Публикации 2007-2017

2017

  1. Transition sol-gel in nanodiamond hydrosols. Vul,AY; Eidelman,ED; Aleksenskiy,AE; Shvidchenko,AV; Dideikin,AT; Yuferev,VS; Lebedev,VT; Kul`velis,YV; Avdeev,MV, Carbon, v.114, pp. 242-249(2017).
  2. Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst.F.M. Shakhov, A.M. Abyzov, S.V. Kidalov, A.A. Krasilin, E. Lähderanta, V.T. Lebedev, D.V. Shamshur, K. Takai. J. Phys. Chem. Solids, v. 103, pp. 224–237 (2017).
  3. Oriented-attachment growth of diamond single crystal from detonation nanodiamonds. Dideikin,AT; Eidelman,ED; Kidalov,SV; Kirilenko,DA; Meilakhs,AP; Shakhov,FM; Shvidchenko,AV; Sokolov,VV; Babunz,RA; Vul,AY, В книге (сборнике): 27TH INTERNATIONAL CONFERENCE ON DIAMOND AND CARBON MATERIALS – DCM 2016 Diam. Relat. Mat., v.75, pp. 85-90 (2017).
  4. Substrate-induced reduction of graphene thermal conductivity. Koniakhin,SV; Utesov,OI; Terterov,IN; Nalitov,AV, Phys. Rev. B, v.95, 4, ArtNo: #045418(2017).
  5. Growth of diamond microcrystals by the oriented attachment mechanism at high pressure and high temperature, Dideikin,AT; Eidelman,ED; Kidalov,SV; Kirilenko,DA; Meilakhs,AP; Shakhov,FM; Shvidchenko,AV; Sokolov,VV; Babunz,RA; Vul,AY, Tech. Phys. Lett., v.43, 1, pp. 53-56 (2017).

2016

  1. Nuclear magnetic resonance study of zeolite-templated carbon. Panich,AM; Osipov,VY; Nishihara,H; Kyotani,T, Synth. Met., v.221, pp. 149-152(2016).
  2. Spin Centres in SiC for All-optical Nanoscale Quantum Sensing under Ambient Conditions. Anisimov,AN; Babunts,RA; Kidalov,SV; Mokhov,EN; Soltamov,VA; Baranov,PG, Письма ЖЭТФ, т.104, 2 страницы: 83-83 (Jetp Lett., v.104, 1, pp. 1-6) (2016).
  3. Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures. Boukhvalov,DW; Osipov,VY; Shames,AI; Takai,K; Hayashi,T; Enoki,T, Carbon, v.107? pp. 800-810 (2016).
  4. On the structure of concentrated detonation nanodiamond hydrosols with a positive zeta potential: Analysis of small-angle neutron scattering. Avdeev,MV; Tomchuk,OV; Ivankov,OI; Alexenskii,AE; Dideikin,AT; Vul,AY, Chem. Phys. Lett., v.658, pp. 58-62(2016).
  5. Surface roughness scattering in multisubband accumulation layers. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.93, 23 ArtNo: #235312 (2016).
  6. Size-dependent Raman and SiV-center luminescence in polycrystalline nanodiamonds produced by shock wave synthesis. Bogdanov,KV; Osipov,VYu; Zhukovskaya,MV; Jentgens,C; Treussart,F; Hayashi,T; Takai,K; Fedorov,AV; Baranov,AV, RSC Adv., v.6, 57, pp. страницы: 51783-51790 (2016).
  7. Magnetic Resonance Study of Gadolinium-Grafted Nanodiamonds. Panich,AM; Shames,AI; Sergeev,NA; Osipov,VY; Alexenskiy,AE; Vul,AY, J. Phys. Chem. C, v.120, 35, pp. 19804-19811 (2016).
  8. Reduction of the graphene oxide films by soft UV irradiation. Rabchinskii,MK; Dideikin,AT; Baidakova,MV; Shnitov,VV; Pronin,II; Kirilenko,DA; Brunkov,PN; Walter,J; Molodtsov,SL, В книге (сборнике): PROCEEDINGS - 2016 INTERNATIONAL CONFERENCE LASER OPTICS, LO 2016 , p. #7549933 (IEEE COMPUTER SOCIETY ISBN: 978-1-4673-9735-3) (2016).
  9. Drag of electrons in graphene by substrate surface polar phonons. Koniakhin,SV; Nalitov,AV, Phys. Rev. B, v.94, 12 ArtNo: #125403 (2016).
  10. Structure and Magnetic Properties of Pristine and Fe-Doped Micro- and Nanographenes. Panich,AM; Shames,AI; Tsindlekht,MI; Osipov,VY; Patel,M; Savaram,K; He,H, J. Phys. Chem. C, v.120, 5, стр. 3042-3053 (2016).
  11. Strengthening mechanisms and properties of composite materials with carbon nanofibres. Skvortsova,AN; Lycheva,KA; Voznyakovskii,AA; Koltsova,TS; Larionova,TV, Mater. Phys. Mech., v.25, 1, pp. 30-36 (2016).
  12. Electronic structure, optical and magnetic properties of tetraphenylporphyrins-fullerene molecular complexes. Elistratova,MA; Zakharova,IB; Romanov,NM; Kvyatkovskii,OE; Zakharchuk,I; Lahderanta,E; Makarova,TL, В книге (сборнике): 17TH RUSSIAN YOUTH CONFERENCE ON PHYSICS OF SEMICONDUCTORS AND NANOSTRUCTURES, OPTO- AND NANOELECTRONICS (RYCPS 2015) J. Phys.: Conf. Ser., v.690, 1, стр. #012012-, IOP PUBLISHING (2016).
  13. Etching of wrinkled graphene oxide films in noble gas atmosphere under UV irradiation. Aleksenskii,AE; Vul`,SP; Dideikin,AT; Sakharov,VI; Serenkov,IT; Rabchinskii,MK; Afrosimov,VV, Наносистемы: физика, химия, математика (International Conference “Advanced Carbon Nanostructures”, 29.06.2015 – 03.07.2015, St. Petersburg, Russia), т.7, 1, стр. 81-86 (СПбГУ ИТМО ISSN: 2220-8054)(2016).
  14. Electron gas induced in SrTiO3. Fu,H; Reich,KV; Shklovskii,BI, ЖЭТФ, т.149, 3, стр. 530-546 (2016).
  15. Hopping conductivity and insulator-metal transition in films of touching semiconductor nanocrystals. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.93, 12 ArtNo: #125430 (2016).
  16. Dielectric constant and charging energy in array of touching nanocrystals. Reich,KV; Shklovskii,BI, Appl. Phys. Lett., v.108, 11 ArtNo: #113104 (2016).
  17. Metal-insulator transition in films of doped semiconductor nanocrystals. Chen,T; Reich,KV; Kramer,NJ; Fu,H; Kortshagen,UR; Shklovskii,BI, Nat. Mater., v.15, 3, pp. 299-303 (2016).
  18. Anomalous conductivity, Hall factor, magnetoresistance, and thermopower of accumulation layer in SrTiO3. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.94, 4 ArtNo: #045310 (2016).
  19. Exciton Transfer in Array of Epitaxially Connected Nanocrystals. Reich,KV; Shklovskii,BI, ACS Nano, v.10, 11 pp. 10267-10274 (2016).
  20. Macroscopic thermoelectric efficiency of carbon nanocomposites. Eidelman,ED; Meilakhs,AP, Наносистемы: физика, химия, математика, т.7, 6, стр. 919-924 (2016).
  21. Phonon transmission across an interface between two crystals. Meilakhs,AP, Наносистемы: физика, химия, математика, т.7, 6, стр. 971-982(2016).

