03;07

Взаимодействие коллинеарных световых пучков с разными длинами волн в гетерогенном жидкофазном нанокомпозите

© Ю.Н. Кульчин, А.В. Щербаков, В.П. Дзюба, С.С. Вознесенский

Институт автоматики и процессов управления ДВО РАН, Владивосток E-mail: kulchin@iacp.dvo.ru; vdzyuba@iacp.dvo.ru

Поступило в Редакцию 18 февраля 2009 г.

Представлены результаты экспериментальных исследований нелинейнооптического взаимодействия коллинеарных световых пучков с разными длинами волн в гетерогенном жидкофазном нанокомпозите (ГЖНК). Показано, что при использовании в качестве компонент ГЖНК наполнителя из наночастиц диэлектрика Al₂O₃ и матрицы из органической жидкой среды с явно выраженной зависимостью от температуры показателя преломления наблюдается низкопороговая оптическая нелинейность, позволяющая управлять характеристиками пропускания ГЖНК.

PACS: 42.65.-k, 42.70.Nq

Последние исследования [1–5] показали, что гетерогенные жидкофазные нанокомпозиты (ГЖНК) на основе наночастиц из широкозонных полупроводников и диэлектриков оказываются эффективными для реализации низкопороговых нелинейно-оптических явлений в видимом диапазоне. Важным их достоинством является возможность варьирования нелинейно-оптических свойств посредством выбора матрицы, а также подбором концентрации, размера и формы наночастиц. Это позволяет надеяться на их использование при создании функциональных

1

Рис. 1. Схема экспериментальной установки.

элементов устройств управления оптическим излучением, в частности, на основе процесса взаимодействия коллинеарных световых лучей с разными длинами волн в ГЖНК.

В данной работе представлены результаты экспериментального исследования нелинейно-оптического взаимодействия коллинеарных световых пучков с разными длинами волн, излучаемых непрерывными источниками в ГЖНК, состоящем из наночастиц диэлектрика Al₂O₃ и матрицы из органической жидкой среды и имеющем выраженную зависимость показателя преломления от температуры. Для изучения процесса коллинеарного взаимодействия использовалась экспериментальная установка, схема которой приведена на рис. 1. В эксперименте использовались источники непрерывного излучения: 1 — He-Ne-лазер $(\lambda = 632 \,\mathrm{nm})$ со средней мощностью 50 mW, 2 — накачиваемый матрицей полупроводниковых лазеров ИАГ:Nd-лазер (вторая гармоника излучения: $\lambda = 532 \,\text{nm}$) со средней мощностью 40 mW. Величина используемой мощности регулировалась комбинацией нейтральных светофильтров с различным пропусканием 3 и 6. Для контроля уровня мощности лазерного излучения часть энергии световых пучков отводилась светоделителями 4 и 7 и регистрировалась фотоприемниками 5 и 8, сигнал которых оцифровывался АЦП 16 и 17 и направлялся в персональный компьютер 18. Световые лучи лазеров 1 и 2 коллинеарно

совмещались при помощи светоделительного кубика 9. Длиннофокусная линза 10 (фокусное расстояние $A = 30 \,\mathrm{cm}$) использовалась для фокусирования светового пучка в кювету с плоскопараллельными гранями, наполненную ГЖНК 11. Далее узкополосным интерференционным светофильтром 12 выделялось излучение определенной длины волны. Точечная диафрагма 13 с диаметром отверстия 1 mm отфильтровывала приосевую область светового луча. Прошедшее излучение попадало на скоростную регистрирующую ПЗС-матрицу 14, а ее выходной сигнал оцифровывался АЦП 15 и поступал на вход персонального компьютера 18, где обрабатывался. Механические затворы 19 и 20 управляли вводом световых лучей в кювету с ГЖНК. В качестве матрицы ГЖНК использовалось иммерсионное масло на основе кедрового бальзама (показатель преломления ~ 1.5), наполнителем которого являлись наночастицы широкозонного диэлектрика Al₂O₃ со средним размером $\sim 40-50$ nm, показателем преломления ~ 1.7 и с шириной запрещенной зоны более 6 eV. Наночастицы данного размера выделялись из промышленно подготовленных нанопорошков, так же как и в работе [1], методом "отмучивания" в ацетоне. Массовая концентрация наночастиц в ГЖНК составляла ~ 0.3%. ГЖНК помещалась в кювету из кварцевого оптического стекла с плоскопараллельными стенками и длиной 20 mm в направлении распространения луча. Диаметр световых пучков в области перетяжки составлял ~ 0.6 mm. В работе исследовалась зависимость интенсивности прошедшего ГЖНК (основного) луча одной длины волны (532 или 633 nm) в приосевой области $I_{out}(I_{in})$ от величины входной интенсивности I_{in} при различной интенсивности дополнительного с ним коллинеарного (управляющего) луча с другой длиной волны (633 или 532 nm). Измерение зависимости $I_{out}(I_{in})$ производилось после затухания переходных процессов, длительность которых достигала 0.3 s, и установления стационарного режима. На рис. 2 и 3 приведены (в отн. ед.) экспериментальные зависимости пропускания $I_{out}(I_{in})$ для излучения с $\lambda = 633$ nm или с $\lambda = 532$ nm при различной интенсивности управляющего излучения соответственно длиной волн $\lambda = 532 \, \text{nm}$ или $\lambda = 633 \, \text{nm}$. Измерения показали, что в обоих случаях наблюдаются отклонения от линейной зависимости I_{out}(I_{in}), начиная с малых значений величин интенсивности входного излучения, которые для излучения с $\lambda = 633 \,\mathrm{nm}$ меньше $200 \,\mathrm{mW/mm^2}$ (рис. 2), а для излучения с $\lambda = 532 \, \text{nm}$ зависят от интенсивности управляющего излучения и лежат в интервале от 20 до 250 mW/mm² (рис. 3). Изменение интенсивности прошедшего через ГЖНК излучения

