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Experimental Demonstration of Single Photon Nonlocality
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In this Letter we experimentally implement a single photon Bell test based on the ideas of S. Tan et al.
[Phys. Rev. Lett. 66, 252 (1991)] and L. Hardy [Phys. Rev. Lett. 73, 2279 (1994)]. A double homodyne
measurement is used to measure correlations in the Fock space spanned by zero and one photons. Local
oscillators used in the correlation measurement are distributed to two observers by copropagating it in
an orthogonal polarization mode. This method eliminates the need for interferometrical stability in the
setup, consequently making it a robust and scalable method.
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single photon passes a balanced beam splitter it has equal [16] and Lee et al. [17].
For experimental Bell tests [1,2] it has been a success-
ful strategy to use polarization entangled photon pairs,
either from atomic cascades [3–6], or parametric down-
conversion [7–10], or produced by post selecting a photon
pair from independent sources [11]. In these experiments,
it is observed that correlations between the two photons
are incompatible with local realism; i.e., Bell’s inequal-
ities are violated.

In 1991, Tan et al. proposed that it would be possible to
show a contradiction between local realism and quantum
mechanics using only a single particle [12]. The proposal
spurred a debate, where the main argument against the
feasibility of such an experiment was that detection of the
particle at one location would prohibit the measurement
of any property associated with that particle at another
location. A counterargument was that this would indeed
be true if one measured particle-like properties at the two
locations, but if one instead chose to measure wave-like
properties, the argument fails. Another criticism against
Tan et al.’s proposal was that a measurement of wave-like
properties requires a reference oscillator. Hence, mea-
surements of wave-like properties of a single particle
require additional particles. The notion of single particle
nonlocality was hence put in doubt [13]. Hardy, who had
proposed an alternative experiment to demonstrate the
nonlocality of a single particle, then put forth operational
criteria for such a test, where the main ingredient is that
the demonstrated nonlocal properties should be depen-
dent on the presence of a single particle [14,15]. If the
quantum state is robbed of this particle, no nonlocal
properties should be observed. That is, all the nonlocal
correlations should be carried by a single-particle state,
although the observation of these correlations may con-
tain measurements on auxiliary reference particles. The
state of these reference oscillators should be such that the
observers can generate them using only classical commu-
nication and local operations.

In this Letter we experimentally test the behavior of
nonlocal correlations for one single photon using a setup
similar to the one proposed by Tan et al. [12]. When a
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probability amplitudes for reflection and transmission. In
the number basis such states have the form

1���
2

p �j1iT j0iR � j0iT j1iR�; (1)

where T (R) refers to the transmitted (reflected) arm of
the beam splitter. This state is mathematically isomorphic
to a two-photon Bell state encoded in horizontal (H) and
vertical (V) polarization, with the replacements j0i $
jHi and j1i $ jVi. Using (1) for a Bell experiment re-
quires that measurements can be made in bases comple-
mentary to the number basis j0i and j1i in the two arms.
This is not straightforward using photon counters, since
quantities complementary to the photon number are
sought.

In Fig. 1 we illustrate two experimental implementa-
tions capable of performing measurements complemen-
tary to photon number measurement.

A signal from an experiment is mixed with a local
oscillator (LO) on a beam splitter in such a way that a
photon detector observing one photon is not capable of
telling if the photon came from the experiment or the LO
beam. If the photon came from the LO, there were zero
photons coming from the experiment. If no photon came
from the LO, there was one photon coming from the
experiment. If the local oscillator is a coherent state
j�i, amplitudes for these two events give projection on
the wanted state:

N �r�j0i � j1i	; (2)

where N is a normalization constant, and r� is the
complex amplitude of the LO in the detector mode.
This is illustrated in Fig. 1(a) where r� is the amplitude
after reflection of the local oscillator and in Fig. 1(b)
where r� is the amplitude of the LO after the polarizer.
The number states in Eq. (2) describe the photon number
in the mode arriving from the experiment. For similar
implementations where local oscillators are replaced by
single photons we refer to the papers by Sciarrino et al.
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FIG. 1. The photon counters are unable to tell if a detected
photon came from the local oscillator (LO) or if it was a part of
the signal from the experiment. If the two possible origins
cannot be told apart, the amplitudes for the two possible events
must be added. In (a) the local oscillator is mixed with the
signal on a beam splitter with high transmission. The polar-
ization of the signal and LO are the same to ensure undistin-
guishable photons. In (b) the polarization of the local oscillator
is orthogonal to the signal beam, and the two beams copropa-
gate. By rotating a polarizer one can adjust the probability for
transmitting the signal, or LO photon. In both cases, interfer-
ence filters (IF) are put before the detectors to erase path
information stored in the energy spectrum of the photons.
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In Fig. 2 we have a schematic description of the optical
setup used for this experiment. The light source is a
Ti:sapphire laser which pumps a frequency doubler
[1 mm lithium triborate crystal], marked SHG in the
figure, producing fs pulses at 390 nm. These pulses
pump a type-I down-converter [3 mm beta-barium borate
crystal], yielding photon pairs at 780 nm emitted with a
separation of 3
 from the pump beam. One of the photons
(the idler) is sent through an interference filter and de-
tected by an avalanche photodiode, DT. Detection of the
FIG. 2. Experimental setup: a single photon produced in a sponta
local oscillator on a 50=50 beam splitter. In each output arm of th
change the relative phase of the local oscillators we tilt a birefring
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idler in DT indicates that the other photon of the pair (the
signal) is present in the experiment. The polarization of
the signal photon is made strictly vertical by a wave plate
and a polarizer. Afterwards, the signal photon propagates
to one of the beam splitter (BS) input ports.

