01;05 Неравновесное состояние границ зерен и особенности собственного зернограничного проскальзывания в бикристаллах

© Ю.А. Хон, Ю.Р. Колобов, М.Б. Иванов, А.В. Бутенко

Институт физики прочности и материаловедения СО РАН, 634021 Томск, Россия e-mail: Khon@hq.tsc.ru

(Поступило в Редакцию 26 февраля 2007 г. В окончательной редакции 5 июля 2007 г.)

В деформируемом в условиях ползучести бикристалле выделены дополнительные по отношению к плотностям зернограничных дефектов переменные (параметры порядка), связанные с очагами пластической деформации. На основе анализа решений уравнений эволюции для параметров порядка показано, что неравномерность, цикличность собственного зернограничного проскальзывания в бикристаллах, увеличение скорости межзеренной деформации в условиях взаимодействия границы с решеточными дислокациями могут быть связаны с возбуждением на границе зерен неравновесных локализованных областей — автосолитонов.

PACS: 61.72.-y, 62.20.F-, 81.40.Lm

Введение

При высоких температурах диффузионные процессы на внутренних поверхностнях раздела, прежде всего на границах зерен, играют важную роль в развитии пластической деформации, деградации структуры и разрушения металлических поликристаллов. В этих условиях наряду с механизмами диффузионного массопереноса и внутризеренного дислокационного скольжения важную роль играет механизм деформации, связанный с зернограничным проскальзыванием (ЗГП) [1–6]. При ЗГП зерна смещаются друг относительно друга по общей поверхности границы. В эксперименте это фиксируется путем измерения ступенек на границе зерен интерференционным методом или по разрыву предварительно нанесенных на поверхности образца рисок.

Детальные экспериментальные исследования закономерностей ЗГП, проведенные на бикристаллах с гексагональной плотноупакованной решеткой, показали, что в зависимости от величины напряжений в плоскости границы и в зернах имеются два вида ЗГП: собственное и наведенное [2]. Собственное ЗГП протекает в условиях, когда касательные напряжения в плоскости границы максимальны, а в базисных плоскостях малы. Деформация осуществляется сдвигом по границе зерна, внутризеренная деформация отсутствует. Собственное проскальзывание, в свою очередь, подразделяется на две разновидности: "чистое" ЗГП и ЗГП, совместное с внутризеренным скольжением. При наведенном проскальзывании ситуация обратная: касательные напряжения максимальны в базисных плоскостях скольжения, а в плоскости границы малы. Развитие внутризеренной деформации приводит к относительному смещению зерен. В приграничной области риски изгибаются, что свидетельствует о приграничной деформации.

Собственное ЗГП имеет общие закономерности протекания. Во-первых, это неравномерность и цикличность проскальзывания. Риски, расположенные на разных участках границы, смещаются неравномерно. Локальная зависимость величины проскальзывания от времени часто имеет циклический характер: стадия возрастания скорости проскальзывания сменяется стадией ее уменьшения. Во-вторых, энергия активации процесса ЗГП близка к энергии активации зернограничной диффузии. В-третьих, скорость проскальзывания с увеличением времени деформирования уменьшается. И, наконец, с повышением температуры и величины сдвигового напряжения на границе скорость проскальзывания, как правило, возрастает.

Вместе с тем имеются и отличия. Так, при "чистом" ЗГП существует пороговое напряжение, имеется инкубационный период развития проскальзывания при низких напряжениях. Скорость ЗГП зависит от кристаллогеометрических параметров границы. На специальных границах она на порядок и более ниже, чем на произвольных. Коэффициент скоростной чувствительности напряжения

$$m = \partial \lg \sigma / \partial \lg \dot{\varepsilon},$$

где σ — приложенное напряжение, $\dot{\varepsilon}$ — скорость деформации, близок к единице. Это, как известно, соответствует квазивязкому характеру течения. При ЗГП, совместном с внутризеренным скольжением, скорость проскальзывания может увеличиться более чем в 50 раз по сравнению с "чистым" ЗГП при том же напряжении на границе. Коэффициент скоростной чувствительности напряжения $m \approx 0.5$.