2015

  1. Structure and Bonding in Chlorine-Functionalized Nanodiamond-Nuclear Magnetic Resonance and X-Ray Photoelectron Spectroscopy Study. Panich,AM; Sergeev,NA; Olszewski,M; Froumin,N; Dideykin,AT; Sokolov,VV; Vul',AY, J. Nanosci. Nanotechnol., v.15, 2, pp. 1030-1036 (2014).
  2. Size dependence of C-13 nuclear spin-lattice relaxation in micro- and nanodiamonds. Panich,AM; Sergeev,NA; Shames,AI; Osipov,VY; Boudou,JP; Goren,SD, J. Phys.: Condens. Matter, v.27, 7 ArtNo: #072203 (2015).
  3. XRD, NMR, and EPR study of polycrystalline micro- and nano-diamonds prepared by a shock wave compression method. Shames,AI; Mogilyansky,D; Panich,AM; Sergeev,NA; Olszewski,M; Boudou,JP; Osipov,VY, Phys. Status Solidi A-Appl. Mat., v.212, 6, pp. 1-10 (2015).
  4. Magnetic resonance tracking of fluorescent nanodiamond fabrication. Shames,AI; Osipov,VYu; Boudou,JP; Panich,AM; Von Bardeleben,HJ; Treussart,F; Vul',AYa, J. Phys. D-Appl. Phys., v.48, 15 ArtNo: #155302 (2015).
  5. Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers. Sedov,V; Ralchenko,V; Khomich,AA; Vlasov,I; Vul,A; Savin,S; Goryachev,A; Konov,V, Diam. Relat. Mat., v.56, pp. 23-28 (2015).
  6. Molecular dynamics-based refinement of nanodiamond size measurements obtained with dynamic light scattering. Koniakhin,SV; Eliseev,IE; Terterov,IN; Shvidchenko,AV; Eidelman,ED; Dubina,MV, Microfluid. Nanofluid., v.18, 5-6, pp. 1189-1194 (2015).
  7. Graphite oxide Auger-electron diagnostics. Mikoushkin,VM; Kriukov,AS; Shnitov,VV; Solonitsyna,AP; Fedorov,VYu; Dideykin,AT; Sakseev,DA; Vilkov,OYu; Lavchiev,VM, J. Electron Spectrosc. Relat. Phenom., v.199 pp. 51-55 (2015).
  8. One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Kirilenko,DA; Dideykin,AT; Aleksenskiy,AE; Sitnikova,AA; Konnikov,SG; Vul',AY, Appl. Micron, v.68, pp. 23-26 (2015).
  9. Hybrid composite materials aluminum - Carbon nanostructures. Koltsova,T; Nasibulin,AG; Shamshurin,A; Shakhov,FM; Michailov,V, Materials Science - Medziagotyra, v.21, 3, pp. 372-375 (2015).
  10. Hybrid composite materials aluminum - Carbon nanostructures. Koltsova,T; Nasibulin,AG; Shamshurin,A; Shakhov,FM; Michailov,V, Materials Science - Medziagotyra, v.21, 3, pp. 372-375 (2015).
  11. Mechanical properties of a diamond-copper composite with high thermal conductivity. Abyzov,AM; Shakhov,FM; Averkin,AI; Nikolaev,VI, Mater. Des., v.87, pp. 527-539 (2015).
  12. Collapse of electrons to a donor cluster in SrTiO3. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.92, 3 ArtNo: #035204 (2015).
  13. Accumulation, inversion, and depletion layers in SrTiO3. Reich,KV; Schecter,M; Shklovskii,BI, Phys. Rev. B, v.91, 11, ArtNo: #115303 (2015).
  14. Hopping conduction via ionic liquid induced silicon surface states. Nelson,J; Reich,KV; Sammon,M; Shklovskii,BI; Goldman,AM, Phys. Rev. B, v.92, 8 ArtNo: #085424 (2015).
  15. Determining the content and binding energy of hydrogen in diamond films. Polyanskiy,AM; Polyanskiy,VA; Yakovlev,YA; Feoktistov,NA; Golubev,VG; Vul',AY, Tech. Phys. Lett., v.41, 6, pp. 540-542 (2015))
  16. Magnetic studies of a detonation nanodiamond with the surface modified by gadolinium ions. Osipov,VY; Aleksenskiy,AE; Takai,K; Vul`,AY, Phys. Solid State, v.57, 11, pp. 2314-2319(2015).
  17. Nonequilibrium distribution function in the presence of a heat flux at the interface between two crystals. Meilakhs,AP, Phys. Solid State, v.57, 1, pp. 148-152 (2015)).
  18. On the possibility of oscillatory electrodynamic instability in nematic liquid crystal in a constant inhomogeneous electric field. Zelikman,MA; Eidel'man,ED, Tech. Phys. Lett., v.41, 6, pp. 614-616 (2015))
  19. Estimation of the contact area of solids by electrothermal analogy. Eidelman,ED, Наносистемы: физика, химия, математика, т.6, 4, стр. 547-550 (2015)
  20. Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications. Konoplyannikov,AG; Alekseenskiy,AE; Zlotin,SG; Smirnov,BB; Kalsina,SS; Lepehina,LA; Semenkova,IV; Agaeva,EV; Baboyan,SB; Rjumshina,EA; Nosachenko,VV; Konoplyannikov,MA, Crystallogr. Rep., v.60, 5, pp. 763-767 (2015)).
  21. Нейтронные исследования и структурная диагностика синтезированных электродуговым методом и функционализированных углеродных наноструктур в растворах. Лебедев,ВТ; Вуль,АЯ; Тропин,ТВ, Вестник РФФИ, т.2 (86) стр. 55-60 (2015).
  22. Композиционные материалы на основе алюминия, упрочненные углеродными нановолокнами. Скворцова,АН; Лычева,КА; Возняковский,АА; Кольцова,ТС., НТВ СПбГПУ, т.3 (226) стр. 78-84 (2015).