To generate the LO some light is picked off the main
beam of the Ti:sapphire laser. A delay line is adjusted so
that the LO arrives at the beam splitter simultaneously
with the single photon. Before the beam splitter the in-
tensity is adjusted so that r� matches the single photon
intensity to ensure high visibility in the correlation mea-
surement [see the discussion following Eq. (7)].

The polarization of the LO is adjusted to be strictly
orthogonal to the signal photon polarization with another
wave plate and polarizer. After the beam splitter, each
arm is equipped with a polarizer oriented so that it trans-
mits a LO photon or a single photon with equal probabil-
ity. Because the LO has much higher intensity than the
single photon ‘‘beam’’ the polarizer is set around 2
.
Before the polarizers, the single photon and the local
oscillator copropagate. This eliminates the need to stabi-
lize the relative phase of the local oscillators in the two
arms [18]. This is the main difference between our im-
plementation and the setup proposed in [12]. The relative
phase between the two local oscillators is adjusted by
tilting a thin birefringent quartz plate around its optic
axis in one of the arms, as illustrated in Fig. 1. The optic
axis of the quartz plate is parallel to the single photon
polarization.

After the polarizers, the light is coupled into single
mode optical fibers preceded by interference filters
(FWHM 3 nm) and followed by silicon avalanche photo-
diodes at D1 and D2. The signals from the avalanche
photodiodes are correlated and recorded by a computer.

In the optical setup illustrated in Fig. 2 the single
photon enters the BS from above and the LO photon
neous parametric down-converter is overlapped with a coherent
e beam splitter we place the detectors described in Fig. 1. To
ent quartz plate in one of the arms.
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from the left. This state is j1; 0isignal � j0;
���
2

p
�iLO, where

the two modes at each location refer to the different
polarizations of the single photon channel and the local
oscillator, respectively. After the beam splitter the state is
(ignoring phase factors obtained upon reflection)

j�i �
1���
2

p �j1; �iTj0; �0iR � j0; �iTj1; �0iR	; (3)

where the subscripts T and R refer to the transmitted and
reflected output arms, respectively. The coherent states
are described by � � j�jei� and �0 � j�jei�

0
. The two

modes in each arm refer to polarization. We define crea-
tion operators for these modes as

âayk j0; 0ik � j1; 0ik; b̂byk j0; 0ik � j0; 1ik;

where the subscript k refers to the two arms R and T. The
state (3) is analyzed using a polarizer described by the
transmittance t and the reflectance r. The unitary trans-
formation for this device relates the transmitted (re-
flected) mode c (d) to the incoming modes a and b in
the following way:(

cyk � tayk � rbyk
dyk � �rayk � tbyk

,

(
ayk � tcyk � rdyk
byk � rcyk � tdyk

:

Later, we will be interested in the transmitted modes ck,
where our detectors are placed. Rewriting the state (3)
using the above creation operators we have

j�i �
1���
2

p �j1; �iT j0; �0iR � j0; �iT j1; �0iR	

� D̂DbT ��	D̂DbR��
0	

1���
2

p �âayT � âayR	j0; 0iT j0; 0iR

! D̂DcT �r�	D̂DdT �t�	D̂DcR�r�
0	D̂DdR�t�

0	

� �tĉcyT � rd̂dyT � tĉcyR � rd̂dyR	j0; 0iT j0; 0iR

� �tĉcyT � rd̂dyT � tĉcyR � rd̂dyR	jr�; t�iT jr�
0; t�0iR; (4)

where j0; 0iT j0; 0iR is the vacuum state of the four modes.
The probability for the two detectors to click simulta-
neously is given by

P coincidence � 1� �D1 �D2 �D12	; (5)

where D1 (D2) is the probability that detector 1 (2) regis-
ters nothing irrespective of what happens in the other
detectors. The term D12 balances for the double count of
the event ‘‘nothing in both detectors.’’ We use this mea-
sure instead of photon number correlation because our
detectors register only the presence of photons and are
unable to resolve the photon number.

