9] Kiliç A., Kiliç K., Yetiş H., Çetin O. // New J. Phys. 2005. Vol. 7. P. 212.
- [10] Derevyanko V.V., Sukhareva T.V., Finkel V.A. // Func. Mater. 2004. Vol. 11. P. 710.
- [11] Dos Santos C.A.M., Da Luz M.S., Ferreira B., Machado A.J.S. // Physica C. 2003. Vol. 391. P. 345.
- [12] Mogilko E., Schlesinger Y., Burlachkov L. // Physica B. 2000.
 Vol. 284–288. P. 911.
- [13] Балаев Д.А., Шайхутдинов К.А., Попков С.И., Петров М.И. // Письма в ЖТФ. 2003. Т. 29. С. 15.
- [14] Das Vitgens, Garcia S., Ghivelder L. // Eur. Phys. J. B. 2006. Vol. 49. P. 135.
- [15] Natarajan A., Wang W., Ma E., Bhattacharya R.N., Blaugher R.D. // Microsys. Technol. 1999. Vol. 6. P. 1432.
- [16] Albiss B.A. // Supercond. Sci. Technol. 2005. Vol. 18. P. 1222.
- [17] Ionescu M., Winton B., Silver T., Dou S.X., Ramer R. // Appl. Phys. Lett. 2004. Vol. 84. P. 5335.
- [18] Pannetier M., Fermon C., Legoff G., Simola J., Kerr E. // Science. 2004. Vol. 304. P. 1648.
- [19] Pannetier-Lecoeur M., Fermon C. // Phys. Rev. B. 2005. Vol. 72. P. 180 501.
- [20] Balaev D.A., Shaihutdinov K.A., Popkov S.I., Gokhfeld D.M., Petrov M.I. // Supercond. Sci. Technol. 2004. Vol. 17. P. 175.
- [21] Деревянко В.В., Сухарева Т.В., Финкель В.А. // ФТТ. 2004. Т. 46. С. 1740.
- [22] Finkel' V.A., Arzhavitin V.M., Blinkin A.A., Derevyanko V.V., Razdovskii Yu.Yu. // Physica C. 1994. Vol. 235–240. P. 303.
- [23] Капчерин А.С., Папиров И.И., Стоев П.И., Торяник В.В., Финкель В.А., Шкуропатенко В.А., Бухарова Т.И. // СФХТ. 1992. Т. 5. С. 113.

- [24] Деревянко В.В., Сухарева Т.В., Финкель В.А. // ФТТ. 2006. Т. 48. С. 1374.
- [25] Торяник В.В., Финкель В.А., Деревянко В.В. // Физика и химия обработки материалов. 1995. Вып. 5. С. 55.
- [26] Финкель В.А., Торяник В.В. // ФНТ. 1997. Т. 23. С. 824.
- [27] Финкель В.А., Деревянко В.В. // ФТН. 2000. Т. 26. С. 128.
- [28] Kunchur M.N., Askew T.R. // J. Appl. Phys. 1998. Vol. 84. P. 6763.
- [29] Obukhov Yu.V. // J. Supercond. 1991. Vol. 5. P. 101.
- [30] Müller K.H., Matthews D.N. // IEEE Trans. Appl. Supercond. 1993. Vol. 3. P. 1229.
- [31] Altshuler E., Garcia S., Barroso J. // Physica C. 1991. Vol. 177. P. 61.
- [32] Altshuler E., Mune P., Musa J., Gonzales J.L., Eres O., Hart C. // J. Supercond. 1995. Vol. 8. P. 781.
- [33] Senoussi S., Aguillon C., Hadjoudj S. // Physica C. 1991.
 Vol. 175. P. 215.
- [34] Ефимова Н.Н., Попков Ю.А., Устименкова М.Б., Финкель В.А. // ФНТ. 1994. Т. 20. С. 343.
- [35] Кузьмичев Н.Д. // Письма в ЖЭТФ. 2001. Т. 74. С. 291.
- [36] Bean C.P. // Phys. Rev. Lett. 1962. Vol. 8. P. 250.
- [37] Clem J.R. // Physica C. 1988. Vol. 153-155. P. 50.
- [38] Stucki F., Rhyner J., Blatter G. // Physica C. 1991. Vol. 181. P. 385.
- [39] Daghero D., Mazzetti P., Stepanescu A., Masoero A. // Phys. Rev. B. 2002. Vol. 66. P. 184 514.