2014

  1. Defects in Nanodiamonds: Application of High-Frequency cw and Pulse EPR, ODMR. Yavkin,BV; Soltamov,VA; Babunts,RA; Anisimov,AN; Baranov,PG; Shakhov,FM; Kidalov,SV; Vul',AY; Mamin,GV; Orlinskii,SB, Appl. Magn. Reson., v.45, 10, pp.1035-1049 (2014).
  2. Molecular dynamics-based refinement of nanodiamond size measurements obtained with dynamic light scattering. Koniakhin,SV; Eliseev,IE; Terterov,IN; Shvidchenko,AV; Eidelman,ED; Dubina,MV, Microfluid. Nanofluid., pp.1-6 (2014).
  3. Diamagnetism of carbon onions probed by NMR of adsorbed water. Panich,AM; Osipov,VYu; Takai,K, New Carbon Mat., v.29, 5, pp. 392-397 (2014).
  4. Measurement of the effective thermal conductivity of particulate materials by the steady-state heat flow method in a cuvette. Abyzov,AM; Shakhov,FM, Meas. Sci. Technol., v.25, 12 ArtNo: #125009 (2014).
  5. Ratchet effect in graphene with trigonal clusters. Koniakhin,SV, Eur. Phys. J. B, v.87, 9 ArtNo: #216 (2014).
  6. Combined experimental and DFT study of the chemical binding of copper ions on the surface of nanodiamonds.Gridnev,ID; Osipov,VY; Aleksenskii,AE; Vul,AY; Enoki,T, Bull. Chem. Soc. Jpn., v.87, 6, pp. 693-704 (2014).
  7. Theory of a field-effect transistor based on a semiconductor nanocrystal array. Reich,KV; Chen,T; Shklovskii,BI, Phys. Rev. B, v.89, 23 ArtNo: #235303 (2014).
  8. Small-angle scattering from polydisperse particles with a diffusive surface. Tomchuk,OV; Bulavin,LA; Aksenov,VL; Garamus,VM; Ivankov,OI; Vul',AY; Dideikin,AT; Avdeev,MV, J. Appl. Crystallogr., v.47, 2, pp. 642-653 (2014).
  9. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint. Shames,AI; Osipov,VY; von Bardeleben,HJ; Boudou,JP; Treussart,F; Vul',AY, Appl. Phys. Lett., v.104, 6 ArtNo: #063107 (2014).
  10. Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies. Bogdanov,K; Fedorov,A; Osipov,V; Enoki,T; Takai,K; Hayashi,T; Ermakov,V; Moshkalev,S; Baranov,A, Carbon, v.73, pp 78-86 (2014).
  11. Small-angle scattering from polydisperse particles with diffusive surface. O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, V M. Garamus, O I. Ivankov, A Ya. Vul’, A T. Dideikin, M.V. Avdeev. J. Appl. Cryst., v.47, pp. 642–653 (2014).
  12. Effective thermal conductivity of disperse materials. II. Effect of external load. 15. A.M. Abyzov, A.V. Goryunov, F.M. Shakhov. Int. J. Heat Mass Transf., v.70, pp. 1121-1136 (2014).
  13. Chapter 1. Carbon at the Nanoscale. , Vul',AYa; Shenderova,OA, in: Detonation Nanodiamonds — Science and Applications (332 стр., PAN STANFORD PUBLISHING ISBN: 978-981-441-127-1), pp. 1-35 (2014).
  14. Chapter 2. Technology of Preparation of Detonation Nanodiamond. , Aleksenskii,AE, in: Detonation Nanodiamonds — Science and Applications (332 стр., PAN STANFORD PUBLISHING ISBN: 978-981-441-127-1), pp. 37-72 (2014).
  15. Chapter 4. Optical and Rheological Properties of Nanodiamond Suspensions Vul',AYa; Eydelman,ED, in: Detonation Nanodiamonds — Science and Applications (332 стр., PAN STANFORD PUBLISHING ISBN: 978-981-441-127-1), pp. 101-120 (2014).
  16. Chapter 8. Magnetic and Structural Studies of Multilayered Nanographites Prepared from Detonation Nanodiamond. Osipov,VYu, in: Detonation Nanodiamonds — Science and Applications (332 стр., PAN STANFORD PUBLISHING ISBN: 978-981-441-127-1), pp. 205-237 (2014).
  17. Chapter 9. Applications of Detonation Nanodiamonds. Dideikin,AT, in: Detonation Nanodiamonds — Science and Applications (332 стр., PAN STANFORD PUBLISHING ISBN: 978-981-441-127-1), pp. 239-265 (2014).
  18. Chapter 2. Detonation Nanodiamonds. Synthesis, Properties and Applications. Vul',AYa; Dideikin,AT; Aleksenskiy,AE; Baidakova,MV, in: Nanodiamond (500 стр., ROYAL SOCIETY OF CHEMISTRY ISBN: 978-1-84973-639-8), pp. 27-48 (2014).
  19. Detonation Nanodiamonds — Science and Applications. Редакторы: Vul,AYa; Shenderova,OA, Detonation Nanodiamonds — Science and Applications (332 стр., PAN STANFORD PUBLISHING ISBN: 978-981-441-127-1) (2014).
  20. Chapter 9. Nanocrystalline Diamond. A.Vul’, M. Baidakova, A. Dideikin, in: Carbon Nanomaterials, Second Edition. Ed. Yury Gogotsi, Volker Pressover. pp.251-278 (2014) (Published by CRC Press. Content: 529 Pages 296 Illustrations)
  21. Effect of fullerenes on the activation energy of the graphite-diamond phase transition. Shakhov,FM; Kidalov,SV, Phys. Solid State, v.56, 8, pp. 1622-1625 (2014)).
  22. Formation of detonation diamond layers on silicon by the aerosol method. Baidakova,MV; Dideikin,AT; Pavlov,SI; Sokolov,RV; Shnitov,VV. Tech. Phys. Lett., v.40, 9, pp.739-742 (2014).
  23. Overheating or overcooling of electrons in a metal because of the effect of an interface with an insulator. Meilakhs,AP; Eidelman,ED. Jetp Lett., v.100, 2, pp. 81-85 (2014).
  24. Fabrication of a Compacted Aluminum-Carbon Nanofiber Material by Hot Pressing. Kol'tsova,TS; Shakhov,FM; Voznyakovskii,AA; Lyashkov,AI; Tolochko,OV; Nasibulin,AG; Rudskoi,AI; Mikhailov,VG. Tech. Phys., v.59, 11, pp. 1626-1630 (2014).
  25. Conductive properties of the composite films of graphene oxide based on polystyrene in a metal-polymer-metal structure. Nikolaeva,MN; Bugrov,AN; Anan`eva,TD; Dideikin,AT. Russ. J. Appl. Chem., v.87, 8, pp. 1151-1155 (2014).