To calculate these different probabilities we use the
following projection operators:

P̂P1 � j0ih0j � 1 � 1 � 1;

P̂P2 � 1 � 1 � j0ih0j � 1;

P̂P12 � j0ih0j � 1 � j0ih0j � 1;
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where the spaces refer, in order, to the modes cT , dT , cR,
and dR. Using the above definitions of P̂Pi and j�i one finds

D1 � h�jP̂P1j�i �
1

2
e�jr�j2�1� r2 � r2t2j�j2	:

D2 � h�jP̂P2j�i �
1

2
e�jr�j2�1� r2 � r2t2j�j2	:

D12 � h�jP̂P12j�i � e�2jr�j2
�
r2 � 2r2t2j�j2cos2

�� �0

2

�
:

This yields the coincidence probability:

P coincidence � 1� e�jr�j2�1� r2 � r2t2j�j2	

� e�2jr�j2
�
r2 � 2r2t2j�j2cos2

�� �0

2

�
:

(6)

In addition to these coincidences, we also have the case
with zero photons arriving in the single photon channel.
Coincidences are registered also in this case when two
photons from the LO are detected. The probability for
these false coincidence counts is easily calculated in the
same way as above:

P false
coincidence � �1� e�jr�j2	2: (7)

This may also be verified easily through a different
reasoning: The probability of having more than zero
LO photons in one arm is given by 1� e�jr�j2 . The
probability of having photons in both arms is this proba-
bility squared.

The total probability for the two detectors to register
photons simultaneously is given by

Ptotcoincidence � �Pcoincidence � �1� �	Pfalsecoincidence;

where � is the quantum efficiency of the triggered photon
source (for the setup, �� 10�2). To minimize the influ-
ence of the false coincidences we choose r � t and jr�j
small to minimize the influence of Pfalsecoincidence. This choice
introduces a trade-off between the implementation of the
projectors described by Eq. (2) and the goal to minimize
the influence of false coincidences. Practically, the lower
bound of jr�j is determined by the detection rate allowed
by the laser stability.

In Fig. 3 we plot the measured correlation obtained in
the setup illustrated in Fig. 2. The birefringent plate is
rotated around the optic axis so that relative phase shifts
between �70
 and 350
 are introduced in the two arms.
If either the single photon or the local oscillator is miss-
ing, we measure a flat, phase independent correlation
curve. Similarly, the intensity in each individual detector
is almost constant as the phase shift is varied. Introducing
a quarter-wave plate, with the optical axis horizontal or
vertical, in either arm shifts the fringe pattern 90
 with
negligible loss in visibility.

This experiment is limited by multiple down-conver-
sion events since we chose to work at high UV intensities
(350 mW) to reduce measurement times. With the local
oscillator blocked, we detect about one triple coincidence
180401-3
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FIG. 3. Experimental data and curve fits. The oscillating
curve shows the nonclassical correlation between the two
detectors as the phase shift is varied. The flat curve shows
the total correlation background due to multiple photons from
the single photon source or the local oscillator. The visibility
for the correlation curve is �91� 3	% and �66� 2	% with and
without corrections for background correlations, respectively.
These visibilities should be compared with the 71% limit for
violation of Bell’s inequalities.
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per second due to multiple down-conversion pair produc-
tion. Reduced intensity increases visibility; see Pittman
and Franson [11] for details on this topic.

In our experiment we have raw correlation data with a
visibility �66� 2	%. This curve consists of three contri-
butions: (i) The two photons arriving to detectors D1 and
D2 originate from the LO and the single photon source
(phase shift dependent). (ii) The two photons both come
from the LO (constant under phase shift: 2:5 s�1). (iii)
The two photons both come from the single photon source
(constant under phase shift: 1:0 s�1). If the coincidences
corresponding to these two backgrounds are subtracted
from the signal, the visibility becomes �91� 3	%.

It should be noted that it is possible to use different
photon states as the input state to the beam splitter (BS in
Fig. 2). If the state remains separable after the beam
splitter, only classical correlations are expected. We per-
formed such tests using phase modulated coherent light
instead of single photons. Theoretically, we would expect
the correlation to reach the maximally allowed 50% limit
for this classical correlation. Experimentally, we create
this coherent field by splitting off light from the local
oscillator to the polarization control of the single photon
channel (see Fig. 2). The phase modulation is provided by
another delay line modifying the propagation distance.
Using this setup we measured a correlation visibility of
�48� 2	%, just below the classical limit. This visibility
indicates a well aligned system and that we do not ob-
serve nonclassical correlations in the local oscillator.
180401-4
The representation of quantum information as a super-
position particle-number state �j0i � �j1i instead of
superimposing different modes offers certain advantages.
Using this representation makes it feasible to perform
quantum computations with linear operations and feed-
back from measurements [19]. To perform interesting
experiments on these qubits, it is desirable to have access
to precise quantum mechanical observables in this space,
and specifically those with eigenstates that are superpo-
sitions of number states (j0i � ei�j1i). Here, we have
presented a robust noninterferometric method for the
implementation of such observables. This experimental
scheme may be scaled up to perform correlation measure-
ments on multiphoton states. Using the criteria for single-
particle nonlocality set up by Hardy [15], we have
performed an experiment that supports the prediction of
Tan et al. of single-particle nonlocality [12].
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