05;07

Влияние *у*-излучения на оптические свойства натриево-силикатных стекол

© Е.А. Ванина, М.А. Чибисова, А.Н. Чибисов

Амурский государственный университет, Благовещенск Институт геологии и природопользования ДВО РАН, Благовещенск E-mail: evanina@yandex.ru

Поступило в Редакцию 16 февраля 2007 г.

Исследовано влияние γ -облучения на оптические постоянные натриевокальциевых силикатных стекол. Показано, что в интервале доз $3.7 \div 3.7 \cdot 10^2$ Gy наблюдается рост коэффициента преломления *n*, ширина оптической запрещенной зоны *E*_g уменьшается от 3.13 до 3.05 ev.

PACS: 78.20.Ci

Введение. Большое количество приборов и элементов, применяемых в космических аппаратах (иллюминаторы, призмы, линзы), изготовлено из оптических или кварцевых стекол. Радиационные дефекты, генерируемые в стеклах под действием ионизирующего излучения, оказывают существенное влияние на оптические свойства [1]. Натриево-кальциевые силикатные стекла широко используют в оптике [2], в промышленности [3]. Легирующие добавки [4], воздействие высокоэнергетических излучений [3] применяются для эффективного изменения оптических свойств стекол. В работе [5] были изучены оптические константы стекол в области $0.29 \div 4000 \,\mathrm{cm}^{-1}$ при 293 K, используя микроволновый метод. В работе [6] приведены значения оптической ширины запрещенной зоны натриево-кальциевых силикатных стекол, показано, что она составляет порядка 3.5 eV. Однако отсутствует информация о влиянии γ -облучения на ширину оптической зоны и на значения оптических постоянных (постоянной поглощения k, показателя преломления n, действительной ε_1 и мнимой ε_2 диэлектрических постоянных) натриевокальциевых силикатных стекол. В связи с этим целью настоящей работы является исследования воздействия потока у-квантов на оптические свойства натриево-кальциевых силикатных стекол.

81

Рис. 1. Спектр пропускания натриево-кальциевого силикатного стекла: I — до облучения; после облучения дозами: 2 - 3.7 Gy, $3 - 3.7 \cdot 10^1$ Gy, $4 - 3.7 \cdot 10^2$ Gy.

Эксперимент. В работе исследовано многокомпонентное натриевокальциевое силикатное стекло следующего состава (в wt.%): SiO₂ \approx 73.80; TiO₂ \approx 0.180; Al₂O₃ \approx 1.90; Fe₂O₃ \approx 0.88; CaO \approx 4.87; MgO \approx 3.93; Na₂O \approx 12.65; K₂O \approx 0.72; P₂O₅ \approx 0.028 и 0.06 примеси (Pb, Ni, Sb).

Облучение проводилось источником ⁶⁰Со при комнатной температуре. Энергия γ -квантов 1.25 MeV, интервал доз 3.7 ÷ 3.7 · 10² Gy.

Спектры пропускания образцов регистрировались с помощью двухлучевого фотометра в области спектра 315 ÷ 990 nm (3.9 ÷ 1.25 eV).

Результаты и обсуждение. Экспериментальные зависимости пропускания необлученного и облученного γ -квантами стекла от длины волны $T = T(\lambda)$ представлены на рис. 1.

До облучения (рис. 1) в области 375 nm ($\approx 3.3\,eV)$ наблюдается "скачок", соответствующий собственному фундаментальному поглоще-

Рис. 2. Зависимость $(\alpha E)^{1/2} = f(E)$ для натриево-кальциевого силикатного стекла: I — до облучения; после облучения дозами: 2 - 3.7 Gy, $3 - 3.7 \cdot 10^1$ Gy, $4 - 3.7 \cdot 10^2$ Gy.

нию натриево-кальциевого силикатного стекла, что хорошо согласуется с работой [6]. Зависимость коэффициента поглощения $\alpha = \alpha(\lambda)$ определяется выражением

$$\alpha(\lambda) = -\frac{\lg(T(\lambda))}{d},\tag{1}$$

где *d* — толщина образца.

Согласно [7,8], значение ширины запрещенной зоны E_g находится из экстраполяции "линейной" части зависимости $(\alpha E)^{1/2} = f(E)$. На рис. 2 представлены зависимости $(\alpha E)^{1/2} = f(E)$ для исследованного натриево-кальциевого силикатного стекла. В таблице приведены полученные из графиков значения E_g^{\exp} . Для необлученного стекла ширина зоны E_g^{\exp} составляет порядка $\approx 3.13 \,\mathrm{eV}$, что хорошо согласуется с работой [6].