Активизация ЗГП при взаимодействии решеточных дислокаций с границей предположительно связывается с переходом последней в неравновесное структурнонеустойчивое состояние с аномально высокой интенсивностью перестроек атомной структуры [2,3,7]. Физической причиной такого перехода считается делокализация ядер решеточных дислокаций в структуре границы зерна. При достаточно высокой плотности внесенных решеточных дислокаций их ядра перекрываются (дислокации теряют индивидуальность), и становится возможным квазивязкое течение (проскальзывание) по границе. Предполагается, что в этом неравновесном состоянии сопротивление зернограничному скольжению резко снижается.

Для теоретического исследования условий перехода границы раздела в неравновесное состояние и особенностей зернограничной деформации в таком состоянии существуют два наиболе продуктивных подхода. В первом из них [5] на примере задачи о сверхпластической деформации металлов рассматривается кинетика решеточных, зернограничных и внесенных на границу дислокаций. Строго говоря, зернограничные дислокации можно ввести лишь для границ специального типа и локальных участков хорошего сопряжения (например, фасеток на границе зерен общего типа) кристаллографических плоскостей зерен. Там, где хорошего сопряжения нет, необходимо рассматривать другие механизмы и соответственно другие элементарные носители зернограничной деформации. Во втором подходе [6] в качестве переменной, характеризующей внутреннюю структуру границы раздела, выступает избыточный свободный объем. На участках плохого сопряжения избыточный свободный объем считается максимальным, в местах хорошего сопряжения — минимальным. При рассмотрении зернограничного проскальзывания распределение участков хорошего и плохого сопряжения кристаллографических плоскостей зерен предполагалось хаотичным. По этой причине локальные особенности зернограничной деформации не анализировались.

В указанных подходах даже при знании всех типов носителей деформации и механизмов взаимодействия между ними решение задачи о неоднородности и цикличности проскальзывания все еще остается проблематичным. Дело в том, что результирующее проскальзывание по структурно-неоднородной границе раздела бикристалла складывается из разнесенных в пространстве и времени отдельных актов генерации и/или движения зернограничных дефектов в очагах пластической деформации. Очаги возникают в местах локальной концентрации напряжений. Процессы деформации в очаге сопровождаются перераспределением и релаксацией напряжений. В каждый момент времени формируется такое пространственное распределение очагов, которое обеспечивает требуемую граничными условиями деформацию бикристалла. Таким образом, для строгого решения задачи необходимо вводить дополнительные по отношению к плостностям носителей деформации переменные, характеризующие распределение очагов пластической деформации. Динамические уравнения для таких переменных, скорее всего, являются весьма сложными.

В теории нелинейных систем разработаны подходы, в которых сложная нелинейная система динамических уравнений для частиц (в данном случае это очаги пластической деформации) заменяется системой уравнений для кинетических перменных — параметров порядка [8,9]. Кинетические уравнения для параметров порядка представляют нелинейные уравнения реакционнодиффузионного типа. Целью настоящей работы является применение указанного подхода для анализа возможных сценариев зернограничного проскальзывания и условий их реализации в бикристаллах гексагональной плотноупакованной структурой (ГПУ), в том числе при взаимодействии решеточных дислокаций с границей зерен.

1. Модель зернограничной деформации

Рассмотрим бикристалл, который деформируется в условиях ползучести при температуре T. Плоскую границу раздела расположим в плоскости xz. Ось x направим вдоль направления максимальных касательных напряжений σ в этой плоскости, а ось y — перпендикулярно границе. Координаты поверхностей контактирующих зерен обозначим через $y = \pm \delta/2$. Ширина границы δ равна нескольким межатомным расстояниям и может изменяться из-за наличия неоднородностей (ступенек, уступов и пр.) на поверхностях зерен. Будем предполагать, что все величины, характеризующие макроскопические свойства границы раздела, представляют непрерывные функции координат г. Под точкой, как обычно, понимается физический малый объем с характерной для границы бикристалла внутренней структурой.

