^{05;06;12} Электрофизические параметры *с*-ориентированных пленок Bi₂Te₃ с низкой концентрацией антиструктурных дефектов

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: yu.boikov@mail.ioffe.ru

(Поступило в Редакцию 13 марта 2007 г.)

Эпитаксиальные *c*-ориентированные пленки Bi₂Te₃ толщиной 1.2 μ m выращены методом горячей стенки при низком пересыщении паровой фазы над поверхностью слюдяных подложек. Параметры a = 4.386и c = 30.452 Å гексагональной элементарной ячейки выращенных пленок практически совпадали с соответствующими параметрами стехиометрических объемных кристаллов теллурида висмута. При T = 100 K холловская концентрация электронов в пленках имела значения порядка $8 \cdot 10^{18}$ cm⁻³, а максимальные значения коэффициента термоэдс ($\alpha \approx 280 \,\mu$ V·K⁻¹) наблюдались при температурах порядка 260 К. В условиях примесной проводимости электропроводимость σ пленок возрастала с уменьшением температуры обратно пропорционально ее квадрату. В интервале температуры 100–200 К параметр термоэлектрической мощности $\alpha^2 \times \sigma$ пленок Bi₂Te₃ имел значения 80–90 μ W·cm⁻¹·K⁻².

PACS: 72.15.Jf, 72.20.Pa

Введение

При температурах, близких к комнатной, твердые растворы (Bi,Sb)₂(Te,Se)₃ обладают наивысшими значениями термоэлектрической эффективности $Z \approx 3 \cdot 10^{-3} \text{ K}^{-1}$ ($Z = \alpha^2 \sigma / \chi$, где α — коэффициент термоэдс, σ — электропроводность, χ — теплопроводность). Это обусловило их широкое применение [1] в объемных твердотельных преобразователях энергии (прежде всего в холодильниках).

Интерес к тонким слоям указанных слоистых полупроводников обусловлен перспективностью создания на их основе миниатюрных (быстродействующих) термогенераторов и термохолодильников [2]. Кроме того, пленочные гетероструктуры на основе тонких слоев халькогенидов висмута и сурьмы могут использоваться для разработки новых высокоэффективных термоэлектрических материалов [3]. Малая толщина, значительный уровень механических напряжений, высокая плотность межкристаллитных границ и т.д. оказывают существенное влияние как на электронные параметры, так и на теплопроводность пленок (Bi,Sb)₂(Te,Se)₃ [4].

Получение эпитаксиальных пленок $(Bi,Sb)_2(Te,Se)_3$ с заданной концентрацией носителей заряда и подвижностью последних на уровне значений, наблюдаемых для соответствующих монокристаллов, является нетривиальной задачей из-за активного реиспарения атомов халькогена с поверхности растущего (при $T > 300^{\circ}$ C) термоэлектрического слоя. Пленки $(Bi,Sb)_2(Te,Se)_3$, сформированные при низких температурах конденсации ($T < 250^{\circ}$ C) и/или высоком пересыщении паровой фазы над поверхностью подложки, имеют, как правило, поликристаллическую структуру, причем в их объеме наряду с *с*-ориентированными (ось *с* перпендикулярна плоскости подложки) зернами присутствуют кристаллиты, плоскость (10<u>1</u>5) в которых параллельна плоскости подложки [5]. Подвижность носителей заряда в таких пленках существенно подавлена из-за их рассеяния на дефектах структуры (границы зерен, антиструктурные дефекты и т.д.).

В данной работе исследуются структура и электронные параметры эпитаксиальных пленок $Bi_2Te_3(BT)$ с электронной проводимостью, выращенных в квазизамкнутом объеме в условиях низкого пересыщения паровой фазы.

1. Эксперимент

Пленки ВТ толщиной $d = 1.2 \, \mu m$ были выращены методом горячей стенки [6,7]. В качестве подложек использовались свежие сколы слюды мусковит толщиной 30-50 µm. Использование квазизамкнутой ростовой камеры позволило существенно увеличить температуру подложки Т_s при формировании слоя ВТ, исключив при этом неконтролируемую потерю легколетучего компонента из ее объема. С ростом Т_s увеличивается подвижность частиц, адсорбированных на поверхности подложки и/или растущего слоя, что способствует совершенствованию структуры последнего. Т_s в процессе роста термоэлектрических пленок была на 900 К ниже температуры, при которой осуществлялась сублимация исходной шихты. В качестве шихты использовался синтезированный в кварцевой ампуле сплав *n*-BT, коэффициент термоэдс для которого равнялся $-150\,\mu V \cdot K^{-1}$. Детали ростовой камеры описаны в [7].

