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Abstract

Quantum systems with strong electron interactions and nanosystems can possess
a more complicated internal Lie-group dynamics in comparison with the Lie-group
dynamics of Bose and Fermi systems described by the Heisenberg algebra and super-
algebra, respectively. In order to investigate properties of such quantum systems, we
represent operators of quantum systems by differential operators over the commutative
algebra A of regular functionals. Taking into account this differential representation,
we construct a new diagram technique based on the expansion of the generating func-
tional for the temperature Green functions. The generating functional is determined
by differential functional equations. Solutions of the differential functional equations
belong to a module over the algebra A and are found in the form of series. Each term
of the series corresponds to a diagram. This method of the construction of the dia-
gram expansion is more general than the methods based on the Wick theorem and on
the expansion of functional integrals. The differential representation makes it possible
to generalize functional equations and the diagram technique for the case of quantum
systems on topologically nontrivial manifolds by the substitution of the generating
functional on a sheaf of function rings on a nontrivial manifold for the generating func-
tional of a constant sheaf of functions. Nontrivial cohomologies of the manifold, on
which the quantum system is acted, lead to the existence of additional excitations. The
self-consistent-field approximation and the approximation of effective Green functions
and interactions are considered. Poles of the matrix of effective interactions and Green
functions (P-matrix) determine quasi-particle excitations of the quantum system. For
special cases of models the diagram expansion is simplified. In particular, if the in-
ternal dynamics is determined by the Heisenberg algebra (superalgebra), the diagram
expansion reduces to Feynman’s diagrams for Bose (Fermi) quantum systems. We
carry out detailed consideration of the diagram technique for the Heisenberg model of
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the spin system described by the Lie group Spin(3) and find the self-consistent field,
spin excitations and relaxation of spin wave modes. The reduction of the developed
diagram technique and excitations for the case of the spin system with an uniaxial
anisotropy and the diagram technique for the Hubbard model are considered.

1. Introduction

Strongly correlated systems and nanosystems present unusual properties and, therefore,
have been a focus of interest. In order to study these systems, we ought to use mathematical
models and methods, which can adequately describe processes with strongly electron inter-
actions and processes performing on a nanosized scale. In nanosystems these processes can
be characterized by strong local interactions in an interior of nanoobjects and by correlation
effects between different phases and substructures [1, 2]. One of the effective theoretical
tools for investigation of strongly interacting electronic systems is the diagram technique
based on expansions of Green functions. The diagram expansion is the powerful method
to obtain various information of interacting particle systems in the quantum field theory
and in the statistical physics. Using the diagram technique, one can find spectra of quasi-
particle excitations, calculate transition probabilities, determine temperature dependencies
of thermodynamic potentials, and obtain relaxation parameters of excitations.

On the particle level, quantum systems are described by operators, which belong to Lie
algebras or to Lie superalgebras. Operators can be associated with generators of continu-
ous transformations related to Lie groups, which determine internal dynamics of quantum
systems. For Bose and Fermi systems the internal dynamics is simple and is given by
the Heisenberg-Weyl group and the Heisenberg-Weyl supergroup, respectively. The corre-
sponding Lie algebras (the Heisenberg algebra and the Heisenberg superalgebra) are formed
by creation and annihilation operators. The diagram expansion is given by well-known
Feynman’s diagrams [3, 4].

Models of antiferromagnetism and superconductivity, the Heisenberg and Hubbard
models are examples of models with more complicated internal dynamics [5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15]. In the Heisenberg model the internal dynamics of a spin system is
described by the Lie group Spin(3). The Lie algebra so(3) is associated with this group
and is spanned on spin operators. In order to develop the diagram technique, Wick’s the-
orem for spin operators is used [7, 8, 9]. For the case of the Hubbard model, the internal
dynamics is determined by the supergroup with the Lie superalgebra gl(2, 2) (or, dropping
out the center of the algebra, by the Lie superalgebra sl(2, 2)) [10, 11]. The diagram ex-
pansion is constructed by the two-step procedure based on Wick’s theorem [12, 13, 14, 15].
The model describing antiferromagnetic and superconducting systems presented in [6] is
based on the internal group SO(5).

At present, we can observe the tendency to study models with complicated internal Lie-
group dynamics. Transformation from the particle level of strongly interacting electronic
systems to the cluster level (quantum cluster approaches [16, 17]) results in consideration of
more complicated Lie groups. Cluster approaches give us opportunity to describe the inter-
nal local dynamics of a cluster and to find short-ranged correlations with higher precision.
Moreover, for a given strongly correlated system we can use several operator languages with
different corresponding Lie algebras [18]. The determination of an isomorphism between
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different languages unveils unravel symmetries, which are hidden in one representation but
become manifest in another.

From the above-mentioned one can conclude that for studying nanosystems and
strongly correlated systems the generalization of the diagram technique is needed. The
generalized diagram expansion should satisfy the following conditions. (1) It must describe
models with arbitrary internal Lie-group dynamics. (2) The developing diagram technique
must take into account topology of quantum systems. In this study, in order to develop
the generalized diagram expansion, we represent operators of quantum systems by differ-
ential operators over a commutative algebra of regular functionals. Taking into account
this differential representation, we construct a new diagram technique based on the expan-
sion of the generating functional for the temperature Green functions [19]. The generating
functional is determined by differential functional equations. These equations are derived
in section 2 from evolution operator equations by substitution for Lie-algebra operators of
differential operators over a commutative algebra of functionals. Solutions of the differ-
ential functional equations are found in the form of series (or in the form of the diagram
expansion) in section 3. This method of the construction of the diagram expansion is more
general, than the methods based on the Wick theorem and on the expansion of functional
integrals [7, 8, 9, 12, 13, 14, 15]. The developing diagram construction based on differen-
tial functional equations gives us opportunity to describe quantum systems on topologically
nontrivial differential manifolds and to investigate the differential functional equations by
the secondary differential calculus and by cohomology methods [20, 21, 22, 23]. For this
realization, we generalize the differential functional equations and the diagram expansion
in section 4 for the case of functionals determined on a sheaf of function rings on a topolog-
ically nontrivial manifold. In this way, cohomology methods are important in the equation
investigation. First, solutions of the differential functional equations exist if and only if
Spencer’s cohomologies are trivial. This condition can impose constraint relations on the
form of interactions between particles. Singularities of many-valued solutions are deter-
mined by the acyclicity of Spencer’s δ-complex. Second, in the general case, de Rham’s
cohomologies of a topologically nontrivial manifold are nontrivial. Nontrivial de Rham’s
cohomologies lead to the existence of additional quantum excitations.

The advantage of the developing diagram technique is the opportunity to construct ef-
fective cluster approximations for models with strongly local interactions. It can be re-
alizable, if we substitute composite (cluster) operators for single-particle operators in the
Hamiltonian describing a model. Composite operators belong to the universal enveloping
algebra, whose basis is determined by single-particle operators. This operator substitution
leads to the substitution of Lie algebras. The original Lie algebra L(0) describing the in-
ternal dynamics of the quantum system is replaced by the Lie algebra L(1), which includes
L(0) as the subalgebra: L(0) ⊂ L(1).

In section 5 we introduce the self-consistent-field approximation and determine the ma-
trix of effective Green functions and interactions (the P-matrix) by summation of series of
bare propagators and interaction lines. Quasi-particle excitations of the quantum system are
determined by poles of the P-matrix.

Special cases of diagram expansions for models with different internal Lie-group dy-
namics are considered in sections 6-9. For the case of the Heisenberg algebra (superal-
gebra), the diagram expansion reduces to Feynman’s diagrams for Bose (Fermi) quantum
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systems (section 6). In section 7 we carry out detailed consideration of the diagram tech-
nique for the Heisenberg model of the spin system described by the Lie group Spin(3)
and find the self-consistent field, spin excitations and relaxation of spin wave modes. The
considered Heisenberg model possesses magnetic dipole and exchange interactions. In this
case, the calculation of the poles of the P-matrix is equivalent to finding the simultane-
ous solution of the linearized Landau-Lifshitz equations and equation for the magnetostatic
potential. In sections 8, 9 we consider the diagram technique and excitations in the spin
system model with an uniaxial anisotropy and in the Hubbard model. Internal dynamics of
these models are more complicated and are described by Lie algebras gl(3) and gl(2, 2),
respectively (or, dropping out centers of these algebras, by Lie algebras sl(3) and sl(2, 2)).