Очаги, возникающие в местах хорошего сопряжения кристаллографических плоскостей зерен, для кратности назовем очагами Р-типа. В этих очагах деформация обусловлена коллективными смещениями атомов, характерными для движущейся зернограничной дислокации. Очаги, возникающие в местах, где хорошего сопряжения нет, назовем очагами О-типа. В этих очагах смещение зерен связано с зернограничными диффузионными процессами. Очаги будем характеризовать характерными объемами w_P, w_Q, средними значениями величины деформации ε_{P0} , ε_{O0} и средними значениями скорости деформации $\dot{\varepsilon}_{P0}$, $\dot{\varepsilon}_{O0}$. Здесь и далее нижние индексы "*P*" и "О" будут характеризовать принадлежность переменных к очагам *P*-и *Q*-типа соответственно. Величины *w*_{*P*}, w_Q , ε_{P0} , ε_{Q0} определяются типом носителя деформации, а $\dot{\varepsilon}_{P0}$, $\dot{\varepsilon}_{O0}$ — кроме того, скоростями движения носителей деформации и зависят от температуры, величины действующего напряжения, структуры границы. Для дислокаций $\varepsilon_{P0} \sim \rho Lb$, $\dot{\varepsilon}_{P0} \sim \rho v_P b$. Здесь ρ , v_P поверхностная плотность и скорость дислокаций соответственно, *b* — вектор Бюргерса, *L* — длина пробега. В условиях ползучести v_P контролируется коэффициентом диффузии D_P. Время релаксации напряжений $t_p = \varepsilon_{P0}/\dot{\varepsilon}_{P0} \approx L/v_P$. При диффузионном механизме деформации $\dot{\varepsilon}_{O0} \approx W \nabla (n_O v_O)$ [10]. Здесь W — атомный объем, n_Q — объемная концентрация движущихся вакансий, v_O — скорость их движения. Время релаксации $t_Q \approx l^2/D_Q, D_Q$ — коэффициент диффузии, l — диффузионная длина.

Пусть в единице объема n_P очагов испытывают деформацию. Тогда средняя скорость деформации указанного объема будет равна $\dot{\epsilon}_{P0}p$, где $p = n_P/N_P$, $N_P = 1/w_P$. Точно так же локальное значение скорости деформации

 $\dot{\varepsilon}_Q(\mathbf{r},t) = \dot{\varepsilon}_{Q0}q(\mathbf{r},t), \ q = n_Q/N_Q, \ N_Q = 1/w_Q.$ Общая локальная скорость деформации $\dot{\varepsilon} = \dot{\varepsilon}_P + \dot{\varepsilon}_Q$ будет равна

$$\dot{\varepsilon}(\mathbf{r},t) = \dot{\varepsilon}_{Q0}q(\mathbf{r},t) + \dot{\varepsilon}_{P0}p(\mathbf{r},t).$$
(1)

Безразмерные переменные $0 \le p \le 1$, $0 \le q \le 1$ определяют относительные доли объемов, в которых происходят изменения внутренней структуры, приводящие к пластической деформации, т.е. они являются количественными характеристиками качественных крупномасштабных изменений внутренней структуры границы раздела при деформации. По этой причине переменные p, q будем называть параметрами порядка.

Кинетические уравнения для параметров порядка представляют уравнения баланса числа частиц и в общем случае имеют вид [11]

$$t_P \partial p / \partial t = X(q, p) + l_P^2 \Delta p, \qquad (2)$$

$$t_Q \partial q / \partial t = Y(q, p) + l_Q^2 \Delta q.$$
(3)

Здесь X, Y — безразмерные нелинейные функции источников, учитывающие процессы, протекающие в ансамбле взаимодействующих очагов. Величины l_P, l_Q определяют характерный размер пространственных неоднородностей параметров порядка и имеют смысл длин корреляции. Уравнения (2), (3) необходимо дополнить начальными и граничными условиями, а также уравнениями, определяющими зависимость времен релаксации и длин корреляции от степени деформации.

Переменные q, p являются малыми параметрами, поэтому функции источников могут быть разложены в ряд Тейлора. Набор коэффициентов данного разложения определяет модель среды. Следуя [12], рассмотрим модель двух взаимодействующих бистабильных сред, в которой функции источников имеют вид

$$X = a_p p + b_p p^2 - p^3 + cqp,$$
 (4)

$$Y = a_q q + b_q q^2 - q^3 - dqp.$$
 (5)

Последние слагаемые в правых частях (4), (5) описывают взаимодействие между двумя бистабильными средами. Свойства отдельно взятой бистабильной среды хорошо известны [13]. Коэффициенты b_p , b_q , c, dположительны. Коэффициенты a_p , a_q могут быть как положительными, так и отрицательными. Имеющие физический смысл решения существуют лишь при разных знаках перед коэффициентами c и d. Знак "+" перед коэффициентом c означает, что диффузионные процессы стимулируют движение зернограничных дислокаций.