Структура выращенных пленок исследовалась с использованием рентгеновской дифракции (Philips X'pert MRD, ω/2θ- и φ-сканы, кривые качания). Для определения параметров (*а* и *c*) гексагональной элементарной

Рис. 1. Рентгеновская дифрактограмма (CuK_{α} , $\omega/2\theta$) для пленки ($1.2\,\mu$ m)ВТ: a — полученная в случае, когда падающий и отраженный пучки находились в плоскости, перпендикулярной плоскости подложки (* — пики от подложки); b — падающий и отраженный пучки находились в плоскости, нормальной к плоскости ($10\underline{1}.5$) в слое термоэлектрика. На вставке показана кривая качания для рентгеновского пика ($20\underline{2}.10$) от пленки ($1.2\,\mu$ m)ВТ.

ячейки выращенных пленок рентгеновские $\omega/2\theta$ -сканы были измерены в условиях, когда плоскость, включающая падающий и отраженный рентгеновские пучки, была нормальна к (000.3), рис. 1, *a*, или (10<u>1</u>.5)ВТ, рис. 1, *b*).

Изображения свободной поверхности выращенных пленок были получены с помощью микроскопа атомных сил Nanoscope IIIa (режим высоты).

Температурные зависимости электросопротивления R, коэффициентов Холла R_x и термоэдс α измерялись в процессе нагрева выращенных пленок со скоростью 3 К/min в атмосфере аргона при давлении последнего 1 аtm. Электропроводность σ пленок ВТ рассчитывалась с использованием соотношения $\sigma = l/Rbd$, где l = 1 сm — длина пленочного образца, а b = 0.3 сm его ширина.

2. Экспериментальные результаты и их обсуждение

Теллурид висмута имеет ромбоэдрическую структуру с пространственной группой *R*<u>3</u>*m*. Наряду с ромбоэдрической элементарной ячейкой при описании ВТ часто используется соответствующая гексагональная ячейка. Параметры *а* и *с* гексагональной ячейки отожженных порошков теллурида висмута равны 4.384 и 30.487 Å [1] соответственно.

Теплопроводность и электрофизические свойства халькогенидов висмута и сурьмы анизотропны. Концентрация и подвижность носителей заряда в ВТ резко "реагируют" на нарушение стехиометрии, которое сопровождается формированием электрически активных антиструктурных дефектов.

2.1. Структура выращенных пленок теллурида висмута

Кристаллографическая плоскость (000.3) обеспечивает минимальное значение свободной энергии свободной поверхности теллурида висмута. Это способствует преимущественной ориентации зародышей ВТ на подложке таким образом, что ось с оказывается нормальной к плоскости последней. Разница в параметрах плоской псевдогексагональной решетки ионов кислорода на поверхности сколов слюды и плоской гексагональной решетки ионов теллура (на границах квинтетов) в ВТ приводит к появлению двухосных механических напряжений в растущем термоэлектрическом слое. Минимизация энергии указанных напряжений является движущей силой для преимущественной азимутальной ориентации стабильных зародышей и разрастающихся на поверхности слюды островков теллурида висмута (см. вставку a на рис. 2). Вследствие относительно низкого пересыщения паровой фазы плотность стабильных островков ВТ имела "аномально" малые $(2-5) \cdot 10^5 \text{ cm}^2$ значения (в [8] плотность островков теллурида висмута на поверхности подложек из кремния была на два-три порядка величины больше). Островки теллурида висмута имели форму равносторонних треугольников (см. ту же вставку), а их толщина до начала коалесценции достигала 60 nm.

На полученных рентгеновских дифрактограммах присутствовали только пики от пленки ВТ и подложки (рис. 1, что позволяет говорить об отсутствии в их объеме кристаллических макровключений вторичных фаз. Ось *с* в выращенных пленках ВТ была четко преимущественно ориентирована относительно нормали к плоскости подложки (см. рис. 1, *a*). В соответствии с ожиданиями на рентгеновском ϕ -скане для рефлексов {202.10} от пленки ВТ имелись шесть эквидистантно расположенных (через каждые 60°) пиков (см. рис. 2). Полуширина Δ пика на рентгеновских ϕ -сканах, полученных для пленок ВТ, равнялась примерно 0.14°