Рис. 2. Зависимости нормированной на максимальное значение интенсивности излучения с $\lambda = 633$ nm, прошедшего через ГЖНК $I_{out}(I_{in})$, от интенсивности падающего излучения; I-3 — зависимости пропускания при интенсивности управляющего излучения ($\lambda = 532$ nm), соответственно равной: 0, 250, 500 mW/mm².

с ростом интенсивности излучения на входе для излучения с $\lambda = 633$ nm носит немонотонный характер и имеет вид спадающих по амплитуде осцилляций. При этом величины максимумов пропускания и интенсивности, при которых они достигаются, уменьшаются с ростом интенсивности управляющего излучения длиной волны $\lambda = 532$ nm. Зависимости пропускания излучения с $\lambda = 532$ nm при управляющем излучении с длиной волны $\lambda = 633$ nm (рис. 3) из-за малой мощности Nd-лазера получены в диапазоне интенсивностей, меньших 500 mW/mm². Они так же, как в предыдущем случае, нелинейные, хотя и не имеют осцилляций.

Наблюдаемый эффект, по нашему мнению, определяется следующим. Эффективный нелинейный показатель преломления среды ГЖНК с учетом его кубической нелинейности можно описать следующим модельным выражением [2]:

$$n(I, \mathbf{r}, N, z, t) = n_0 + n_1(a, N)I(\mathbf{r}, z, N) + n_2(T, t, I),$$
(1)

где $n(I, \mathbf{r}, N, z, t)$ — эффективный показатель преломления среды нанокомпозита; $I(\mathbf{r}, z, N)$ — интенсивность распространяющейся в

Рис. 3. Зависимости нормированной на максимальное значение интенсивности излучения с $\lambda = 532$ nm, прошедшего через ГЖНК $I_{out}(I_{in})$ от интенсивности падающего излучения; I-4 — зависимости пропускания при интенсивности управляющего излучения ($\lambda = 633$ nm), соответственно равной: 0, 500, 1000, 1500 mW/mm².

нанокомпозите вдоль оси Z световой волны; n₀ — исходный показатель преломления среды матрицы; $n_1(a, N)$ — величина, обусловленная нелинейностью материала наночастицы и зависящая от размера а и концентрации наночастиц N; $n_2(T, t)$ — величина, учитывающая зависимость от температуры показателя преломления сред матрицы; T — температура среды; t — время взаимодействия излучения со средой. Поскольку для иммерсионного масла на основе кедрового бальзама $\partial n_2/\partial T < 0$, то распространение в нем лазерного излучения приводит к уменьшению величины $n(I, \mathbf{r}, N, z, t)$, что в отсутствие других процессов изменения показателя преломления среды приводит к дефокусировке светового луча [6-7]. Результаты исследований [1-2] спектрального пропускания материала наночастиц Al₂O₃ и спектров фото- и катодолюминесценции наноструктурированного оксида алюминия [8] указывают на существование внутри запрещенной зоны на глубине $E_d \sim 2.3 \, \text{eV}$ дополнительной подзоны разрешенных уровней энергии электронов шириной ~ 0.3-0.4 eV, обусловленных квантоворазмерным эффектом и поверхностными дефектами нанокристалла, и