Равновесные и неравновесные состояния границы

Уравнения (2), (3) с функциями источников (4), (5) всегда имеют стационарное однородное решение $p_0 = q_0 = 0$. Оно абсолютно устойчиво относительно малых однородных возмущений при $a_p < 0$, $a_q < 0$. Физическая ситуация соответствует случаю, когда величина

напряжения $\sigma \ll \sigma_c$ (σ_c — критическое напряжение сдвига). Если

$$a_p + a_q > 0, (6)$$

то решение p_0 , q_0 неустойчиво. Это имеет место при $\sigma > \sigma_c$. В области $0 \le p \le 1$, $0 \le q \le 1$ имеется устойчивое относительно малых однородных возмущений стационарное однородное решение $p_h > 0$, $q_h > 0$. Если при этом

$$a_q/d > (b_p^2/4 + a_p)^{1/2}, \quad c > c_m,$$
 (7)

где

$$c_m = (a_p + b_p p_{m2} - p_{m2}^2)/q_m,$$

 $q_m = b_q/2, \quad p_{m2} = (a_q + b_q^2/4)/d,$

то решение $p_h > 0$, $q_h > 0$ может быть неустойчивым относительно неоднородных возмущений δp , $\delta q \sim \exp(\gamma t + i \mathbf{kr})$ (\mathbf{k} — волновой вектор). При выполнении неравенств (7) в точке p_h , q_h производные $X'_p < 0$, $Y'_q > 0$. Здесь штрих означает производную от функции источника по соответствующей переменной (нижний индекс). Все производные вычисляются в точке равновесия.

Тип реализующейся неустойчивости зависит от величин

$$\alpha = t_Q/t_P, \quad \beta = l_Q/l_P, \tag{8}$$

и соотношения между ними [11]. Параметры α , β имеют смысл отношений времен релаксации и длин корреляции соответственно. При выполнении условий

$$\alpha \ll 1$$
 (9)

и/или

$$\beta \ll 1 \tag{10}$$

переход системы из состояния p_0 , q_0 в состояние p_h , q_h при наличии малых локальных возмущений сопровождается образованием автосолитонов — локализованных неравновесных областей. При этих же условиях решение p_h , q_h может быть неустойчиво относительно возмущений конечной амплитуды. Развитие этой неустойчивости также приводит к возбуждению автосолитонов [11].

На периферии автосолитона решения переходят в стационарные однородные решения в точке p_h , q_h . В одномерном случае автосолитоны представляют страты (полосы), ширина которых определяется величиной l_p . Тип образующегося автосолитона (статического, бегущего или пульсирующего) зависит от вида кривых X(p,q) = 0, Y(p,q) = 0. Скорость бегущих автосолитонов V_a всегда конечна и находится в интервале

$$\alpha^{1/2} v_q < V_a < v_q. \tag{11}$$

Здесь $v_q = l_Q/t_Q$, $v_p = l_p = t_p$. В системах с функциями источников (4), (5) при условиях (9), (10) возбуждаются три типа автосолитонов: статические при $\alpha > \beta$ $(v_q < v_p)$, бегущие при $\alpha < \beta$ $(v_q > v_p)$ и пульсирующие при $\alpha \approx \beta$ $(v_q \approx v_p)$. По данным [2], плотность зернограничных дислокаций составляет величину порядка 10^5 cm^{-1} . Поэтому в качестве оценки примем $l_P \approx 10^{-5} \text{ cm}$. Для диффузионных процессов длина корреляции l_0 совпадает с диффузионной длиной. По порядку величины $l_Q \approx 10-100b$. Отсюда следует, что $l_Q \ll l_P$. Поскольку в неупорядоченных системах при прочих равных условиях коэффициенты диффузии существенно выше, чем в упорядоченных, то следует ожидать, что $t_Q \ll t_P$. Таким образом, неравенства (9), (10) выполняются.