2. Derivation of Functional Equations

Let us consider a model with an internal Lie-group dynamics on a crystal lattice with the
Hamiltonian

H = H0 +H′, (1)

where

H0 = Hb +HV =
∑

~1,j

bj(~1)σj(~1) +
∑
~1,~1′
i,j

Vij(~1−~1′)σi(~1)σj(~1′), (2)

~1 ≡ ~rn1 , ~1′ ≡ ~rn1
′ is the abridge notation of crystal lattice sites, bj(~1) are the external fields,

Vij(~1−~1′) is the interaction. Operators σj(~1) can characterize different properties of quan-
tum systems and can be operators of energies on quantum levels, spin operators, operators
of the number of particles, electrical dipole operators, etc. The fields bj(~1), corresponding
to σj(~1), are energies, magnetic fields, chemical potentials, electrical fields, respectively.
Operators σj(~1) satisfy the commutation relation

[σi(~1), σj(~1′)] =
∑
m

Cm
ij σm(~1)δ~1~1′ (3)

and form the Lie algebra (superalgebra) L on the given site ~1. The algebra (superalgebra)
L determines the internal Lie-group dynamics of the quantum system. If L is the Lie
superalgebra, the bracket

[σi(~1), σj(~1′)] = σi(~1)σj(~1′)− κijσj(~1′)σi(~1),

where κij = (−1)deg σi·deg σj , depends on parity degrees deg σi(~1), deg σj(~1′) of oper-
ators σi(~1), σj(~1′). Values of the degree, deg σk = 0 and deg σk = 1, denote that the
operator σk is the simple variable or the Grassmanian variable, respectively. We suppose
that operators σk(~1) and corresponding fields bk(~1) in relation (2) have equal parity de-
grees, deg σk(~1) = deg bk(~1), and Hamiltonians Hb, HV , H′ are of simple variables,
degHb = degHV = degH′ = 0. We also assume that the quantum system described by
the Hamiltonian H0 is in the thermodynamic equilibrium and is characterized by the tem-
perature T . In the thermodynamic equilibrium the set of r commuting operators {σ(c)

j (~1)},
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which is the subset of operators {σj(~1)}, gives the set of observable variables. The set
{σ(c)

j (~1)} determines the set of statistical average values 〈〈σj(~1)〉〉0 differed from zero,
where 〈〈. . .〉〉0 denotes averaging calculated with the Hamiltonian H0. In the thermody-
namic equilibrium the external fields bj(~1), corresponding to operators {σ(c)

j (~1)}, can be of
arbitrary nonzero values.

It is need to notice that the bilinear form of the Hamiltonian H0 with the bilinear inter-
action in the definition (2) is general. If the interaction Hamiltonian is given by

HV =
∑
~1,~1′

i1,...,in,j1...,jk

Vi1...inj1...jk
(~1−~1′)ai1(~1) . . . ain(~1)aj1(~1

′) . . . ajk
(~1′),

then the transformation to the bilinear form is realized by the substitution of operators
σi(~1) = ai1(~1) . . . ain(~1), σj(~1′) = aj1(~1

′) . . . ajk
(~1′) for operators ai. The set of operators

{σi(~1)} generates the Lie algebra L(1) differed from the original Lie algebra L(0), whose
basis is formed by operators ai. The special case of this transformation to the bilinear form
is the transformation from the model of strongly interacting Fermi electronic systems to the
Hubbard model [10, 11, 12, 13, 14, 15].

The Hamiltonian

H′ =
∑

~1,j

pj(~1)σj(~1) (4)

describes the interaction with the auxiliary fields pj(~1). We assume that in the Hamiltonian
H′ deg σj(~1) = deg pj(~1). In the case of models with internal dynamic Lie algebras, the
set of fields p = {pj(~1)} forms the commutative ring of functions. For models with Lie
superalgebras fields p form the anticommutative ring.

Using the Hamiltonian (1), we can determine the generating functional

Z[p] = Sp exp[−βH(p)], (5)

where β = 1/kT , k is the Boltzmann constant. In order to analyze temperature character-
istics of the quantum system, we ought to derive differential equations for the generating
functional. These equations can be found from the evolution operator equations

∂σ̂j(~1, τ)
∂τ

= [H, σ̂j(~1, τ)] (τ ∈ [0, β]) (6)

by averaging with the operator exp[−βH(p)], where σ̂j(~1, τ) = exp(τH)σj(~1) exp(−τH)
are the operators in the Euclidean-Heisenberg representation. Without loss of generality, we
include the constant β into the definitions of the external fields bj , the interaction Vij and the
auxiliary fields pj in relations (2) and (4), respectively, and transform the range of values
of τ in equation (6). In other words, we perform the scale transformation: −βbj → bj ,
−βVij → Vij , −βpj → pj , τ → βτ . In new variables the generating functional and
operators in the Euclidean-Heisenberg representation have the form Z[p] = Sp exp[H(p)]
and σ̂j(~1, τ) = exp(−τH)σj(~1) exp(τH), respectively, where τ ∈ [0, 1].
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In order to derive differential equations for the generating functional, we reveal the de-
pendence on p in relation (5) and find the explicit form of this dependence. For this purpose,
we perform transformation from operators in the Euclidean-Heisenberg representation to
operators in the interaction representation σj(~1, τ) = exp(−τH0)σj(~1) exp(τH0). In the
interaction representation the Hamiltonian H′ is regarded as a perturbation. The transfor-
mation from operators in the Euclidean-Heisenberg representation to operators σj(~1, τ) in
the interaction representation is determined by the evolution operator U(τ) [24]

σ̂j(~1, τ) = U−1(τ)σj(~1, τ)U(τ).

The evolution operator represents the dependence on p by the form

U(τ) = exp(−τH0) exp(τH) = T exp




τ∫

0

H′(τ ′) dτ ′


 ,

where H′(τ) = exp(−τH0)H′ exp(τH0) is the Hamiltonian (4) with the auxiliary fields
p in the interaction representation; T is the time-ordering operator. If time variables τ are
coincided, then

T{A, B} = 1/2[AB + (−1)deg A·deg BBA].

Differentiation of the evolution operator U(1) at τ = 1 with respect to the fields p gives

δ

δpj1(~1, τ1)
· · · δ

δpjn(~n, τn)
U(1) = T



σj1(~1, τ1) . . . σjn(~n, τn) exp




1∫

0

H′(τ) dτ








= U(1)T
[
σ̂j1(~1, τ1) . . . σ̂jn(~n, τn)

]
. (7)

Since the differential operators are noncommutative, the time variables τj are added in
the fields pj . Variables τj can be regarded as Feynman’s ordering variables [25]. By virtue
of this, we write time variables in the fields pj in all following equations. Time variables can
be dropped if and only if the Lie algebra L is commutative. This case shall be considered
in section 3.2, in which Cartan’s subalgebra is represented as an independent Lie algebra.

Operator products in relation (7) belong to the universal enveloping algebra U(L) [26].
This relation makes possible to represent T-ordering products of operators σ̂j belonging to
U(L) by differential operators on a functional algebra. We define this functional algebra as
the commutative algebra A of regular functionals R ∈ A over the ring F (0) of functions
pj(~1, τ). Regular functionals R ∈ A can be given in the form of power series with respect
to the fields pj(~1, τ) ∈ F (0)

R[p] =
∞∑

n=0

∑

j1,...,jn

∑

~1,...,~n

1∫

0

· · ·
1∫

0

Yjn,...,j1(~1, . . . , ~m; τ1, . . . , τm)

×pj1(~1, τ1) . . . pjn(~n, τn) dτ1 . . . dτn, (8)
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where m ≥ n, Yjn,...,j1(~1, . . . , ~m; τ1, . . . , τm) are functions of m space and m time vari-
ables. Since indices jn . . . , j1 are regarded as matrix indices in the following relations (for
example, in the equation of the Dyson type), in functions Yjn,...,j1 the inverse ordering nota-
tion is used. Functions Yjn,...,j1(~1, . . . , ~m; τ1, . . . , τm) belong to the smooth envelope of the

tensor product of m rings
⊗

mF (0)
m . We require that integrals are of finite values and the se-

ries is convergent. We can define the summationA⊕A → A, multiplicationA⊗A → A,
A ⊗ F (0) → A and differential operations on the F (0)-algebra A. The summation and
multiplication operations in the algebraA are defined as term by term summation and mul-
tiplication of power series, respectively. According to [20, 21, 22], differentiation is the
special case of the F (0)-homomorphism. The differentiation of the regular functional R[p]
with respect to the field pi(~i, τi) is reduced to the elimination of the field pi(~i, τi) and to the
dropping out the sum and the integral over variables~i, τi in the power series (8)

δR[p]
δpi(~i, τi)

=
∞∑

n=0

∑

j1,...,̂i,...,jn

∑

~1,...,~̂i,...,~n

1∫

0

· · ·
1∫

0

Yjn,...,j1(~1, . . . , ~m; τ1, . . . , τm)

×
n∏

k=i+1

κik pj1(~1, τ1) . . . p̂i(~i, τi) . . . pjn(~n, τn)︸ ︷︷ ︸
n−1

dτ1 . . . dτ̂i . . . dτn, (9)

where the mark ˆ points out that the given variable must be dropped. The summation
over indices j1, . . . , î, . . . , jn in relation (9) is performed over all sets {̂i, j2, . . . , jn}, . . .,
{j1, . . . , jn−1, î}. Since the auxiliary fields pj(~1, τ) can be Grassmanian variables, we
define the differentiation as right one.The term

∏n
k=i+1 κik appears from permutations be-

tween fields pj(~1, τ) during the differentiation.
After averaging with the operator exp(H), relation (7) can be used for representation

of equations (6) in the form of differential functional equations. Taking into account the
explicit form of the Hamiltonian H, defined by relations (1), (2), (4), the commutation
relations (3) and relation (7), we substitute of differential operators for operators σ̂j in
the Euclidean-Heisenberg representation in equations (6) and obtain differential functional
equations

∂

∂τ

δZ[p]
δpj(~1, τ)

=
∑

i,m

[bi(~1) + pi(~1, τ)]Cm
ij

δZ[p]
δpm(~1, τ)

+
∑

i,n,m,~1′

Cm
nj [Vin(~1′ −~1) + κinVni(~1−~1′)]

δ2Z[p]
δpi(~1′, τ)δpm(~1, τ)

. (10)

In the general case, solutions of the functional equations (10) belong to a module over the
algebra A. Besides the derivation of the functional equations (10), relation (7) can be used
for the derivation of the following proposition – the functional Z[p] generates temperature
Green’s functions without vacuum loops [24]

Gjn...j1(~1, . . . , ~n, τ1, . . . , τn) ≡ 〈〈Tσ̂j1(~1, τ1) . . . σ̂jn(~n, τn)〉〉
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= Z−1 δnZ[p]
δpj1(~1, τ1) . . . δpjn(~n, τn)

∣∣∣∣∣
p→0

, (11)

where 〈〈. . .〉〉 denotes averaging or the trace operation Sp calculated with the operator
exp(H)/Sp exp(H). In order to avoid ambiguity, we assume that in relation (11) the first
differentiation is δ/δpjn(~n, τn) and the last differentiation is δ/δpj1(~1, τ1).