2013

  1. Nanocrystalline Diamond. Vul',AYa; Baidakova,MV; Dideikin,AT, В книге (сборнике): Carbon Nanomaterials, Second Edition, 529 стр., CRC PRESS, TAYLOR & FRANCIS GROUP, ISBN: 978-1-43989-781-2 (2013).
  2. Spin-spin interactions between pi-electronic edge-localized spins and molecular oxygen in defective carbon nano-onions. Shames,AI; Osipov,VYu; Vul',AYa; Kaburagi,Y; Hayashi,T; Takai,K; Enoki,T, Carbon, v.61, pp. 173-189 (2013).
  3. Room Temperature High-Field Spin Dynamics of NV Defects in Sintered Diamonds. Yavkin,BV; Mamin,GV; Orlinskii,SB; Kidalov,SV; Shakhov,FM; Vul',AYa; Soltamova,AA; Soltamov,VA; Baranov,PG, Appl. Magn. Reson., v.44, 10, pp. 1235-1244 (2013).
  4. Graphene hydrogenation by molecular hydrogen in the process of graphene oxide thermal reduction. Mikoushkin,VM; Nikonov,SY; Dideykin,AT; Vul',AY; Sakseev,DA; Baidakova,MV; Vilkov,OY; Nelyubov,AV, Appl. Phys. Lett., v.102, 7, ArtNo: 071910 (2013).
  5. Effective thermal conductivity of disperse materials. I. Compliance of the commonmodels to experimental data. Abyzov,AM; Goryunov, AV; F.M. Shakhov,FM, Int. J. Heat Mass Transfer., v.67, pp. 752-767 (2013).
  6. Phonon drag thermopower in graphene in equipartition regime. Koniakhin,SV; Eidelman,ED, Europhys. Lett., v.103, 3 ArtNo: #37006 (2013).
  7. Photoluminescence in arrays of doped semiconductor nanocrystals. Reich,KV; Chen,T; Efros,AL; Shklovskii,BI, Phys. Rev. B, v.88, 24 ArtNo: #245311 (2013).
  8. Graphene hydrogenation by molecular hydrogen in the process of graphene oxide thermal reduction. Mikoushkin,VM; Nikonov,SY; Dideykin,AT; Vul`,AY; Sakseev,DA; Baidakova,MV; Vilkov,OY; Nelyubov,AV, Appl. Phys. Lett., v.102, 7 ArtNo: #071910 (2013).
  9. Temperature gradient and Fourier`s law in gradient-mass harmonic systems. Reich,KV, Phys. Rev. E, v.87, 5 ArtNo: #052109 (2013).
  10. Kapitza resistance between electron and phonon gases in the 1D case. Reich,KV, Prog. Theor. Exp. Phys., v.2013, 1, ArtNo: #013I01 (2013).
  11. Properties of copper-detonation nanodiamond composites obtained by spray drying. Vasil`eva,ES; Kidalov,SV; Sokolov,VV; Klimov,GG; Puguang,J, Tech. Phys. Lett., v.39, 1, pp. 137-139 (2013)).
  12. Labeling detonation nanodiamond suspensions using the optical methods. Konyakhin,SV; Sharonova,LV; Eidelman,ED, Tech. Phys. Lett., v.39, 3, pp. 244-247 (2013).
  13. New model of heat transport across the metal-insulator interface by the example of boundaries in a diamond-copper composite. Meilakhs,AP; Eidelman,ED, JETP Lett., v.97, 1, pp. 38-40 (2013).
  14. Preparation of colloidal films with different degrees of disorder from monodisperse spherical silica particles. Eurov,DA; Kurdyukov,DA; Trofimova,EY; Yakovlev,SA; Sharonova,LV; Shvidchenko,AV; Golubev,VG, Phys. Solid State, v.55, 8, pp. 1718-1724 (2013).
  15. Structure of nanodiamonds prepared by laser synthesis. Baidakova,MV; Kukushkina,YA; Sitnikova,AA; Yagovkina,MA; Kirilenko,DA; Sokolov,VV; Shestakov,MS; Vul`,AY; Zousman,B; Levinson,O, Phys. Solid State, v.55, 8, pp. 1747-1753 (2013).
  16. Single-layer graphene oxide films on a silicon surface. Aleksenskii,AE; Brunkov,PN; Dideikin,AT; Kirilenko,DA; Kudashova,YV; Sakseev,DA; Sevryuk,VA; Shestakov,MS, Tech. Phys., v.58, 11, pp. 1614-1618 (2013).
  17. Effective thermal conductivity of disperse materials. II. Effect of external load. Abyzov,AM; Goryunov,AV; Shakhov,FM. Int. J. Heat Mass Transf., v.70, pp. 1121-1136 (2013).