Рассмотрим более подробно особенности возбуждения неравновесных состояний на границе на основе численных расчетов. Решение системы ураврений (2), (3) с функциями источников (4), (5) проводилось для одномерного случая с использованием двуслойной неявной схемы [14]. Начальные возмущения параметров порядка задавались в форме распределения Гаусса

$$\delta p = \Delta p \exp[-\sigma_p (x - x_p)^2],$$

 $\delta q = \Delta q \exp[-\sigma_q (x - x_q)^2],$

где Δp , Δq — амплитуды возмущения, σ_p , σ_q — дисперсии распределения, x_p , x_q — координаты возмущения. Граничные условия выбирались в виде: $0 \le x \le L$, $dp/dx|_{x=0} = dp/dx|_{x=L} = 0$, $dq/dx|_{x=0} = dq/dx|_{x=L} = 0$. Рассматривались два вида начальных условий:

1) $p(x, \tau = 0) = 0, q(x, \tau = 0) = 0;$

2)
$$p(x, \tau = 0) = p_h, q(x, \tau = 0) = q_h$$
.

Здесь $\tau = t/t_P$ — безразмерное время, длина расчетной части $L = 100l_P$.

Анализ результатов расчета показал, что при значениях $l_p \approx 0.1 \,\mu\text{m}$ образуются полосы шириной $l \approx 1 \,\mu\text{m}$. В качестве примера рассмотрим результаты расчета для $\beta = 0.1 \, (l_O \approx 100b)$

$$a_p = 0.01,$$
 $b_p = 0.2,$ $c = 3,$
 $a_a = 0.03,$ $b_a = 0.4,$ $d = 0.1$ (12)

при различных значениях α и начальных условиях.

На рис. 1 приведено распределение параметров порядка в бегущем автосолитоне, который возбуждается при первом виде начальных условий. Начальные возмущения параметров порядка задавались в точке x = 0. В течение времени $\tau \approx 20$ единиц амплитуда автосолитона быстро нарастает до больших значений, а затем уменьшается до постоянного значения, превышающего стационарное значение p_h . После этого автосолитон движется с постоянной скоростью.

На рис. 2 приведены распределения параметров порядка в момент времени $\tau = 100$. Из него видно, что автосолитон имеет затухающий осциллирующий "хвост", параметры порядка меняются в фазе. Средние значения параметров порядка в автосолитоне равны их стационарным значениям $p_h \approx 0.362$, $q_h \approx 0.016$. При $\tau > 250$ параметры порядка в рассматриваемой области принимают стационарные значения. При уменьшении α

Рис. 1. Пространственное и временное распределения параметра порядка p в бегущем автосолитоне при $\alpha = 0.04$. Безразмерная переменная $\lambda = x/l_P$. Параметры начальных возмущений: $\Delta p = \Delta q = 0.01$, $\sigma_p = \sigma_q = 1$.

Рис. 2. Пространственное распределение параметров порядка в бегущем автосолитоне в момент времени $\tau = 100$.

Рис. 3. Распределение параметра порядка *p* при возмущении стационарного состояния в точке $\lambda = 50$ при $\alpha = 0.04$. Параметры начальных возмущений: $\Delta p = 0.362$, $\Delta q = 0.3$, $\sigma_p = \sigma_q = 1$.

число осцилляций возрастает, их амплитуды становятся близкими по величине, время τ_0 нахождения системы в неравновесном состоянии возрастает. Например, при $\alpha = 0.025$ ($v_q = 4v_p$) $\tau_0 > 4500$. Отметим, что вследствие неустойчивости решения p = q = 0 бегущие автосолитоны возбуждаются при сколь угодно малом начальном неоднородном возмущении.

Для второго вида начальных условий в зависимости от амплитуд начальных возмущений параметров порядка возможны два случая. В первом случае, когда амплитуды малы, возмущения затухают с самого начала. Если амплитуды превышают некоторые критические значения, то ситуация меняется. В этом случае, как видно из рис. 3, начальное возмущение вначале быстро нарастает, параметр порядка достигает максимального значения, а затем уменьшается, приближаясь к стационарному значению. В течение времени $\tau \approx 20$ система находится в неравновесном состоянии со значением параметра порядка, превышающим стационарное значение.