3. Diagram Expansion

We will find the solution of equations (10) in the form of the power series expansion for
the functional Z[p] with respect to the interaction Vij and fields p. Each term of the series
corresponds to a diagram, therefore, this power series expansion is known as the diagram
expansion. In order to find the diagram expansion, we substitute the functional W [p] for
the functional Z[p]. W [p] is the generating functional for the connected Green functions
without the interaction Vij and is defined as [24]

Z[p] = exp




∑
~1,~1′
i,j

1∫

0

δ

δpi(~1, τ)
Vij(~1−~1′)

δ

δpj(~1′, τ)


 expW [p] dτ. (12)

Substituting W [p] for Z[p] in equations (10), we get equations for the functional W [p]
without Vij terms. These equations are given on a single crystal lattice site

[
∂

∂τ
−

∑

i

Cj
ijui(~1, τ)

]
δW [p]

δpj(~1, τ)
=

∑

i,m(6=j)

Cm
ij ui(~1, τ)

δW [p]
δpm(~1, τ)

, (13)

where ui(~1, τ) = bi(~1) + pi(~1, τ).
The diagram expansion for W [p] has the form of the power series with respect to the

fields p

W [p] =
∞∑

n=0

∑
~1

j1,...,jn

1∫

0

· · ·
1∫

0

Γjn,...,j1(~1, τ1 . . . τn)pj1(~1, τ1) . . . pjn(~1, τn) dτ1 . . . dτn. (14)

Coefficients Γjn,...,j1(~1, τ1 . . . τn) are given by derivatives of W [p] with respect to the fields
p in the limit p = 0

Γjn,...,j1(~1, τ1 . . . τn) =
δnW [p]

δpj1(~1, τ1) . . . δpjn(~1, τn)

∣∣∣∣∣
p→0

.

In general, coefficients Γjn,...,j1(~1, τ1 . . . τn) are distributions. If Γjn,...,j1(~1, τ1 . . . τn)
are smooth functions complying with requirements of series convergence and integral
finiteness in relation (14), then the functional W [p] belongs to the algebra A. Other-
wise, W [p] belongs to an A-module. In order to find these coefficients, we single out
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Cartan’s subalgebra H in the Lie algebra L. In the general case, Cartan’s subalgebra is
nilpotent, but we assume that H is commutative with dimension of dimH = r and with
the basis {σ(H)

j (~1)} [27, 28, 29]. For quantum systems at the thermodynamic equilib-
rium with the Hamiltonian, described by relation (2), the subalgebra H corresponds to the
set of operators of observable variables. External fields bj(~1) ≡ b

(H)
j (~1) and derivatives

δW [p]/δpj(~1, τ) corresponding to these observable variables, in general, differ from zero
values. Therefore, we shall say that the auxiliary field pj(~1, τ) corresponding to the op-
erator σ

(H)
j ∈ H are Cartan’s field p

(H)
j (~1, τ). Auxiliary fields differed from p

(H)
j (~1, τ)

are denoted by p̄j(~1, τ). Thus, the ring F (0)(p) can be decomposed with the direct sum
F (0)(p) = F (0)(p(H))⊕F (0)(p̄).

After determination of Cartan’s subalgebra, we perform the root decomposition of the
Lie algebra L relative to Cartan’s subalgebra H: L = ⊕αLα, H = L0 [27, 28, 29]. Roots α
are 1-forms belonging to the dual space H∗ and form the root system ∆ = {α ∈ H∗|Lα 6=
0}. If L is a superalgebra, then L = L0̄ ⊕ L1̄, where degL0̄ = 0 and degL1̄ = 1, and
the root system has the form ∆0 ∪ ∆1 [29]. ∆0 is the root system of the algebra L0̄, and
∆1 is the system of weights of the representation of the algebra L0̄ on the L0̄-module L1̄.
Accordingly, ∆0 is called the system of even and ∆1 that of odd roots. Since the subalgebra
H is commutative, then the adjoint representation ad(σ(H)

i )σ(α)
k ≡ [σ(H)

i , σ
(α)
k ] on spaces

Lα (σ(α)
k ∈ Lα) has the triangular form, and we can choose the basis of σ

(α)
j , which is

satisfied the following conditions

ad(σ(H)
i )σ(α)

1 = C1
i1σ

(α)
1

ad(σ(H)
i )σ(α)

2 = C1
i2σ

(α)
1 + C2

i2σ
(α)
2 (15)

. . .

ad(σ(H)
i )σ(α)

n =
n∑

j=1

Cj
inσ

(α)
j ,

where diagonal coefficients Cj
ij do not depend on the index j, i.e. C1

i1 = . . . = Cn
in for

the given root subspace Lα. After the root decomposition performing, roots α and diago-
nal coefficients Cjα

ijα
, defined by commutation relations (3), are connected by the relation

α(σ(H)
i ) = Cjα

ijα
, where the index jα corresponds to the root α [27, 28]. We consider the

case of the algebra L, for which for every root αk the opposite root −αk exists.

We find coefficients Γjn,...,j1 in relation (14) by means of a two-step procedure. At the
first step, we use a recursion relation and reduce derivatives with respect to non-Cartan’s
fields – we express derivatives of W with respect to the fields p̄i(~1, τ) by derivatives of W

with respect to the Cartan fields p
(H)
j (~1, τ). Then, we perform passage to the limit p̄ → 0.

At the second step, we calculate derivatives of W with respect to the Cartan fields p
(H)
j (~1, τ)

at the limit p
(H)
j → 0.
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3.1. Expression of Functional Derivatives via Derivatives with Respect to
Cartan’s Fields

Derivatives of W with respect to the fields p̄i(~1, τ) corresponding to operators σj /∈ H can
be found by a recursion procedure following from equation (13). Let σj be the basis vector
in relation (15) with the root αj 6= 0. Then, taking into account that α(σ(H)

i ) = Cjα

ijα
and

solving equation (13) as the differential equation with respect to τ , we obtain

δW [p]
δp̄j(~1, τ)

= Cj exp
[∫ τ

0
gj(~1, τ ′) dτ ′

]
+

∫ τ

0
dj(~1, τ, τ ′)

∑

i,m(6=j)

Cm
ij ui(~1, τ ′)

δW [p]
δpm(~1, τ ′)

dτ ′,

(16)
where

dj(~1, τ, τ ′) = exp
[∫ τ

τ ′
gj(~1, τ̄) dτ̄

]
θ(τ − τ ′)

is the kernel of the integral operator inverse to the operator ∂/∂τ − gj(~1, τ):
[

∂

∂τ
− gj(~1, τ)

]
dj(~1, τ, τ ′) = δ(τ − τ ′), (17)

gj(~1, τ) =
∑r

i=1 αj(σ
(H)
i )ui(~1, τ), σ

(H)
i is the basis vector of Cartan’s subalgebra, Cj is

an arbitrary functional independent of the variable τ and

θ(τ) =
{

1, τ ≥ 0
0, τ < 0

Let us make the extension of dj(~1, τ, τ ′) on τ ′ > τ in the range τ, τ ′ ∈ [−1, 1] and
the periodic extension on other values of τ, τ ′ in relation (16). In order to eliminate the
arbitrariness of the functional Cj , we perform this extension so as at p̄ → 0 the second
derivatives of W with respect to the fields p̄i, p̄j with αi = −αj have the form

δ2W [p]
δp̄i(~1, τ ′)δp̄j(~1, τ)

= A1 exp
[∫ τ

τ ′
gj(~1, τ̄) dτ̄

] ∑
m

Cm
ij

δW [p]
δpm(~1, τ ′)

(τ > τ ′)

δ2W [p]
δp̄i(~1, τ ′)δp̄j(~1, τ)

= κij
δ2W [p]

δp̄j(~1, τ)δp̄i(~1, τ ′)

= −A2 exp
[∫ τ

τ ′
gj(~1, τ̄) dτ̄

]∑
m

Cm
ij

δW [p]
δpm(~1, τ)

(τ < τ ′). (18)

We take into account that, in this case, gi = −gj , Cm
ij = −κijC

m
ji , δW [p]/δpm(~1, τ) 6=

0 is the derivative with respect to Cartan’s field and this derivative is independent of the
variable τ due to the commutativity of Cartan’s subalgebra. Then, the coefficients A1,
A2 in relation (18) are uniquely determined by the requirement that, in accordance with
relation (17), steps of the function dj(~1, τ, τ ′) at τ = τ ′ and at τ = τ ′ − 1 are equal to 1
and κij = κjj , respectively,
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A1 −A2 = 1
A1 exp[fj(~1)]−A2 exp[−fj(~1)] = −κjj ,

where fj(~1) =
∑r

l=1 αj(σ
(H)
l )bl(~1). We obtain A1 = −κjjnj(fj(~1)), A2 =

κjjnj(−fj(~1)) and define the propagater

D̄j(~1, τ, τ ′) = [A1dj(~1, τ, τ ′)−A2dj(~1, τ ′, τ)]