2012

  1. Ordered porous diamond films fabricated by colloidal crystal templating.Kurdyukov,DA; Feoktistov,NA; Nashchekin,AV; Zadiranov,YuM; Aleksenskii,AE; Vul`,AYa; Golubev,VG. Nanotechnology, v.23, 1 ArtNo: 015601 (2012).
  2. Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. Grudinkin,SA; Feoktistov,NA; Medvedev,AV; Bogdanov,KV; Baranov,AV; Vul,AYa; Golubev,VG. J. Phys. D-Appl. Phys., v.45, 6, ArtNo: 062001 (2012).
  3. Spin S=1 centers: a universal type of paramagnetic defects in nanodiamonds of dynamic synthesis. Shames,AI; Osipov,VYu; Von_Bardeleben,HJ; Vul`,AYa. J. Phys.: Condens. Matter, v.24, 22, ArtNo: 225302 (2012).
  4. The nucleation and growth of nanocrystalline diamond films in millimeter-wave CVD reactor. Chernov,VV; Vikharev,AL; Gorbachev,AM; Kozlov,AV; Vul`,AY; Aleksenskii,AE. Fuller. Nanotub. Carbon Nanostruct., v.20, 4-7, 600-605 (2012).
  5. Deaggregation of diamond nanoparticles studied by NMR. Panich,AM; Aleksenskii,AE. Diam. Relat. Mat., v.27-28 стр. 45-48 (2012).
  6. Magnetic resonance evidence of manganese-graphene complexes in reduced graphene oxide. Panich,AM; Shames,AI; Aleksenskii,AE; Dideikin,A. Solid State Commun., v.152, 6, стр. 466-468 (2012).
  7. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Abyzov,AM; Kidalov,SV; Shakhov,FM. Appl. Therm. Eng., v.48 стр. 72-80 (2012).
  8. Optical properties of detonation nanodiamond hydrosols. Aleksenskii,AE; Vul,AY; Konyakhin,SV; Reich,KV; Sharonova,LV; Eidel'man,ED. Phys. Solid State, v.54, pp. 578-585 (2012).
  9. Comprehensive study of electrosurface properties of detonation nanodiamond particle agglomerates in aqueous kcl solutions. Zhukov,AN; Gareeva,FR; Aleksenskii,AE. Colloid J., v.74, 4 pp. 463-471 (2012).
  10. Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity. Abyzov,AM; Kidalov,SV; Shakhov,FM. Phys. Solid State, v.54, 1 pp. 210-215 (2012).
  11. The applicability of dynamic light scattering to determination of nanoparticle dimensions in sols. Aleksenskii,AE; Shvidchenko,AV; Eidel'man,ED. Tech. Phys. Lett., v.38, 12, pp. 1049-1052 (2012).
  12. Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids. Melenevskaya,EYu; Mokeev,MV; Nasonova,KV; Podosenova,NG; Sharonova,LV; Gribanov,AV. Russ. J. Phys. Chem. A, v.86, 10, pp. 1583-1587 (2012).