на наличие экситонных уровней размерного квантования, лежащих в полосе 1 eV от дна зоны проводимости [9]. При освещении входящих в комплекс НЖНК наночастиц Al_2O_3 излучением с $\lambda = 532$ nm, с энергией квантов $E_{\lambda=532} = 2.34 \, \text{eV}$, большей E_d , концентрация носителей заряда в зоне проводимости увеличивается и нелинейная добавка $n_1(a, N)$ становится отрицательной [9]. Поэтому рост интенсивности излучения с $\lambda = 532 \,\mathrm{nm}$ приводит к самодефокусировки. Этот процесс в совокупности с действием температурной отрицательной градиентной линзы, создающейся в матрице ГЖНК, объясняет ход зависимости 1 на рис. З и быстрое насыщение пропускания с ростом интенсивности световой волны. Для излучения с $\lambda = 633$ nm, напротив, энергии кванта оказывается недостаточно для перевода электронов в зону проводимости $(E_{\lambda=633} < E_d)$, но вполне достаточно для возбуждения разрешенных дипольных переходов в экситонные состояния с уровнями энергии, лежащими вблизи дна зоны проводимости. В результате происходит дополнительная поляризация гетерогенной среды, а нелинейная добавка к эффективному показателю преломления n₁ имеет положительный знак. В итоге происходит самофокусировка излучения, приводящая к концентрации излучения в приосевой области, что подтверждается зависимостью 1 (рис. 2). Расфокусирующее действие роста температуры ГЖНК, конечность населенности подзоны разрешенных уровней электронами и числа экситонных уровней приводит к ограничению просветления ГЖНК с ростом интенсивности излучения. Следует отметить, что указанные выше механизмы возможны и в случае значительного уменьшения ширины (более 2.5 раза для Al₂O₃) запрещенной зоны у наночастицы по сравнению с объемным образцом. Однако это предположение противоречит ряду исследований [10-11]. В случае взаимодействия коллинеарных световых лучей с разными длинами волн нелинейное изменение эффективного показателя преломления среды ГЖНК Дл определяется интенсивностью излучений с длинами волн $\lambda = 633$ nm и $\lambda = 532$ nm. Так, для основного луча с $\lambda = 532$ nm, взаимодействующего с лучом света с $\lambda = 633$ nm, величина Δn из-за уменьшения населенности подзоны разрешенных уровней, вызванной поглощением зеленого излучения с $\lambda = 532$ nm совместно с разогревом среды становится отрицательной, что приводит к спаду интенсивности прошедшего ГЖНК зеленого света при меньших величинах интенсивности входного излучения. Это иллюстрируют кривые 2-4 на рис. 3. Для основного красного излучения с $\lambda = 633$ nm величина Δn в зависимости от интенсивности красного излучения может принимать

как положительные, так и отрицательные значения, а взаимодействие с управляющим лучом с $\lambda = 532$ nm обостряет конкуренцию процессов само- и дефокусировки излучения. Вследствие этого максимум величины пропускания излучения с $\lambda = 633$ nm через ГЖНК уменьшается с ростом интенсивности луча с $\lambda = 532$ nm (рис. 2).

Таким образом, из представленных результатов следует, что в ГЖНК на основе диэлектрических наночастиц, в частности Al_2O_3 , и матрицы из органической жидкой среды посредством нелинейного взаимодействия коллинеарных световых лучей, в оптическом диапазоне частот, возможна модуляция интенсивности проходящего через ГЖНК излучения одной частоты интенсивностью коллинеарного с ним излучения другой частоты. Величина модуляции (рис. 3) может достигать 10 dB.

Работа выполнена при поддержке Программ фундаментальных исследований президиума РАН (программа 27, проект № 09-П27-06) и ОФН РАН (проект № 09-ОФН-07).

Список литературы

- [1] Михеева О.П., Сидоров А.И. // ЖТФ. 2004. Т. 74. В. 6. С. 77.
- [2] Кульчин Ю.Н., Щербаков А.В., Дзюба В.П., Вознесенский С.С., Микаэлян Г.Т. // Квантовая электроника. 2008. Т. 38. В. 2. С. 154.
- [3] Ferrari J.A., Fins E.M., Garbius E., Korn M. // Optical Engineering. 2006. V. 45. P. 065001.
- [4] Трофимов В.А., Терешин Е.Б. // Оптика и спектроскопия. 2005. Т. 99. С. 998.
- [5] Каманина Н.В., Филиппов А.К., Воронин Ю.М. // Опт. журнал. 2006. Т. 73. С. 19.
- [6] Елисеев П.Г., Богатов А.П. // Труды ФИАН. 1986. Т. 166. С. 15.
- [7] Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989.
- [8] Кортов В.С., Ермаков А.Б., Зацепин А.Ф. и др. // Тез. II Всерос. конф. по наноматериалам. Новосибирск, 2007. С. 152.
- [9] Кульчин Ю.Н., Дзюба В.П., Щербаков А.В. // Физика и техника полупроводников. 2009. Т. 43. В. 3. С. 349–356.
- [10] *Гусев А.И.* Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит, 2005. 416 с.
- [11] Балашов Е.М., Далидчик Ф.И., Шуб Б.Р. // Хим. физика. 2008. Т. 27. № 12. С. 10.