= [−nj(fj(~1))θ(τ − τ ′) + nj(−fj(~1))θ(τ ′ − τ)]κjj exp
[∫ τ

τ ′
gj(~1, τ̄) dτ̄

]
, (19)

where nj(x) = (expx− κjj)−1. Then, relation (16) is written in the form

δW [p]
δp̄j(~1, τ)

=
∫ 1

0

∑

i,m(6=j)

Cm
ij D̄j(~1, τ, τ ′)ui(~1, τ ′)

δW [p]
δpm(~1, τ ′)

dτ ′. (20)

Derivatives δnW [p]/δp̄j1 . . . δp̄jn can be found by the recursion procedure based on
relation (20). In order to clarify how derivatives of W with respect to the fields p̄i(~1, τ) are
substituted by derivatives of W with respect to Cartan’s fields, we differentiate relation (20)
with respect to an arbitrary non-Cartan’s field p̄k

δ2W [p]
δp̄k(~1, τ ′)δp̄j(~1, τ)

=
∫ 1

0

∑

i,m(6=j)

Cm
ij

δD̄j(~1, τ, τ ′′)
δp̄k(~1, τ ′)

ui(~1, τ ′′)
δW [p]

δpm(~1, τ ′′)
dτ ′′

+
∑

m(6=j)

Cm
kjD̄j(~1, τ, τ ′)

δW [p]
δpm(~1, τ ′)

+
∫ 1

0

∑

i,m(6=j)

κikC
m
ij D̄j(~1, τ, τ ′′)ui(~1, τ ′′)

δ2W [p]
δp̄k(~1, τ ′)δpm(~1, τ ′′)

dτ ′′. (21)

In relation (21) at p̄ → 0 the third summand possesses terms with ui = bi(~1) corre-
sponded to Cartan’s fields. Hence, in the coefficient Cm

ij indices j and m belong to the
common root space Lα. By virtue of the triangular form of the adjoint representation (15),
in the third summand the derivative δ2W [p]/δp̄kδpm possesses the index m < j. If it
is necessary, using relation (21), we can repeat the reduction process for the derivative
δ2W [p]/δp̄kδpm and express the second derivative δ2W [p]/δp̄kδp̄j by first derivatives of
W [p]. Taking into account that for non-Cartan’s fields δW [p]/δp̄m|p̄→0 = 0, the deriva-
tive δ2W [p]/δp̄kδp̄j |p̄→0 is expressed by first derivatives of W [p] with respect to Cartan’s
fields. For the case of derivatives of higher orders, the analogous recursion procedure of the
reduction of derivatives δnW [p]/δp̄j1 . . . δp̄jn to derivatives with respect to Cartan’s fields
can be used. From relation (21) one can notice that this reduction can be performed in
several equivalent forms. These forms are determined by the field pj(~1, τ) of the first dif-
ferentiation in the recursion procedure. In order to remove this ambiguity, we set ordering
on the Lie algebra L
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{σ(α1)} Â . . . Â {σ(αm)} Â Cartan’s subalgebra H Â {σ(−αm)} Â . . . Â {σ(−α1)},
(22)

where {σ(αi)} is the set of operators with the root αi and {σ(−αi)} is the set of conjugate
operators with the opposite root−αi. The ordering on the set of operators {σ(α)} (15) with
the root α we define as σ

(α)
n Â . . . Â σ

(α)
1 . We assume that ordering on the set of the

auxiliary fields pj(~1, τ) corresponds to the operator ordering and the first differentiation of
W is the differentiation with respect to the field pj of the highest order for the given subset
of fields {pj , . . . , pn}. Thus, after choice of the operator ordering and realization of the
recursion procedure in order to calculate coefficients Γjn,...,j1 , we must to find derivatives
of W [p] with respect to Cartan’s fields p

(H)
j (~1, τ).

3.2. Calculation of Functional Derivatives with Respect to Cartan’s Fields

In the absence of an interaction (Vij = 0) at the limit p̄ → 0 and at the thermodynamic
equilibrium the external fields b̄j(~1) are zero and the Hamiltonian H given by relation (1)
describes systems with commutative operators. For such quantum systems the functional
W [p] can be found by a direct calculation. Taking into account definitions (5), (12) of Z[p]
and W [p], respectively, and the fact that for the commutative Cartan subalgebra H the fields
p
(H)
j are independent of τ , consequently, the variable τ can be dropped and u

(H)
j (~1, τ) =

b
(H)
j (~1) + p

(H)
j (~1) = u

(H)
j (~1), we obtain

W [p(H)] = ln Sp exp





∑

~1,j

u
(H)
j (~1, τ)σ(H)

j (~1)





=
∑

~1

ln
m∑

i=1

∏

j

exp[u(H)
j (~1)ρ(i)

j ] ≡
∑

~1

Fρ[u(H)], (23)

where ρ is the representation of the subalgebra H , in whose operators σ
(H)
j (~1) have the

diagonal form diag[ρ(1)
j , . . . , ρ

(m)
j ]; i = 1, 2, . . . , m is the index of spectral states; Fρ is

the free energy. Then, in the expansion (14) coefficients Γjn,...,j1 with indices j1, . . . , jn

corresponding to Cartan’s fields, denoted as Γ(H)
jn,...,j1

, can be written in the form

Γ(H)
jn,...,j1

(~1) =
δnFρ[u(H)]

δp
(H)
j1

(~1) . . . δp
(H)
jn

(~n)

∣∣∣∣∣
p(H)→0

=
∂nFρ[b(H)]

∂b
(H)
j1

(~1) . . . ∂b
(H)
jn

(~n)
. (24)

3.3. Diagram Expansion in Imaginary Time Dependent Variables

1. Propagators. In order to calculate coefficients Γjn,...,j1(~1, τ1 . . . τn) in the expansion
(14), we must use relation (20) several times (if it is necessary) and, then, pass to the limit
{pj} → 0. We assign the line with the arrow directed from the vertex with the time τ to the
vertex with the time τ ′ (figure 1a) to the limit value of the propagator given by relation (19)
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Dj(~1, τ − τ ′) = D̄j(~1, τ, τ ′)|p→0. (25)

According to relation (19), the root αj can be associated with the propagator Dj . It is need
to notice that the extension of dj on τ ′ > τ in relation (16) allows us to reduce the number
of propagators, which must be accounted in the diagram expansion. If αk = −αj , then
instead of the propagator Dk we can use the propagator Dj with αj > 0 and with opposite
arrow direction (τ − τ ′ < 0) in the expansion.

2. Vertices. Propagators and interaction lines are tied by vertices in diagrams. There are
six vertex types. The first five types correspond to factors arising from differentiation of the
functional W [p] with respect to the field pi(~1, τ) (figure 1b). The field pi(~1, τ) is displayed
as a segment of a wavy line with the index i. In accordance with relation (20), these factors
depend on indices of the differentiating field, incoming and outgoing propagators and have
the general form v({j}; m|i), where {j} is the set of indices of propagators incoming into
the vertex, m is the index of propagator outgoing from the vertex or the index of Cartan’s
field pm in the coefficient Γ(H)

jn,...,j1
defined by relation (24), i is the index of the field pi(~1, τ).

If an index is absent in the vertex, then we shall write the dash at this place.
We obtain the following types of vertices. From relation (20) one can be seen that start

and end points of propagators correspond to vertices. We shall call that the vertex is of the
type a, if the vertex has one outgoing propagator and has not any incoming ones. The vertex
factor is va(−; j|j) = 1. The vertex of the type b with the factor vb(j; m|i) = Cm

ij has one
incoming propagator with the index j and no outgoing ones. The index m corresponds to
an index of the coefficient Γ(H)

jn,...,j1
. The c-vertex is obtained as a result of differentiation

of D̄j-propagator with respect to Cartan’s field and as a result of differentiation of the
variable ui with respect to non-Cartan’s field in relation (20). One propagator comes in (the
index j) and one propagator goes out (the index m) from the c-vertex. The corresponding
factor is vc(j; m|i) = Cm

ij . The vertex of the d-type is characterized by two incoming
propagators and one outgoing propagator. The d-vertex is gotten as a result of twofold
action of the recursion procedure based on relation (20). After permutation of derivatives
of W [p] with respect to fields p̄k(~1, τ ′), pm(~1, τ ′′) in the third summation in relation (21),
end points of two incoming propagators and the start point of the outgoing propagator have
equal time variables and must be tied. The factor corresponding to the d-vertex is equal
to vd(j, n;m|i) = κjn

∑
s Cs

ijC
m
sn, where j, n are indices of incoming propagators, m

is the index of the outgoing propagator and i is the index of the field pi. e-vertices are
associated with differentiation with respect to Cartan’s fields p

(H)
i on the second step of

the calculation of functional derivatives (section 3.2). The vertex factor is ve(−;−|i) = 1.
Finally, we introduce the vertex of the type f , which does not correspond to a differentiation
and is caused by Cartan’s variable ui in relation (20). One propagator comes in and one
propagator goes out from the f -vertex. Propagators have identical roots, αm = αj . The
vertex factor is equal to vf (j; m|−) =

∑
i C

m
ij bi(~1). In accordance with the triangular form

of the adjoint representation (15) and the condition m 6= j given by relation (20), the index
m (the index of the outgoing propagator) in the f -vertex is less than j (the index of the
incoming propagator), m < j. In cases of c-, d-, f -vertices, the summation over the index
of the outgoing propagator and indices of neighboring vertices must be done. In other
words, the summation over m must be performed, where m is the common index of the
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Figure 1. (a) Propagators Dj(~1, τ − τ ′), (b) vertices, (c) example of a block, (d) interaction
line I

(0)
ij (~1−~1′, τ − τ ′).
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propagator outgoing from the vertex v(. . . ; m| . . .), the root αm of the propagator and the
propagator incoming into the neighboring vertex v(m, . . . ; l|k) (figure 1b). In the case of
the b-vertex with the factor vb(j; m|i), the summation must be performed over the common
index m of the vertex and one of indices of the coefficient Γ(H)

jn,...,j1
given by relation (24).