2011

  1. Enormously High Concentrations of Fluorescent Nitrogen-Vacancy Centers Fabricated by Sintering of Detonation Nanodiamonds. Baranov,PG; Soltamova,AA; Tolmachev,DO; Romanov,NG; Babunts,RA; Shakhov,FM; Kidalov,SV; Vul',AY; Mamin,GV; Orlinskii,SB; Silkin,NI. Small, v.7, 11, pp. 1533-1537 (2011).
  2. Raman characterization and UV optical absorption studies of surface plasmon resonance in multishell nanographite. Osipov,VYu; Baranov,AV; Ermakov,VA; Makarova,TL; Chungong,LF; Shames,AI; Takai,K; Enoki,T; Kaburagi,Y; Endo,M; Vul',AYa. Diam. Relat. Mat., v.20, 2, pp. 205-209 (2011).
  3. Interaction between edge-localized spins and molecular oxygen in multishell nanographites derived from nanodiamonds. Osipov,VYu; Shames,AI; Enoki,T; Takai,K; Endo,M; Kaburagi,Y; Vul',AYa. Diam. Relat. Mat., v.19, 5-6, Sp. Iss. SI страницы: 492-495 (2011).
  4. Deagglomeration of detonation nanodiamonds. Aleksenskiy,AE; Eydelman,ED; Vul',AYa. Nanoscience Nanotechnology Lett., v.3, 1, pp. 68-74 (2011).
  5. Locating inherent unpaired orbital spins in detonation nanodiamonds through the targeted surface decoration by paramagnetic probes. Shames,AI; Osipov,VY; Aleksenskiy,AE; Osawa,E; Vul',AYa. Diam. Relat. Mat., v.20, 3, pp. 318-321 (2011).
  6. Absorption and scattering of light in nanodiamond hydrosols.Vul',AY; Eydelman,ED; Sharonova,LV; Aleksenskiy,AE; Konyakhin,SV. Diam. Relat. Mat., v.20, 3, pp. 279-284 (2011).
  7. Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. Panich,AM; Altman,A; Shames,AI; Osipov,VY; Aleksenskiy,AE; Vul',AY. J. Phys. D-Appl. Phys., v.44, 12 ArtNo: #125303 (2011).
  8. Detonation nanodiamonds as catalyst supports. Vershinin,NN; Efimov,ON; Bakaev,VA; Aleksenskii,AE; Baidakova,MV; Sitnikova,AA; Vul',AYa. Fuller. Nanotub. Carbon Nanostruct., v.19, 1-2, pp. 63-68 (2011).
  9. Detection and identification of nitrogen centers in nanodiamond: EPR studies. Ilyin,IV; Soltamova,AA; Baranov,PG; Vul,AY; Kidalov,SV; Shakhov,FM; Mamin,GV; Orlinskii,SB; Silkin,NI; Salakhov,MK. Fuller. Nanotub. Carbon Nanostruct., v.19, 1-2, pp. 44-51 (2011).
  10. Boron-doped transparent conducting nanodiamond films. Feoktistov,NA; Grudinkin,SA; Rybin,MV; Smirnov,AN; Aleksenskii,AE; Vul',AY; Golubev,VG. Tech. Phys. Lett., v.37, 4, pp. 322-325 (2011).
  11. Palladium supported on detonation nanodiamond as a highly effective catalyst of the C=C and C=C bond hydrogenation. Turova,OV; Starodubtseva,EV; Vinogradov,MG; Sokolov,VI; Abramova,NV; Vul',AY; Alexenskiy,AE. Catal. Commun., v.12, 7, pp. 577-579 (2011).
  12. Closed-Electron Network in Large Polyhedral Multi-Shell Carbon Nanoparticles. Shames,AI; Felner,I; Osipov,VYu; Katz,EA; Mogilko,E; Grinblat,J; Panich,AM; Belousov,VP; Belousova,IM; Ponomarev,AN. Nanoscience Nanotechnology Lett., v.3, 1, pp. 41-48 (2011).
  13. Interference of polarized waves at the exit of crystal prisms and their use to control the wavefront flatness. Osipov,VYu; Osipov,YuV; Popov,VN; Buznikov,AA. Optoelectronics, Instrumentation and Data Processing, v.47, 2, pp. 175-193 (2011).
  14. Creation of a single and quadrupole optical vortices by light focused by a two-component crystal-optics element: Prediction of an octupole vortex structure. Osipov,VYu; Buznikov,AA. Proc. SPIE, v.7822, pp. #78220G- (2011).
  15. Thermal conductivity of the diamond-paraffin wax composite. Abyzov,AM; Kidalov,SV; Shakhov,FM. Phys. Solid State, v.53, 1, pp. 48-52 (2011).
  16. Synthesis and properties of superhard crystalline materials in boron-carbon-nitrogen system. Kidalov,SV; Shakhov,FM; Davidenko,VM; Yashin,VA. Tech. Phys. Lett., v.37, 3, pp. 247-249 (2011).
  17. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. Abyzov,AM; Kidalov,SV; Shakhov, FM. J. Mater. Sci., 46, pp.1424-1438, (2011).
  18. Infrared absorption study of surface functional groups providing chemical modification of nanodiamonds by divalent copper ion complexes. Osipov, VYu; Aleksenskiy, AE; Shames, AI; Panich, AM; Shestakov, MS; Vul’, AYa. Diam. Relat. Mater., v.20, pp. 1234-1238 (2011).
  19. Monolayer graphene from graphite oxide. Dideykin, A; Aleksenskiy,AE; Kirilenko, D; Brunkov, P; Goncharov, V; Baidakova, M; Sakseev, D; Vul', AYa. Diam. Relat. Mater., v.20, pp.105-108 (2011).
  20. Controlling graphite oxide bandgap width by reduction in hydrogen. Mikoushkin,VM; Shnitov,VV; Nikonov,SY; Dideykin,AT; Vul`,SP; Vul`,AY; Sakseev,DA; Vyalikh,DV; Vilkov,OY. Tech. Phys. Lett., v.37, 10, pp. 942-945 (2011).
  21. Electron-phonon interaction in a local region. Reich,KV; Eidelman,ED. Phys. Solid State, v.53, 8, pp. 1704-1706 (2011).
  22. Effect of tetraethoxysilane pretreatment on synthesis of colloidal particles of amorphous silicon dioxide. Trofimova,EY; Aleksenskii,AE; Grudinkin,SA; Korkin,IV; Kurdyukov,DA; Golubev,VG. Colloid J., v.73, 4, pp. 546-550 (2011).
  23. Optical properties of nanodiamond suspensions. Reich,KV. Jetp Lett., v.94, 1, pp. 22-26 (2011).
  24. Diagnostics of plasmon resonance in optical absorption spectra of nanographite aqueous suspensions. Osipov,VY; Shestakov,MS; Baranov,AV; Ermakov,VA; Shames,AI; Takai,K; Enoki,T; Kaburagi,Y; Hayashi,T; Endo,M; Vul',AY. Opt. Spectrosc., v.111, 2, pp. 220-223 (2011).
  25. Measuring the corrugation amplitude of suspended and supported graphene. Kirilenko,DA; Dideykin,AT; Van Tendeloo,G. Phys. Rev. B, v.84, 23 ArtNo: #235417 (2011).
  26. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds. Kidalov,SV; Shakhov,FM; Lebedev,VT; Orlova,DN; Grushko,YS. Crystallogr. Rep., v.56, 7, pp. 1181-1185 (2011).
  27. Effect of water on silica gel adsorption with respect to human blood plasma components. Gal,LN; Malachova,MYa; Melenevskaya,EYu; Podosenova,NG; Sharonova,LV. Biomeditsinskaya Khim., v.57, 6, pp. 635-641 (2011).
  28. Aerosol deposition of detonation nanodiamonds used as nucleation centers for the growth of nanocrystalline diamond films and isolated particles. Feoktistov,NA; Sakharov,VI; Serenkov,IT; Tolmachev,VA; Korkin,IV; Aleksenskii,AE; Vul`,AY; Golubev,VG. Tech. Phys., v.56, 5, pp. 718-724 (2011).