(см. вставку *b* на рис. 2). Величина Δ в значительной степени определяется азимутальной разориентацией "монокристаллических" блоков, составляющих пленку. Основной причиной азимутальной разориентации кристаллитов в выращенных пленках ВТ являлось рассогласование в параметрах кристаллических решеток теллурида висмута и слюды. Рассчитанные на основе полученных рентгеновских сканов параметры $c = 30.452 \pm 0.005$ и $a = 4.386 \pm 0.005$ Å элементарной ячейки выращенных пленок хорошо согласуются с соответствующими данными для объемных образцов [9] и порошков теллурида висмута (при расчете параметров с и а использовались значения 20 для пиков (000.30) и (303.15)ВТ на полученных рентгеновских $\omega/2\theta$ -сканах). Совпадение параметров элементарной ячейки выращенных пленок с параметрами ячейки соответствующих монокристаллов указывает на то, что состав пленок близок к стехиометрическому, а механические напряжения, индуцированные рассогласованием в параметрах кристаллических решеток и температурных коэффициентов линейного расширения ВТ $(12.9 \cdot 10^{-6} \text{ K} [1])$ и слюды (7.5 · 10⁻⁶ К [2]), в значительной степени релаксировали в процессе конденсации и охлаждения термоэлектрических слоев. Нарушение стехиометрии пленок теллурида висмута с электронной проводимостью приводит к резкому уменьшению параметра с [9].

Ширина кривой качания, измеренная на половине высоты, для рентгеновских пиков (000.21) и(202.10)ВТ от выращенных пленок находилась в пределах $0.12-0.15^{\circ}$ (см. вставку на рис. 1, *b*), что позволяет говорить о высоком качестве их структуры. Ширина соответствующей кривой, полученной для пленок теллурида вис-

Рис. 2. Рентгеновский ϕ -скан для пиков {202.10} от пленки (1.2 μ m)ВТ. Пик, наблюдавшийся при $\phi \approx 86.5^{\circ}$, показан на вставке *b* в увеличенном масштабе. Островки теллурида висмута имели форму четко преимущественно азимутально ориентированных равносторонних треугольников (см. вставку *a*).

Рис. 3. Снимок поверхности пленки $(1.2 \mu m)$ ВТ, полученный с использованием микроскопа атомных сил. На поверхности пленки четко видны ступени роста высотой в 1 nm.

мута, сформированных с использованием молекулярнолучевой эпитаксии, имела в полтора раза бо́льшие значения [9].

На снимках поверхности выращенных пленок ВТ наблюдалась четкая система ступеней роста, высота которых равнялась примерно 1 nm, т.е. совпадала с толщиной пятислойных квинтетов Te⁽¹⁾-Bi-Te⁽²⁾-Bi-Te⁽¹⁾ (аналогичные ступени роста были обнаружены и на поверхности островков ВТ). Таким образом, плоская гексагональная решетка ионов Te⁽¹⁾ обеспечивает минимальные значения свободной энергии свободной поверхности ВТ. Именно это обстоятельство обусловило появление на поверхности сформированных пленок ступеней с высотой $\frac{1}{2}c$. (Как правило, высота ступеней роста на поверхности пленок кратна параметру элементарной ячейки). На поверхности атомно гладких террас между соседними ступенями роста шириной 100-200 nm (рис. 3) не было выявлено присутствие стабильных зародышей ВТ. Это отчасти связано с высоким совершеством структуры формируемого термоэлектрического слоя и с низким пересыщением паровой фазы над его поверхностью.

2.2. Электрофизические свойства выращенных пленок теллурида висмута

Температурные зависимости электропроводности σ , коэффициентов термоэдс α и Холла R_x для пленки ВТ приведены на рис. 4. Во всем исследованном интервале температуры параметры α и R_x имели отрицательные значения. Холловская концентрация электронов $n = 1/eR_x$ в пленках, определенная с использованием измеренных значений R_x (100 K), имела величину порядка $8 \cdot 10^{18}$ ст⁻³ (e — заряд электрона). Уменьшение коэф-

Рис. 4. Температурные зависимости электропроводности σ (1) и коэффициента термоэдс α (2) пленки (1.2 μ m)ВТ. На вставке показаны температурные зависимости коэффициента Холла (1) и параметра термоэлектрической эффективности $\alpha^2 \times \sigma$ (2) для той же пленки.

фициента термоэдс (T > 260 K) пленок BT с увеличением температуры, так же как и рост электропроводности, T > 310 K (рис. 4), обусловлены усилением влиния собственной проводимости на электронный транспорт. С ростом температуры в интервале 260–600 K знак коэффициента термоэдс выращенных пленок не изменялся. Это хорошо согласуется с соответствующими данными для монокристаллов *n*-BT, подвижность дырок в которых на 40–45% ниже подвижности электронов [1].

В интервале 100–220 К температурная зависимость электросопротивления выращенных пленок хорошо аппроксимировалась соотношением $\sigma \sim T^{-2}$. Из сравнения кривых $\sigma(T)$, полученных для сформированных пленок ВТ, с соответствующими зависимостями для квазистехиометрических монокристаллов теллурида висмута с электронной проводимостью ($\sigma \sim T^{-1.7}$ [1]) следует, что электропроводность выращенных пленок резче реагировала на изменение температуры, чем электропроводность объемных образцов.