After definition of vertices we can formulate the law of conservation of roots. The root
α

(field)
i can be assigned to the differentiation of W [p] with respect to the field pi(~1, τ). Roots

α
(in)
j of propagators incoming into the vertex and roots α

(out)
m of outgoing propagators are

given with ’+’ and ’−’ signs, respectively. Then, taking into account the property of the
root decomposition of Lie algebras [27, 28, 29]

[σ(α), σ(β)] ∈ Lα+β,

from relation (20) we obtain the law of conservation of roots in a vertex

α
(field)
i +

∑

j

α
(in)
j − α

(out)
l = 0. (26)

In the case of e-vertices, relation (26) is trivial. For f -vertices the root α
(field)
i must be

dropped out.
3. Blocks. As a result of the first step based on relation (20) – expression of functional

derivatives of W [p] in relation (14) via derivatives with respect to Cartan’s fields – we obtain
a diagram consisting of n isolated parts. These parts are e-vertices, single propagators and
a set of propagators tied by c-, d-, f -vertices. The number of isolated parts n is equal to
the number of differentiations of W [p] with respect to Cartan’s fields or, equivalently, to
the number of indices of the coefficient Γ(H)

jn,...,j1
(~1) in relation (24). We confine these parts

in a block (figure 1c). According to relation (24), we assign the factor Γ(H)
jn,...,j1

(~1) to the
block of n parts. In blocks all parts have equal space variables. Each part with propagators
tied by vertices ends off a b-vertex. Indices jk of the the factor Γ(H)

jn,...,j1
(~1) correspond to

indices i of e-vertices, ve(−;−|i), and to indices m of b-vertices, vb(j; m|i). In the case of
b-vertices, it is need to perform the summation over indices m.

4. Interaction lines. Returning to the functional Z[p] given by relation (12), we can
see that the operation δ/δpi(~1, τ) Vij(~1 − ~1′) δ/δpj(~1′, τ) adds interaction lines I

(0)
ij (~1 −

~1′, τ − τ ′) = Vij(~1−~1′)δ(τ − τ ′) connected couples of vertices (figure 1d). Roots α
(field)
i ,

α
(field)
j associated with fields pi and pj , respectively, can be assigned to end points of the

interaction line I
(0)
ij . So, the law of conservation of roots in a vertex (26) holds.

Taking into account definitions of propagators, vertices, blocks and interaction
lines, we can calculate coefficients Γjn,...,j1 in the expansion (14) and coefficients
Qjn,...,j1(~1, . . . , ~n, τ1, . . . , τn) in the diagram expansion for Z[p] (12)

Z[p] =
∞∑

n=0

∑
~1,...,~n

j1,...,jn

1∫

0

· · ·
1∫

0

Qjn,...,j1(~1, . . . , ~n, τ1, . . . , τn)pj1(~1, τ1) . . . pjn(~n, τn) dτ1 . . . dτn,

(27)
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where coefficients Qjn,...,j1 are proportional to temperature Green’s function without vac-
uum loops (11). For this calculation we draw n external vertices related to fields pj in the
expansion (27) and 2s inner vertices connected by interaction lines I

(0)
jkjk

′ . Interaction lines
do not connect with external vertices. Then, according to operator ordering (22), we draw
propagator lines starting from the vertex corresponding to the senior field pj (or, operator
σj). Sum of roots of operators σj corresponding to vertices contained in a set of vertices tied
by propagators is equal to zero,

∑
i αi = 0. This set can be a part of a block. Each part with

propagators end off a b-vertex. Time variables corresponded to start and end points of prop-
agators and interaction lines, which are tied in a vertex, must coincide. Space variables of
interaction lines and propagators must coincide within blocks. The example of the diagram
construction is presented in figure 2 for the Heisenberg model with the Hamiltonian

H0 = −gµB

∑

~1

Hz(~1)Sz(~1)− 1
2

∑
~1,~1′
~1 6=~1′

J(~1−~1′)[Sz(~1)Sz(~1′) + S−(~1)S+(~1′)],

where g, µB , Hz(~1) are the Lande factor, the Bohr magneton and the external magnetic
field, respectively. We choose the spin operator ordering S− Â Sz Â S+. Diagrams
contain three external vertices and two inner vertices.

Taking into account the above-mentioned diagram construction, relation (12) and cal-
culating coefficients Γjn,...,j1 in relation (14) by means of the two-step procedure, we deter-
mine coefficients Qjn,...,j1 in the diagram expansion. Each diagram uniquely corresponds
to the analytical expression

Qjn,...,j1(~1, . . . , ~n, τ1, . . . , τn)

=
Ps

s!

∏

L

∑
~1,...,~s
~1′...~s′
{i,j,m}

1∫

0

· · ·
1∫

0

I
(0)
j1j1′

(~1−~1′, τ1 − τ1
′) . . . I

(0)
jsjs

′(~s− ~s′, τs − τs
′)

×
∏

l

Djl
(~1L, τl − τl

′)
∏

µ∈vertex

vµ({jr}; mr|ir) Γ(H)
JL

(~iL) dτ1 . . . dτM , (28)

where Ps is the number of topological equivalent diagrams. Integration is performed over
M = 2s + mf time variables τ , where mf is the number of f -vertices. JL = (j1, . . . , jkL

)
is the multiindex of the block L containing kL parts. The block factor Γ(H)

JL
is determined

by indices of b- and e-vertices. Products
∏

L and
∏

µ∈vertex vµ({jr};mr|ir) are performed
over all diagram blocks and all vertices, respectively. Indices of interaction lines and propa-
gators are chosen in the set {i, j, m} = {i1, . . . , j1, . . . , m1, . . .} so that they coincide with
the proper vertex indices and the law of conservation of roots in a vertex (26) holds.

3.4. Diagram Expansion in Frequency Dependent Variables

The frequency representation of the diagram expansion is more convenient for calculations.
In order to perform this transformation, we determine the Fourier transforms of propagators
(25) and interaction lines
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Figure 2. Diagrams with three external vertices and two inner vertices for the Heisenberg
model with the spin operator ordering S− Â Sz Â S+.

Dj(~1, ωn) =
1
2

1∫

−1

Dj(~1, τ) exp(−iωnτ) dτ =
[1− (−1)n+1κjj ]
2[iωn − fj(~1)]

(29)

I
(0)
jk (~1−~1′, ωn) = Vjk(~1−~1′), (30)

where ωn = πn (n = 0,±1, . . .) are the Matsubara frequencies, fj(~1) =∑r
l=1 αj(σ

(H)
l )bl(~1). The analytical expression of coefficients Qjn,...,j1 (28) in the fre-

quency representation is written as
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Qjn,...,j1(~1, . . . , ~n, ωn1 , . . . , ωnn) =
Ps

s!

∏

L

∑
mi

∑
~1,...,~s
~1′...~s′
{i,j,m}

I
(0)
j1j1′

(~1−~1′, ωm1) . . . I
(0)
jsjs

′(~s−~s′, ωmn)

×
∏

l

Djl
(~1L, ωml

)
∏

µ∈vertex

vµ({jr}; mr|ir)
∏

vertex

δ(
∑

l

ωml
) Γ(H)

JL
(~iL), (31)

where
∑

mi
denotes the summation performed over all inner frequency variables. The

term
∏

vertex δ(
∑

l ωml
) gives the frequency conservation in each vertex, i.e. the sum of

frequencies of propagators and interaction lines, which come in and go out from a vertex, is
equal to 0. The e-vertex can be connected with the single interaction line. In the analytical
expression this corresponds to the factor δ(ωm) = δm0.

Spectrum relations for excitations, relaxation times and other characteristics of the
quantum system are given by poles of the two-site temperature Green functions (11) in
the frequency representation under the analytical continuation

iωm → ω + iε signω

δm0 → (ω + iε signω)−1 (ε → 0). (32)

3.5. Diagram Expansion for Cases of Semi-simple Lie Algebras and Simple
Contragredient Lie Superalgebras

For semi-simple algebras diagram expansions can be simplified. Root spaces Lα are one-
dimensional. This leads to the absence of f -vertices. Due to the non-degeneration of the
Killing form on L, each root α corresponds to the root vector hα ∈ H according to the
relation [27, 28]

α(σ(H)) = (hα, σ(H)), (33)

where (. . . , . . .) is the Killing form. Vectors hα are expressed in terms of normalized oper-
ators σ(α), σ(−α). The operator normalization is chosen so that (σ(α), σ(−α)) = 1. Then,
vectors hα can be written as [27, 28]

hα = [σ(α), σ(−α)]

Cartan’s subalgebra H is completely determined by the vectors hα. The Killing form is
positive definite on Cartan’s subalgebra and induces the Euclidean geometry on H . Taking
into account the one-to-one correspondence between roots α and root vectors hα, we can
write the law of conservation of roots (26) in the form

h(field)
αi

+
∑

j

h(in)
αj

− h(out)
αl

= 0.