2010

  1. Structure and Magnetic Properties of Detonation Nanodiamond Chemically Modified by Copper. Shames,AI; Panich,AM; Osipov,VY; Aleksenskiy,AE; Vul',AY; Enoki,T; Takai,K. Journal. Appl.Phys., Vol. 107, 014318 (2010).
  2. A Model of Field Emission from Carbon Nanotubes Decorated by Nanodiamonds. Vul',A; Reich,K; Eidelman,E; Terranova,ML; Ciorba,A; Orlanducci,S; Sessa,V; Rossi,M. Adv. Sci. Lett., v.3, 2, 110-116 (2010).
  3. Interaction between edge-localized spins and molecular oxygen in multishell nanographites derived from nanodiamonds. Osipov,VYu; Shames,AI; Enoki,T; Takai,K; Endo,M; Kaburagi,Y; Vul',AYa. Diam. Relat. Mat., v.19, 5-6, Sp. Iss. SI страницы: 492-495.
  4. Free graphene films obtained from thermally expanded graphite. Dideikin,AT; Sokolov,VV; Sakseev,DA; Baidakova,MV; Vul',AY. Tech. Phys., v.55, 9, 1378-1381 (2010).
  5. Grain-boundary heat conductance in nanodiamond composites. Kidalov,SV; Shakhov,FM; Vul’,AY; Ozerin,AN. Diam. Relat. Mat., v.19, 7-9, 976-980 (2010).
  6. Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds. Soltamova,AA; Il`in,IV; Shakhov,FM; Kidalov,SV; Vul',AY; Yavkin,BV; Mamin,GV; Orlinskii,SB; Baranov,PG. JETP Lett., v.92, 2, 102-106 (2010).
  7. Nitrogen centers in nanodiamonds: EPR studies. Soltamova,AA; Baranov,PG; Ilyin,IV; Vul',AY; Kidalov,SV; Shakhov,FM; Mamin,GV; Silkin,NI; Orlinskii,SB; Salakhov,MKю In book: SILICON CARBIDE AND RELATED MATERIALS 2009 Mater. Sci. Forum, v.645-648, Part 1-2, pp. 1239-1242, 2010 1340 pp.
  8. Chapter 3. The Fundamental Properties and Characteristics of Nanodiamonds. Aleksenskiy,A; Baidakova,M; Osipov,V; Vul',A, In book: Nanodiamonds: Applications in Biology and Nanoscale Medicine , pp. 55-77, 2010, 250 pp., SPRINGER ISBN: 978-1-4419-0530-7.
  9. Surface charge of detonation nanodiamond particles in aqueous solutions of simple 1:1 Electrolytes. Zhukov,AN; Gareeva,FR; Aleksenskii,AE; Vul,AY, Colloid J., v.72, 5 pp. 640-646 (2010).
  10. Formation of variable-spatial frequency interference patterns with the use of birefringent crystal prisms for laser Fourier spectroscopy. Osipov,VYu; Osipov,YuV; Popov,VN; Buznikov,AA, Optoelectronics, Instrumentation and Data Processing, v.46, 2, pp. 181-197 (2010).
  11. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. Abyzov,AM; Kidalov,SV; Shakhov,FM, J. Mater. Sci., v.46, 5, pp. 1424-1438 (2010).
  12. Erratum: Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds (Physica B: Condensed Matter (2009) 404 (4522-4524)) Osipov,VY; Shames,AI; Vul',AY, Physica B, v.405, 16, pp.3512-3512 (2010).
  13. MRI-Contrasting System Based on Water-Soluble Fullerene/Gd-Metallofullerene Mixture. Grushko,YS; Kozlov,VS; Sedov,VP; Kolesnik,SG; Lebedev,VT; Shilin,VA; Khodorkovsky,MA; Artamonova,TO; Shakhmin,AL; Shamanin,VV; Melenevskaya,EY; Konnikov,SG; Zamorianskaya,MV; Tsyrlina,EV; Krzhivitsky,PI. Fuller. Nanotub. Carbon Nanostruct., v.18, Part 1, 4-6, pp.417-421 (2010).
  14. Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators. Gusev,E; Garfunkel,E; Dideikin,A. In book: Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators. 2010 313 стр., SPRINGER ISBN: 978-90-481-3806-7 (2010).

2009

  1. Nanographene and Nanodiamond; New Members in the Nanocarbon Family T. Enoki, K. Takai, V. Osipov, M. Baidakova, A. Vul'. Chemistry - An Asian Journal, Vol. 4(6), pp. 796-804 (2009).
  2. Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds. V.Yu. Osipov, A.I. Shames, A.Ya. Vul'. Physica B. Condensed Matter., Vol. 404, pp. 4522-4524 (2009).
  3. Detection and identification of nitrogen defects in nanodiamond as studied by EPR. A.A. Soltamova, I.V. Ilyin, P.G. Baranov, A.Ya. Vul, S.V. Kidalov, F.M. Shakhov, G.V. Mamin, S.B. Orlinsii, N.I. Silkin, M.Kh. Salakhov. Physica B. Condensed Matter., Vol. 404 (23-24), pp. 4518-4521 (2009).
  4. Magnetic and EPR studies of edge-localized spin paramagnetism in multi-shell nanographites derived from nanodiamonds. V.Yu. Osipov, A.I. Shames, T. Enoki, K. Takai, M. Endo, T. Hayashi, Y. Kaburagi, A.Ya. Vul'. Diamond& Related Materials, Vol. 18(2-3), pp. 220-223 (2009).
  5. Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions. A.M. Panich, A.I. Shames, O. Medvedev, V.Yu. Osipov, A.E. Aleksenskiy, A.Ya. Vul'. Appl. Magn. Reson., Vol. 36, pp. 317-329 (2009).
  6. Effect of electron-phonon interaction on field emission from carbon nanostructures K.V. Reich and E.D. Eidelman. EPL, Vol. 85, 47007 (2009).
  7. The Fundamental Properties and Characteristics of Nanodiamonds. А. Aleksenskiy, M. Baidakova, V. Osipov, A. Vul'. In: "Nanodiamonds: Applications in Biology and Nanoscale Medicine" Ed. Dean Ho. Spinger 2009. ISBN: 1441905308, 250 pp.
  8. A model of field emission from carbon nanotubes decorated by nanodiamonds. A. Vul', K. Reich, E. Eidelman. M. L. Terranova, A. Ciorba, S. Orlanducci, V. Sessa, M. Rossi. Advanced Science Letter. (accepted for publication) (2009).
  9. Detonation Nanodiamonds as Catalyst Supports. N.N. Vershinin, O.N. Efimov, V.A. Bakaev, A.E. Aleksenskii, M.V. Baidakova, A.A. Sitnikova, and A.Ya. Vul'. Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 18 (accepted for publication) (2009).