Доза облучения, Gy	Α	<i>B</i> , eV	C , eV^2	E_g , eV	E_g^{\exp} , eV
0	$1.06\cdot 10^{-4}$	6.744	11.371	3.21	3.13
3.7	$1.591\cdot 10^{-4}$	6.727	11.314	3.15	3.05
$3.7\cdot 10^1$	$1.565\cdot 10^{-4}$	6.727	11.314	3.12	3.09
$3.7 \cdot 10^2$	$8.602\cdot 10^{-5}$	6.727	11.314	3.20	3.23

Значения постоянных A, B, C и Eg для каждой дозы облучения

Коэффициент поглощения α будет иметь размерность а. u., а энергия E — eV, тогда показатель поглощения k(E) равен

$$k(E) = \frac{\alpha(E)c}{2E}.$$
 (2)

Согласно методу Фороухи—Блумера (Forouhi—Bloomer) [7,8], выражением (3) проводилась регрессия экспериментальных зависимостей k(E), для чего необходимо методом наименьших квадратов решить систему уравнений

$$k_i = \frac{A(E_i - E_g)^2}{(E_i)^2 - BE_i + C},$$
(3)

что позволяет определить коэффициенты A, B, C и E_g (характеризует оптическую ширину запрещенной зоны) [7,8].

В таблице представлены значения коэффициентов *A*, *B*, *C* и ширины оптической запрещенной зоны E_g в сравнении ее с экспериментальным значением E_g^{exp} , полученным из экстраполяции $(\alpha E)^{1/2}$. Установлено, что E_g и E_g^{exp} хорошо согласуются.

Затем выражением (4) определяется действительная часть показателя преломления n(E) [9]:

$$n(E) = 1 + \frac{B_0 E + C_0}{E^2 - BE + C}.$$
(4)

На рис. 3, *с* представлено изменение показателей преломления стекла с увеличением дозы облучения. Видно, что в интервале доз $3.7 \div 3.7 \cdot 10^2$ Gy наблюдается оптическое уплотнение стекла, а затем при дозе $3.7 \cdot 10^2$ Gy уменьшение показателя преломления n(E), что

Рис. 3. Оптические постоянные (a — мнимая $\varepsilon_2(E)$ и b — действительная $\varepsilon_1(E)$ части комплексной диэлектрической проницаемости; c — действительная часть показателя преломления n(E)) натриево-кальциевого силикатного стекла: l — до облучения; после облучения дозами: 2 — 3.7 Gy, 3 — 3.7 · 10¹ Gy, 4 — 3.7 · 10² Gy.

объясняется эффектом радиационного просветления [10] в кварцевых стеклах, установленным в работе Бреховских С.М. [4]. В области фундаментального собственного поглощения стекол наблюдается резонанс.

Формулами (5) определяются действительная $\varepsilon_1(E)$ и мнимая $\varepsilon_2(E)$ части комплексной диэлектрической проницаемости, которые представлены на рис. 3, *а*, *b*:

$$\varepsilon_1(E) = n(E)^2 - k(E)^2,$$

$$\varepsilon_2(E) = 2n(E)k(E).$$
(5)

Выводы

1. При γ -облучении в интервале доз $3.7 \div 3.7 \cdot 10^2$ Gy установлен рост коэффициента преломления n(E), что объясняется эффектом оптического уплотнения стекла.

2. В результате расчета дисперсионных кривых натриево-кальциевых силикатных стекол по методу Фороухи–Блумера (Forouhi–Bloomer) установлено, что с увеличением дозы γ -облучения в интервале 3.7 ÷ 3.7 · 10² Gy ширина запрещенной зоны E_g уменьшается от 3.21 до 3.12 eV (экспериментальные данные показывают уменьшение E_g^{exp} от 3.13 до 3.05 eV).

3. Ширина запрещенной зоны стекла, облученного дозой $3.7 \cdot 10^2$ Gy, равна $E_g = 3.20$ eV ($E_g^{exp} = 3.23$ eV), что объясняется эффектом радиационного просветления.

Список литературы

- [1] Акишин А.И., Цепляев Л.И. // Физика и химия обработки материалов. 2006. № 2. С. 25–30.
- [2] Kowal T.M., Krajczyk L., Macalik B., Nierzewski K., Okuno E., Suszynska M., Szmida M., Yoshimura E.M. // Nuclear Instruments and Methods in Physics Research B. 2000. V. 166–167. P. 490–494.
- [3] Jiawei Sheng, Kohei Kadono, Yasushi Utagawa, Tetsuo Yazawa. // Applied Radiation and Isotopes. 2002. V. 56. P. 621–626.
- [4] Бреховских С.М., Тюльнин В.А. Радиационные центры в неорганических стеклах. М.: Энергоатомиздат, 1988. С. 200.
- [5] Birch J.R., Cook R.J., Harding A.F., Jones R.G., Price G.D. // Journal Physics. D: Appl. Phys. 1975. V. 8. P. 1353–1358.
- [6] Stepanov A.L. // Rev. Adv. Mater. Sci. 2003. V. 4. P. 123-138.
- [7] Forouhi A.R., Bloomer I. // Physical review B. 1986. V. 34. N 10. P. 7018-7026.
- [8] Forouhi A.R., Bloomer I. // Physical review B. 1988. V. 38. N 10. P. 1865–1874.
- [9] Paredes O., Cyrdoba Benavides J. // Superficies y Vacho. 1999. V. 9. P. 89-91.
- [10] Ванина Е.А., Чибисова М.А., Соколова С.М. // Стекло и керамика. 2006. № 11. С. 9–10.