For the case of Lie algebras of high dimensions, this representation of the law of conser-
vation of roots can be more efficient in comparison with relation (26), because we can use
Euclidean properties of the subalgebra H .
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The special cases of simple contragredient Lie superalgebras are A(m,n), B(m, n),
C(n), D(m,n), D(2, 1;α), F (4), G(3) [29]. For these superalgebras root spaces Lα are
one-dimensional. The superalgebras possess supersymmetric bilinear nondegenerate forms,
which are invariant under automorphisms of superalgebras and can be different from the
Killing form. The existence of these forms allows us to make transformation to root vectors
hα in accordance with relation (33). Above-mentioned properties lead to simplifications of
diagram expansions, analogous to simplifications for semi-simple Lie algebras.

4. Generalization of the Diagram Expansion for Quantum Sys-
tems on Topologically Nontrivial Manifolds

Differential functional equations (10) have been derived for models with the Hamiltonian
(1) on a topologically trivial crystal lattice. The functional Z[p] is defined as functional on
fields pj(~1, τ). These fields form the commutative ring of functions F (0) for models with
internal dynamic Lie algebras and the anticommutative ring for models with Lie superal-
gebras. The ring F (0) produces a constant sheaf of functions. In order to generalize the
diagram technique for models on topologically nontrivial manifolds, we ought to substitute
in equations (10) the sheaf of function rings F on the nontrivial manifold M for sheaf of
functions F (0) ⊂ F and to perform substitution of continuous space variables for crystal
lattice sites, pj(~1, τ) → pj(~r, τ). Then, the summation over crystal lattice sites is substi-
tuted by the integration over continuous space variables and regular functionals R[p] (8) of
the algebra A can be written in the form

R[p] =
∞∑

n=0

∑

j1,...,jn

∫

V

· · ·
∫

V

1∫

0

· · ·
1∫

0

Yjn,...,j1(~r1, . . . , ~rm; τ1, . . . , τm)

×pj1(~r1, τ1) . . . pjn(~rn, τn) d~r1 . . . d~rn dτ1 . . . dτn,

where pj(~r, τ) ∈ F . The analogous transformation must be performed for the functionals
W [p] and Z[p] given by relations (14) and (27), respectively.

In order to describe models on topologically nontrivial manifolds by equations (10), we
require that, by analogy with fields pj(~r, τ), external fields bi and interactions Vik belong to
the sheaf of function ringsF , too. The generalized equations (10) cannot have any solutions
or can possess one or many solutions. Solutions of the functional equations (10) exist if and
only if Spencer’s cohomologies are trivial [20, 21, 22]. This condition can impose constraint
relations on fields bi and on interactions Vik of quantum systems on nontrivial manifolds.
Singularities of many-valued solutions are determined by the acyclicity of Spencer’s δ-
complex.

Transformation to topologically nontrivial manifolds results in the existence of addi-
tional degrees of freedom and additional quantum excitations. The short exact sequence of
sheaves of function rings on the manifold M

0 → F (0) i→ F j→ F/F (0) → 0,

where i is the injection, j is the epimorphism onto the factor sheaf F/F (0), induces the
exact sequence of cohomology groups [30, 31]
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0 → H0(M,F (0)) i∗→ H0(M,F)
j∗→ H0(M,F/F (0)) δ∗→

δ∗→ H1(M,F (0)) i∗→ H1(M,F)
j∗→ H1(M,F/F (0)) δ∗→ . . . (34)

Taking into account the isomorphism of cohomologies on differentiable manifolds, co-
homologies H∗(M,F (0)), H∗(M,F), H∗(M,F/F (0)) can be identified with de Rham co-
homologies with coefficients in a sheaf [31]. Additional degrees of freedom are determined
by cohomologies H∗(M,F/F (0)) in the sequence (34). If cohomologies H∗(M,F/F (0))
on the manifold M are nontrivial, fields pj(~r, τ) in equations (10) are changed by fields
pj,J(~r, τ), where J is the multiindex given by cohomology classes corresponding to group
elements of H∗(M,F/F (0)). This leads to the existence of additional excitations.

If the quantum system is determined on a Riemann surface, then we can take the sheaf
of meromorphic functions M∗ distinct from zero on the manifold M and the subsheaf of
nonzero holomorphic functions O∗ as sheaves F and F (0), respectively. Then, additional
degrees of freedom are given by the divisor group Div(M) = H0(M,M∗/O∗) [30, 32]
and correspond to vortex excitations.

5. Self-consistent-Field Approximation and Introduction of the
Matrix of Effective Green Functions and Interactions (P-
matrix)

5.1. Self-consistent Field

The self-consistent-field approximation is equivalent to a rearrangement of the terms in the
Hamiltonian H0 in relation (2). The terms with the interaction Vij are added to the fields
bj(~1)

Hb → H(s)
b =

∑

~1,j

bj(~1)σj(~1) +
∑
~1,~1′
i,j

Vij(~1−~1′)〈〈σi(~1)〉〉0σj(~1′) =
∑

~1,j

Bj(~1)σj(~1). (35)

where Bj(~1) = bj(~1)+
∑

i,~1′ Vij(~1′−~1)〈〈σi(~1′)〉〉0. In the framework of the diagram tech-
nique given by relations (28), (31) the rearrangement in the Hamiltonian H0 corresponds
to the summation of all diagrams that can be divided into two parts through breaking an
interaction line. One of the parts does not have external vertices (so-called one-tail part of
the diagrams). Since in the self-consistent-field approximation the quantum system is in the
thermodynamic equilibrium, then the set of observable variables consists of r commuting
operators σj(~1) with 〈〈σj(~1)〉〉0 6= 0. In the common case, the set of commuting operators
gives new Cartan’s subalgebra, which is conjugated to the previous Cartan’s subalgebra,
where the self-consistent-field approximation is not taken into account. After transforma-
tion to new Cartan’s subalgebra the diagram expansion is given by relations (28), (31),
where the substitution bj(~1) → Bj(~1) is performed.
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5.2. Matrix of Effective Green Functions and Interactions: Quasi-Particle
Excitations

In order to describe quasi-particle excitations, we introduce the matrix of effective Green
functions and interactions (the P-matrix) in the frequency representation,
P = ‖PJN (~1,~1′, ωm)‖ [19, 33]. We compose the P-matrix from analytical expressions
of connected diagrams with two external sites. These sites are end points of propagators,
single vertices e, or end points of interaction lines. Accordingly, multiindices J = (wj),
N = (wn) are the double indices, where j, n correspond to indices of fields pj , pn in
derivatives of the functional Z of the second order in relation (11) or indices of interaction
lines. The index w points out that J , N belong to a propagator or to a e-vertex (w =
1), or belong to an interaction line (w = 2). The zero-order approximation P(0) of the
P-matrix is determined by the matrix of the bare interaction I(0) = ‖I(0)

jn (~1 − ~1′, ωm)‖,
given by relation (30), and by the bare two-site Green functions in the self-consistent-field
approximation G(0) = ‖G(0)

jn (~1,~1′, ωm)‖ = ‖δ2W/δpjδpn‖ (figure 3a), given on a crystal
lattice site

P(0) =

(
‖P (0)

(1j)(1n)‖ ‖P (0)
(1j)(2n)‖

‖P (0)
(2j)(1n)‖ ‖P (0)

(2j)(2n)‖

)
=

(
‖G(0)

jn ‖ 0
0 ‖I(0)

jn ‖

)
. (36)

If the indices j, n correspond to non-Cartan’s fields, then in accordance with relations (29)
and (31), the bare Green functions are expressed in terms of b-vertex factors, propagators
and block factors:

G
(0)
jn (~1,~1′, ωm) = Dj(~1, ωm)

∑

k

vb(j; k|n)Γ(H)
k (~1)δ~1~1′ , (37)

where the propagator Dj(~1, ωm) is given by relation (29) with fj(~1) =∑r
l=1 αj(σ

(H)
l )Bl(~1). For indices j, n of the Cartan type the bare Green functions

are determined by block factors (24): G
(0)
jn (~1,~1′, ωm) = Γ(H)

jn (~1)δ~1~1′δm0. If one of the
indices j, n belongs to the Cartan type and another index is of the non-Cartan type, then
the Green functions G

(0)
jn are equal to zero.