3. Обсуждение результатов

Рассмотрим временны́е зависимости скорости межзеренной деформации для различных типов решений для параметров порядка. Прежде всего, в стационарном (равновесном) состоянии p_h , q_h деформация протекает однородно с постоянной скоростью

$$\dot{\varepsilon}_h = \dot{\varepsilon}_{O0} q_h + \dot{\varepsilon}_{P0} p_h. \tag{13}$$

В неравновесном состоянии локальная скорость межзеренной деформации

$$\dot{\varepsilon}_a(\mathbf{r},t) = \dot{\varepsilon}_{Q0}q(\mathbf{r},t) + \dot{\varepsilon}_{P0}p(\mathbf{r},t)$$
(14)

имеет три особенности. Во-первых, это цикличность деформации, связанная с осцилляциями параметров порядка. В выделенной точке параметры порядка и соответственно скорость деформации вначале достигают максимального значения, а затем уменьшаются до значений, меньших среднего значения. После этого процесс повторяется (рис. 1). Во-вторых, при неоднородном распределении начальных возмущений межзеренная деформация будет развиваться неравномерно вдоль границы. И, наконец, в автосолитоне переменные p и q меняются в фазе (рис. 2). Характерное время изменения параметра порядка p определяется временем $t_Q \ll t_P$. Поэтому локальное значение $\dot{\epsilon}_a$ может более чем в $1/\alpha$ раз превышать $\dot{\epsilon}_h$.

При увеличении времени деформирования все больпий объем границы переходит в состояние p_h , q_h . В соответствии с этим средняя скорость деформации уменьшается до некоторого постоянного значения в стационарном состоянии. Увеличение плотности носителей деформации (упрочнение) приводит к уменьшению величины действующих напряжений в очагах деформации. Как следствие, возрастают значения t_Q и t_P . В результате, средняя скорость проскальзывания с увеличением времени уменьшается. Таким образом, при постоянной нагрузке величина проскальзывания с течением времени будет возрастать, а скорость проскальзывания — монотонно уменьшаться вплоть до нуля. Такие зависимости величины проскальзывания от времени наблюдаются экспериментально.

При "чистом" ЗГП чисто источников возмущения параметров порядка определяется только атомной структурой границы и топологией поверхностей зерен. Как указывалось выше, автосолитоны возбуждаются при выполнении условий (6), (7). Из (6) следует, что существует пороговое напряжение σ_0 , которое находится из равенства $a_p + a_q = 0$. При $\sigma < \sigma_0$ $(a_p + a_q < 0)$ зернограничное проскальзывание не развивается. При $\sigma > \sigma_0$ $(a_p + a_q > 0)$ зернограничное проскальзывание развивается с самого начала действия внешней силы. Заметим, что условие (6) выполняется, в частности, при $a_p < 0, a_q > 0$. В этом случае решение p = 0 при постоянном значении q устойчиво относительно малых возмущений. Если возмущений с большой амплитудой нет, как это имеет место при "чистом" ЗГП, то автосолитоны не возбуждаются. Возбуждение автосолитона возможно лишь на фоне решения p_0 , q > 0, неустойчивого относительно малых возмущений переменной р. Другими словами, система в течение времени $t_i \gg t_O$ вначале переходит в состояние $p_0 = 0$, q > 0, и лишь затем в ней возможно возбуждение автосолитонов. Время t_i определяет инкубационный период, в течение которого "чистое" ЗГП не развивается.

При ЗГП, совместимом с внутризеренным скольжением, поглощенные границей решеточные дислокации [5] являются источниками начальных возмущений большой амплитуды. Если состояние p_h , q_h неустойчиво относительно данных возмущений, то скорость их нарастания определяется временем $t_Q \ll t_P$. Скорость деформации может значительно превышать таковую в отсутствие возмущений. Усредненную по объему скорость межзеренной деформации в момент времени t представим в виде

$$\langle \dot{\varepsilon}(t) \rangle = \langle \dot{\varepsilon}_a(t) \rangle N_a \gamma_a + \dot{\varepsilon}_h \gamma_h.$$
 (15)