2008

  1. Thermal conductivity of sintered nanodiamonds and microdiamonds. S.V. Kidalov, F.M. Shakhov, A.Ya. Vul'. Diamond and Related Materials, Vol. 17(4-5), pp. 844-847 (2008)
  2. Simultaneous removal of 3d transition metals from multi-component solutions by activated carbons from co-mingled wastes. S.B. Lyubchik, A.I. Lyubchik, E.S. Lygina, S.I. Lyubchik, T.L., A.M. Vital J. Rego, I.M. Fonseca. 2008 Separation and Purification Reviews.
  3. Optical and vibrational properties of thin film fullerene-Zn(II) tetraphenylporphyrin complexes. I.B. Zakharova, E.A. Donenko, Yu.F. Biryulin, L.V. Sharonova, T.L. Makarova. Fullerenes, Nanotubes and Carbon Nanostructures, Vol.16(5-6), 424-429 (2008).
  4. Strongly non-linear carbon nanofibre influence on electrical properties of polymer composites. Yu. Biryulin, D. Kurdybaylo, V. Shamanin, G. Aleksjuk, T. Volkova, E. Melenevskaya, I. Saydashev, E. Eidelman, T. Makarova, E. Terukov, N. Zaitseva, V. Negrov, A. Tkatchyov. Fullerenes, Nanotubes and Carbon Nanostructures, Vol.16(5-6), 629-633 (2008).
  5. Separation of in trinsic and extrinsic contribution to fullerene magnetism. T.L. Makarova, I.B. Zakharova. Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 16(5-6), 567-573 (2008).
  6. Proceedings of the 8th Biennial International Workshop Fullerences and Atomic Clusters. Eds.: Lemanov,VV; Vul,AY. Fuller. Nanotub. Carbon Nanostruct., v.16, 5-6, pp. 283-284 (432 стр., TAYLOR & FRANCIS INC ISSN: 1536-383X) (2008).
  7. Calculating the three-dimensional structure of the near-focus diffraction field in the caustic zone of a convergent aberrational laser beam. Osipov,VY; Buznikov,AA. J. Opt. Technol., v.75, 8, pp. 495-499 (2008)).
  8. Microwave and optical absorption of composite layers of carbon nanofibres in dielectric polymer matrix. Biryulin,Yu; Kurdybaylo,D; Volkova,T; Sharonova,L; Shamanin,V; Terukov,E; Aleksjuk,G; Prikhodko,A; Negrov,V; Tkatchyov,A. Fuller. Nanotub. Carbon Nanostruct., v.16, 5-6, pp. 634-639 (2008).
  9. The influence of fullerene on adsorption properties of silica gel with respect to medium-molecular-mass peptides. Gall,LN; Podosenova,NG; Novikov,AV; Melenevskaya,EYu; Sharonova,LV. Fuller. Nanotub. Carbon Nanostruct., v.16, 5-6, pp. 687-692 (2008).
  10. Static synthesis of microdiamonds from a charge containing nanodiamonds. Kidalov,SV; Shakhov,FM; Davidenko,VM; Yashin,VA; Bogomazov,IE; Vul',AY. Tech. Phys. Lett., v.34, 8, pp. 640-642 (2008).
  11. Determination of an optimal pressure under field emission from diamondlike films. Reich,KV; Eidelman,ED; Dideykin,AT; Vul,AY. Tech. Phys., v.53, 2, pp. 261-263 (2008)).
  12. Effect of carbon materials on the graphite-diamond phase transition at high pressures and temperatures. Kidalov,SV; Shakhov,FM; Davidenko,VM; Yashin,VA; Bogomazov,IE; Vul,AY. Phys. Solid State, v.50, 5, pp. 981-985 (2008).

2007

  1. Defects localization and nature in bulk and thin film utrananocrystalline diamond. A.I. Shames, A.M. Panich, S. Porro, M. Rovere, S. Musso, A. Tagliaferro, M.V. Baidakova, V.Yu. Osipov, A.Ya. Vul', T. Enoki, M. Takahashi, E. Osawa, O.A. Williams, P. Bruno and D.M. Gruen. Diamond and Related Materials, Vol. 16(10), 2007, pp. 1806-1812.
  2. The strong thermoelectric effect in nanocarbon generated by ballistic phonon drag of electrons. E.D. Eydelman and A.Ya. Vul'. Journal of Physics: Condensed Matter, 2007, Vol. 19(7), pp. 266210-266223.
  3. New prospects and frontiers of nanodiamond clusters. M. Baidakova and A. Vul'. J. Phys.D: Appl. Phys. 2007, Vol. 40, P. 6300-6311.
  4. Magnetic properties of nanocarbon. T.L. Makarova, Diamond and Related Materials, 2007, Vol. 16(10), P. 1841-1846.
  5. Graphite under the magnetic force microscope. T.L. Makarova and K.-H. Han. Phys. Stat. Sol. (b) 2007, Vol. 244, No. 11, P. 4138-4142.
  6. Correlation between viscosity and absorption of electromagnetic waves in an aqueous UNCD suspension. A.Ya. Vul', E.D. Eydelman, M. Inakuma, E. Osawa. Diamond and Related Materials, 2007, Vol. 16, No. 12, pp. 2023-2028.
  7. Structures and electronic properties of surface/edges of nanodiamond and nanographite. T. Enoki, Y. Kobayashi, C. Katsuyama, V.Yu. Osipov, M.V. Baidakova, K. Takai, K. Fukui, A.Ya Vul'. Diamond and Related Materials, 2007, Vol. 16, No. 12, pp. 2029-2034.
  8. Thermal conductivity of nanocomposites based on diamonds and nanodiamonds. S.V. Kidalov, F.M. Shakhov and A.Ya. Vul'. Diamond and Related Materials, 2007, Vol. 16, No. 12, pp. 2063-2066.
  9. Paramagnetic defects and exchange coupled spins in pristine ultrananocrystalline diamonds. V.Yu. Osipov, A.I. Shames, T. Enoki, K. Takai, M.V. Baidakova and A.Ya. Vul'. Diamond and Related Materials, 2007, Vol. 16, No. 12, pp. 2035-2038.
  10. Estrogenic compounds removal by fullerene-containing membranes. X. Jin, J.Y. Hu, M.L. Tint, S.L. Ong, Y. Biryulin, G. Polotskaya. Desalination, 2007, Vol. 214 (1-3), pp. 83-90.
  11. Determination of temperature difference in carbon nanostructures in field emission. Reich,KV; Eidelman,ED; Vul',AY. Tech. Phys., v.52, 7, стр. 943-946 (2007).
  12. Thermal conductivity of sintered nanodiamonds and microdiamonds. S.V. Kidalov, F.M. Shakhov, and A.Ya.Vul'. Diamond and Related Materials, 2008, Vol. 17(4-5), pp. 844-847.
  13. Nanocarbon studies in Russia: From fullerenes to nanotubes and nanodiamonds. Vul',AY; Sokolov,VI. Nanotechnologies Russ., v.4, 7-8 pp. 397-414 (2007).