В том же температурном интервале коэффициент термоэдс пленок ВТ следовал соотношению $|\alpha| \sim \gamma \ln T$, где $\gamma \approx 180 \,\mu V \cdot K^{-1}$. Полученное значение параметра γ для термоэлектрических пленок примерно на $25 \,\mu V \cdot K^{-1}$ превышает соответствующие значения для монокристаллов теллурида висмута [1]. Более резкая, чем в случае соответствующих монокристаллов, зависимость электропроводности и коэффициента термоэдс пленок ВТ, исследованных в данной работе, от температуры может быть обусловлена сложной структурой зоны проводимости и зависимостью эффективной массы от температуры [2]. При T = 300 К параметр мощности $\alpha^2 \sigma$ для пленок ВТ имел значения порядка $40-45\,\mu\text{W}\cdot\text{cm}^{-1}\cdot\text{K}^{-2}$, что хорошо согласуется с соответствующими данными для оптимально легированных кристаллов теллурида висмута. При понижении температуры от комнатной до 100 К параметр мощности выращенных пленок увеличивался примерно вдвое (см. вставку на рис. 4).

Сравнив электрофизические параметры выращенных пленок с соответствующими данными для объемных кристаллов теллурида висмута, отметим, что

1) высокие (близкие к рекордным для монокристаллов теллурида висмута) значения произведения $\alpha^2 \sigma$ получены для слоев ВТ в широком интервале температуры (100–300 K);

b) концентрация электронов в выращенных пленках имела относительно низкие значения;

с) параметр *с* гексагональной элементарной ячейки в пленках ВТ практически совпадал с соответствующим параметром для объемных стехиометрических образцов теллурида висмута.

К настоящему времени четко установлено [2], что электропроводность кристаллов *n*-BT с низкой концентрацией электронов $(5-8) \cdot 10^{18}$ сm⁻³ резко (в несколько раз) возрастает в условиях одноосного (вдоль оси *c*) или гидростатического сжатия. При этом коэффициент термоэдс незначительно убывает. Эффект механического воздействия на электронный транспорт наиболее резко проявляется в кристаллах теллурида висмута с максимальными значениями параметра *c* (≈ 30.45 Å).

Жесткая связь с подложкой позволяет "рутинно" создать в *c*-ориентированной пленке двухосные растягивающие в плоскости подложки механические напряжения. При этом пленка ВТ оказывается упруго сжатой вдоль оси третьего порядка. Увеличение σ (и $\alpha^2 \times \sigma$) упруго напряженных пленок ВТ будет наблюдаться в том случае, когда их толщина не превышает критической, при которой начинается релаксация механических напряжений.

Заключение

В заключение хотелось бы отметить, что пленки теллурида висмута, выращенные методом горячей стенки при высокой подвижности частиц, адсорбированных на поверхности растущего слоя, и низком пересыщении паровой фазы над его поверхностью, имели высокосовершенную структуру. При температурах ниже комнатной параметр термоэлектрической мощности $\alpha^2 \times \sigma$ пленок (1.2 μ m)ВТ с концентрацией электронов 8 · 10¹⁸ находился на уровне максимальных значений произведения $\alpha^2 \times \sigma$, имеющихся в литературе для монокристаллов теллурида висмута с электронной проводимостью.

Финансовая поддержка для исследований была частично получена из проекта Nanointerface, выполняемого в рамках европейской программы FP6.

Список литературы

- Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. М.: Наука, 1972. С. 14, 110.
- [2] Гольцман Б.М., Дашевский З.М., Кайданов В.И., Коломоец Н.В. пленочные термоэлементы: физика и применение. М.: Наука, 1985. С. 170, 174.
- [3] Venkatasubramanian R., Colpitts T., Watko E., Lamvik M., El-Masry N. // J. Crustal Growth. 1997. Vol. 170. N 1–4. P. 817– 821.
- [4] Бойков Ю.А., Гольцман Б.М., Синенко С.Ф. // ФТТ. 1975.
 Т. 17. № 10. С. 3086–3087.
- [5] George J., Bradeep B. Solid State Com. 1985. Vol. 56. N 1. P. 117–120.
- [6] Lopez-Otero A. // J. Appl. Phys. 1977. Vol. 48. N 1. P. 446-448.
- [7] Бойков Ю.А., Грибанова О.С., Данилов В.А., Кутасов В.А. // ФТТ. 1991. Т. 33. № 11. С. 3414–3419.
- [8] Ferhat M., Liautard B., Brun G., Tedenac J.C., Nouaoura M., Lassabatere L. // J. Crustal. Growth. 1996. Vol. 167. N 1–2. P. 122–128.
- [9] Cho S., Kim Y., DiVenere A., Wong G.K., Ketterson J.B., Meyer J.R. // Appl. Phys. Lett. 1999. Vol. 75. N 10. P. 1401– 1403.