Здесь N_a — число источников начальных возмущений, γ_a — доля объема, приходящаяся на одно возмущение, y_h — доля объема, в котором параметры порядка равны их стационарным значениям. Величина γ_a определяется, прежде всего, параметром α , а N_a — числом источников возмущений параметров порядка. Из (15) видно, что чем больше произведение N_a γ_a, тем выше средняя скорость деформации. При этом величина N_a возрастает на число поглощенных границей ядер решеточных дислокаций. В результате скорость межзеренной деформации при том же напряжении на границе возрастает по сравнению с "чистым" проскальзыванием. Когда весь объем системы находится в неравновесном состоянии, скорость деформации становится максимальной. При постоянном значении плотности потока поглощенных границей решеточных дислокаций скорость проскальзывания остается постоянной. При увеличении времени деформирования плотность внесенных зернограничных дислокаций возрастает. Упрочнение приводит к возрастанию to и нарушению условий неустойчивости стационарного состояния. Как следствие, скорость падает до более низких значений.

Границы специального типа имеют наименьшую потенциальную энергию, а элементарные акты деформации протекают при более высоких напряжениях по сравнению с границами общего типа. Вследствие этого возможны две причины, по которым при прочих равных условиях скорость проскальзывания по специальным границам будет наименьшей по сравнению с границами другого типа. Во-первых, при заданном значении σ условие $a_p + a_q > 0$ может не выполняться. Во-вторых, при большей протяженности участков хорошего сопряжения кристаллических решеток в выделенной точке могут оказаться очаги только *P*-типа. В результате граница раздела будет представлять систему с разнесенными в пространстве свойствами. В любом случае скорость проскальзывания будет контролироваться процессами с характерным временем $t_P \gg t_O$.

Заключение

В предложенной модели межзеренной деформации бикристалла в условиях ползучести показано, что экспериментально наблюдаемые неравномерность и цикличность собственного проскальзывания связаны с возбуждением бегущих автосолитонов — локализованных неравновесных областей в ансамбле очагов деформации на границе раздела. Локальная скорость деформации, определяемая интенсивностью перестроек атомной структуры, в автосолитоне на порядок и более превышает скорость однородной деформации. Таким образом, представления [2,3] об определяющей роли неравновесного состояния границы в реализации проскальзывания в рассмотренной модели получают сравнительно простое теоретическое обоснование.

Работа выполнена при поддержке грантов CRDF TO-016-02, РФФИ 03-02-16355, 03-02-06627 MAC, 03-02-16955.

Список литературы

- [1] Новиков И.И., Портной В.К. Сверхпластичность сплавов с ультрамелким зерном. М.: Металлургия, 1989. 167 с.
- [2] *Кайбышев О.А., Валиев Р.З.* Границы зерен и свойства металлов. М.: Металлургия, 1987. 214 с.
- [3] Перевезенцев В.Н. Современные представления о природе структурной сверхпластичности. // Вопросы теории дефектов в кристаллах. Л.: Наука, 1987. С. 85–100.
- [4] Колбов Ю.Р. Диффузионно-контролируемые процессы на границах зерен и пластичность металлических поликристаллов. Новосибирск: Наука, 1998. 184 с.
- [5] Емалетдинов А.К. // Письма в ЖТФ. 1998. Т. 24. Вып. 13. С. 43–49.
- [6] Чувильдеев В.Н. Неравновесные границы зерен в металлах. М.: Физматлит, 2004. 304 с.
- [7] Перевезенцев В.Н., Рыбин В.В., Орлов А.Н. // Поверхность. 1982. № 6. С. 134–142.
- [8] Николис Г., Пригожин И. Познание сложного. М.: Мир, 1990. 344 с.
- [9] Haken H. // Physica D. 1996. Vol. 97. P. 95-103.
- [10] Лихачев В.А., Малинин В.Г. Структурно-аналитическая теория прочности. Спб: Наука, 1993. 471 с.

- [11] *Кернер Б.С., Осипов В.В. //* УФН. 1990. Т. 160. Вып. 9. С. 2–73.
- [12] Хон Ю.А. // Письма в ЖТФ. 1998. Т. 24. Вып. 7. С. 79-82.
- [13] Огнев М.В., Петровский С.В., Простокишин В.М. // Письма в ЖТФ. 1995. Т. 65. Вып. 6. С. 1–8.
- [14] Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978. 592 с.