The next approximation of the P-matrix, P(1), is obtained by means of the summation
of the P(0)-matrix (36) – the summation of all diagram chains consisting of bare Green
functions G

(0)
jn and the bare interaction lines I

(0)
jn (figure 3b,c,d). These chains of propaga-

tors and interaction lines do not have any loop insertion. We call this approximation as the
effective Green functions and interactions (EGFI) approximation. Analytical expressions
of the considered diagrams can be written in accordance with relation (31). The summation
gives an equation of the Dyson type

P(1) = ‖P (0)
JN (~1,~1′, ωm)‖+

∑

~2,K,L

‖P (1)
JK(~1,~2, ωm)‖ · ‖ΞKL‖ · ‖P (0)

LN (~2,~1′, ωm)‖

= P(0) + P(1)ΞP(0), (38)

where
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Figure 3. (a) Definition of bare two-site Green functions G
(0)
jn . (b) Definition of effective

Green functions P
(1)
(1j)(1n) = G

(1)
jn via the bare Green functions G

(0)
jn . (c) Definition of

effective interaction lines P
(1)
(2j)(2n) = I

(1)
jn . (d) Definition of intersecting terms P

(1)
(1j)(2n),

P
(1)
(2j)(1n). Summation over γ and f denotes the summation over indices of propagators,

interaction lines and vertices, space variables and indices of f -vertices, respectively.
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Ξ =
(

0 E
E 0

)
, E = ‖δjn‖ is the diagonal matrix.

Taking into account E −G(0)I(0) = G(0)(E −I(0)G(0))G(0)−1, we find that the solution
of equation (38) is the matrix

P(1) = P(0)(1− ΞP(0))−1 =
( G(0)(E − I(0)G(0))−1 (E − G(0)I(0))−1G(0)I(0)

I(0)G(0)(E − I(0)G(0))−1 I(0)(E − G(0)I(0))−1

)

(39)
The P(1)-matrix consists of effective Green functions G(1) = ‖G(1)

jn ‖ = ‖P (1)
(1j)(1n)‖ =

G(0)(E − I(0)G(0))−1, effective interactions I(1) = ‖I(1)
jn ‖ = ‖P (1)

(2j)(2n)‖ = I(0)(E −
G(0)I(0))−1 and intersecting terms P

(1)
(1j)(2n), P

(1)
(2j)(1n). Effective Green functions, effective

interactions and intersecting terms are denoted in diagrams by directed thick lines, empty
lines and compositions of the thick line - empty line, respectively. Approximations of the
P-matrix of higher orders, s, are determined by summation of diagrams consisting of s
loops.

Introduction of the P-matrix leads to the desire to use it in diagram expansions with
effective Green functions and interactions. Substitution of effective Green functions and
interactions for the bare ones can be completely performed only for Fermi and Bose models
with the Heisenberg algebra (superalgebra). As a result of the substitution, we obtain Feyn-
man’s diagrams with effective propagators and interaction lines. For models with arbitrary
Lie algebras L the complete substitution is not held. This obstruction is caused by transfor-
mation of block structures of diagrams. The block transformation results in compensating
diagrams, in which partial substitutions of effective Green functions and interaction lines
for the bare ones have been performed.

Spectrum relations of quasi-particle excitations are given by the P-matrix poles – by
zero eigenvalues of the operator 1 − ΞP(0) or, equivalently, by E − I(0)G(0) under the an-
alytical continuation (32). Since, zero eigenvalues of these operators can be corresponded
to different eigenfunctions and can determine different excitation modes, we introduce the
spectral parameter λ for eigenfunctions p

(λ)
j (~1, ωm). The spectral parameter λ can be dis-

crete or continuous. Taking into account the above-mentioned, we get the equation describ-
ing quasi-particle excitations

p
(λ)
j (~1, ωm)−

∑

~1′,k,i

I
(0)
jk (~1−~1′, ωm)G(0)

ki (~1′,~1′, ωm)p(λ)
i (~1′, ωm)

∣∣∣∣∣∣
iωm→ω+iεsignω

= 0.

(40)

6. Reduction of the Diagram Expansion to Feynman’s Diagrams
for Bose and Fermi Systems

For Bose and Fermi systems the internal dynamics is simple and is given by the Heisenberg-
Weyl group and the Heisenberg-Weyl supergroup, respectively. The corresponding Heisen-
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berg algebra (superalgebra) possesses the set of generators {I, a(~1), a+(~1), ε(~1) =
a+(~1)a(~1)} with nonzero commutation relations

[a(~1), a+(~1)] = I

[ε(~1), a(~1)] = −a(~1) (41)

[ε(~1), a+(~1)] = a+(~1).

Other commutation relations are trivial. a+, a, I are creation, annihilation and identi-
cal operators, respectively. Cartan’s subalgebra H is spanned on vectors I, ε(~1): H =
Span{I, ε(~1)}. The Hamiltonian (1) describes interacting Bose and Fermi systems and has
the form

H =
∑

~1

[(pI +N(~1))I+(pε+E(~1))ε(~1)+p−a(~1)+p+a+(~1)]+
∑
~1,~1′

(~16=~1′)

V (~1−~1′)ε(~1)ε(~1′),

(42)
where N(~1), E(~1) are the external fields corresponding to operators I and ε(~1), respec-
tively. Equations (13) for the functional W [p] are determined by commutation relations
(41) and the Hamiltonian (42) and are written in the form

[
∂

∂τ
± (pε(~1, τ) + E(~1))

]
δW [p]

δp∓(~1, τ)
= ∓p±(~1, τ)

δW [p]
δpI(~1, τ)

∂

∂τ

δW [p]
δpε(~1, τ)

= p−(~1, τ)
δW [p]

δp−(~1, τ)
− p+(~1, τ)

δW [p]
δp+(~1, τ)

(43)

∂

∂τ

δW [p]
δpI(~1, τ)

= 0.

Root spaces La, La+ are one-dimensional, therefore, f -vertices are absent in the dia-
gram expansion. In the analyzing model only one propagator (25) exists:
δ2W [p]/δp−(~1, τ)δp+(~1, τ)|p→0 = D(~1, τ − τ ′). In the frequency representation (29), the
propagator is given by

D(~1, ωn) =
1− (−1)n+1κaa

2[iωn −E(~1)]
, (44)

where κaa = 1 for Bose systems and κaa = −1 for Fermi ones. Taking into account that
the root of the propagator is αa+ with αa+(I) = 0 and the form of the interaction is given
by the Hamiltonian (42), from the law of conservation of roots in a vertex we deduce that
d-vertices are absent in the diagram expansion.

Let us consider a block containing propagators (44). From the first equation
(43), it follows that the block with one isolated part corresponds to the differentiation
δW [p]/δpI(~1, τ). From the third equation (43), we can conclude that derivatives of W [p]
with respect to pI(~1, τ) of higher orders are equal to zero. Consequently, if the block
contains propagators, then this block has only one connected part. In this case, the block
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designation can be dropped out in diagrams. Thus, for the model with the Hamiltonian (42)
diagrams contain the following.
(a) Propagators without block designations. Propagators are tied by c-vertices with
vc(a+; a+|ε) = 1. a- and b-vertices are external with va(−; a+|a+) = vb(a+; I|a) = 1
(figure 4a).
(b) Blocks with n isolated e-vertices corresponding to derivatives δnW/δpε . . . δpε|p→0

(figure 4b).

(a)

c

D(1, )wn

c c

D(1, )wk D(1, )wp

a b

I (1-1’, )
(0)

wm I (1-1’, )
(0)

ws

(b)

e

I (1-1’, )
(0)

wm

c

I (1-1’, )
(0)

wm

c

c

c

Figure 4. (a) Propagators tied by c-vertices with external a- and b-vertices. (b) Blocks with
isolated e-vertices and transformation from blocks to propagator loops.

Blocks with isolated e-vertices can be transformed by substitution of propagator loops
for blocks. The transformation is based on the relation ε(~1) = a+(~1)a(~1). Due to this
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relation, in derivatives δnW/δpε . . . δpε|p→0 the differentiation δ/δpε(~1, τ) can be substi-
tuted by the differentiation δ2/δpa+(~1, τ)δpa(~1, τ). This corresponds to propagator loops
with c-vertices in diagrams. If a diagram contains m propagator loops, then its analytical
expression must be multiplied by the coefficient κm

aa. After this transformation the diagram
expansion takes on the form of well-known Feynman’s diagrams.

7. Heisenberg Model

7.1. Diagram Technique

Let us consider the Heisenberg model with the exchange interaction and the magnetic dipole
interaction (MDI) [33]. The exchange interaction is short-ranged and the MDI is long-
ranged. The internal dynamics of a spin system in the Heisenberg model is described by the
Lie group Spin(3). The Lie algebra L = so(3) is associated with this group and is spanned
on spin operators Sµ(~1), where µ = −, +, z. Operators S± = Sx ± iSy, Sz satisfy the
commutation relation

[Sz(~1), S+(~1′)] = S+(~1)δ~1~1′

[Sz(~1), S−(~1′)] = −S−(~1)δ~1~1′

[S+(~1), S−(~1′)] = 2Sz(~1)δ~1~1′ .

The Hamiltonian of the Heisenberg model is

H0 = −gµB

∑

~1

Hz(~1)Sz(~1)− 1
2

∑

~1,~1′

Jµν(~1−~1′)Sµ(~1)Sν(~1′), (45)

where Hz ( ~Hz ‖ Oz) is the external magnetic field. g and µB are the Landé factor and the
Bohr magneton, respectively. Jµν(~1 − ~1′) = Jνµ(~1′ − ~1) is the interaction between spins,
which is the sum of the exchange interaction Iµν and the MDI

Jµν(~1−~1′) = Iµν(~1−~1′)− 4π(gµB)2∇µΦ(~r − ~r ′)∇′ν
∣∣
~r=~1,~r ′=~1′ , (46)

where Φ(~r − ~r ′) is determined by the equation

∆Φ(~r − ~r ′) = δ(~r − ~r ′),

∇µ = {∇−,∇+,∇z} =
{

1
2

(
∂

∂x
+ i

∂

∂y

)
,
1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z

}
.

The Cartan subalgebra is formed by the operator Sz , H = Span{Sz}. After choosing
the operator S− as the senior operator in the operator ordering (22) with the root α−(Sz) =
−1, we can determine the spin propagator (29) as

D−(~1, ωm) =
1

iωm + p0(~1)
, (47)
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where ωm = 2πm (m = 0,±1, . . .), p0(~1) = βgµBHz(~1). Root spaces LS− , LS+ are
one-dimensional, therefore, f -vertices are absent in the diagram expansion. According to
section 3.3, factors corresponding to vertices in the diagram expansion are: va = ve = 1,
vb = Cz

+− = 2, vc = C−
z− = −1, vd = Cz

+−C−
z− = −2.

Blocks factors are expressed by relation (24). If the representation ρ of the Cartan
subalgebra H is realized by diagonal (2S+1)×(2S+1)-matrices, then coefficients Γ(H)

jn,...,j1
are expressed in terms of the Brillouin function BS [7, 8, 9]

Γ(H)
z (~1) = B(p0) = 〈〈Sz〉〉0 = SBS(Sp0)

Γ(H)
z...z(~1) = B[n](p0) = S

∂nBS(Sp0)
∂pn

0

, (48)

where n = κ−1, κ is the number of isolated parts in the block, 〈〈. . .〉〉0 denotes the statisti-
cal averaging performed over the states described by the HamiltonianH (45) without the in-
teraction Jµν between spins. BS(x) = (1+1/2S) coth[(1+1/2S)x]−(1/2S) coth(x/2S).

7.2. Self-consistent-Field Approximation

According to (35), in the self-consistent-field approximation the exchange and dipole mag-
netic fields are added to the applied magnetic field ~Hz

H(ex)
µ (~1) = (gµB)−1

∑

~1′

Iµν(~1−~1′)〈〈Sν(~1′)〉〉

H(m)
µ (~1) = −4πgµB∇µ

∑

~1′

Φ(~r − ~r ′)∇′ν〈〈Sν(~r ′)〉〉
∣∣∣∣∣∣

~r=~1
~r ′=~1′

, (49)

where 〈〈Sν(~r)〉〉 = 〈〈Sz(~r)〉〉δνz is the statistical average spin. The dipole magnetic field
can be written as

H(m)
µ (~1) = ∇µ

∫

V

1
|~r − ~r ′|∇

′
νM

ν(~r ′) d3r′

∣∣∣∣∣∣
~r=~1

+ H(a)
µ (~1),

where the first term is the depolarizing magnetic field of the continuum ferromagnetic sam-
ple with the volume V ; Mν(~r) = gµB〈〈Sν(~r)〉〉/Va is the vector of the magnetic moment
density, which is defined by the averaging over the atomic volume Va;

H(a)
µ (~1) = Va∇µ

∑

~1′

1
|~r − ~r ′|∇

′
νM

ν(~r ′)− ∇µ

∫

V

1

|~r − ~r′′|
∇′′νMν(~r′′) d3r′′

∣∣∣∣∣∣
~r=~1

~r ′=~1′

is the anisotropy magnetic field, which depends on the type of the lattice and the sample
size. If the lattice is of the cubic type and the sample size is much greater than the lattice
constant a, then H

(a)
µ (~1) = 0. In other cases, H

(a)
µ (~1) 6= 0 and size- and lattice-dependent

effects must be taken into account [34, 35].
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In the framework of the diagram technique the rearrangement in the Hamiltonian H0

corresponds to the summation of all diagrams that can be divided into two parts through
breaking an interaction line (one-tail part of diagrams) [7, 8, 9]. The summation of one-tail
parts gives the summary field ~H(c) = ~Hz + ~H(ex) + ~H(m). The magnetic field H

(m)
µ (~r)

depends on the shape of the ferromagnetic sample. If the sample has the ellipsoidal shape,
the lattice is of the cubic type and the sample size is much greater than a, then the field
H

(m)
µ (~r) is uniform [36]. If the summary field ~H(c) is not directed along the axis Oz,

then we choose the basis (x′, y′, z′) such that ~H(c) ‖ Oz′. From the equilibrium condition
[ ~H(c) × 〈〈~S〉〉] = 0 it follows that 〈〈~S〉〉 ‖ ~H(c) ‖ Oz′. After transformation to spin oper-
ators Sν in coordinates (x′, y′, z′) the diagram expansion is given by relation (31), where
the substitution p0 → p = βgµBH

(c)
z in the propagator D− in relation (47) is performed.

After this transformation all one-tail parts of diagrams are not taken into account. We sup-
pose that ~Hz, ~H(ex), ~H(m) ‖ Oz. In this case, for normal magnetized films the depolarizing
magnetic field ~H(m) is equal to −4π ~M [36].

7.3. P-matrix and Dispersion Equations for Spin Excitations in the General
Form

The next approximation is the EGFI approximation. In the framework of this approximation
the bare Green functions (37) in the P(0)-matrix (36) have the form

G(0) = ‖G(0)
µν ‖ =




0 G
(0)
−+ 0

G
(0)
+− 0 0
0 0 G

(0)
zz




=




0 2B(p)D−(~1,~1′, ωm) 0
2B(p)D−(~1,~1′,−ωm) 0 0

0 0 B[1](p)δ~1~1′δm0




The equation, which determines the matrix G of effective Green functions, is derived
from equation (38) for the P-matrix

G = G(0) + G(V(ex) + V(dip))G(0), (50)

where V(ex) = ‖βIµν(~1− ~1′)‖ and V(dip) = ‖ − 4πβ(gµB)2∇µΦ(~r − ~r ′)∇′ν‖~r=~1,~r ′=~1′ .
Dispersion relations for spin excitations are determined by P-matrix poles which coin-

cide to poles of the matrix G given by equation (50). Accordingly, dispersion relations can
be derived from eigenvalues of equation (40). Since the considered interaction is the sum of
exchange and magnetic dipole interactions, we can obtain eigenvalues and eigenfunctions
of equation (40) by two-step procedure. On the first stage, we perform the summation of
diagrams, taking into account the exchange interaction, and find the matrix G(1) = ‖G(1)

µν ‖
G(1) = G(0) + G(0)V(ex)G(1). (51)

On the second stage, the summation of diagrams with dipole interaction lines is per-
formed. This gives the equation for the matrix G of effective Green functions expressed in
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terms of the matrix G(1)

G = G(1) + GV(dip)G(1). (52)

Thus, the solution of equation (50), which determines the matrix G, is equivalent to the
solution of equations (51), (52). After the performed two-step summation, equation (40)
for eigenfunctions p

(λ)
µ = h

(λ)
µ is written in the more convenient form

h(λ)
µ (~1, ωm)−

∑
ρ,σ
~1′ ~1′′

V (dip)
µρ (~1− ~1′, ωm)G(1)

ρσ (~1′, ~1′′, ωm)h(λ)
σ ( ~1′′, ωm) = 0. (53)

The solution of simultaneous equations (51), (53) gives dispersion relations for spin
excitations. These equations can be reduced to the linearized Landau-Lifshitz equations
and the equation for the magnetostatic potential. In order to perform this transformation
one needs to make a transition to the retarded Green functions.

7.4. Linearized Landau-Lifshitz Equations, Equation for the Magnetostatic
Potential and Dispersion Relations

We transform matrix equation (51) to equations describing small variations of the magnetic
moment density (or the variable magnetization), mν [33]. The variable magnetization mν

under the action of the magnetic field hν is given by the retarded Green functions, which
are determined by the analytical continued values of the matrix G(1) [37]

mν(~1, ω) =
β(gµB)2

Va

∑

ρ,~1′

G(1)
νρ (~1, ~1′, ωm)

∣∣∣∣∣∣
iωm→ω−iε

hρ(~1′, ω). (54)

The analytical continuation iωm → ω − iε defines the retarded Green functions.
hρ(~1, ω) is the field of the magnetic dipole-dipole interaction acting on spins. Multiply-
ing matrix equation (51) by G(0)−1 from the left and by hρ from the right, performing the
analytical continuation iωm → ω − iε and taking into account relation (54), we get matrix
equation (51) in the form of simultaneous equations

∑

ν,~1′

[G(0)−1
ρν (~1, ~1′, ω)− βIρν(~1− ~1′)]mν(~1′, ω) =

β(gµB)2

Va
hρ(~1, ω). (55)

We suppose that the exchange interaction is isotropic, 2I−+ = 2I+− = Izz = I , and
the Fourier transform of the exchange interaction with respect to the lattice variables is
Ĩ(~k) =

∑
~1 I(~1) exp(−i~k~1) = Ĩ(0) − wk2. Then, after these suppositions equations (55)

have the form
Ê±m±(~1, ω) = 2γM(~1)h∓(~1, ω) (56)

Êzmz(~1, ω) =
B[1](p)
B(p)

γM(~1)hz(~1, ω), (57)

where γ = gµB/~ is the gyromagnetic ratio; M(~1) = gµBB(p)/Va is the magnetic mo-
ment density at the low-temperature approximation. We say that the operators Ê±, Êz:
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Ê±m±(~1, ω) = [γ(H(~1) + H(m)(~1))± ω]m±(~1, ω)

+
4πγαM(~1)

Vb

∑

~1′

∫

Vb

k2 exp[i~k(~1− ~1′)]m±(~1′, ω) d3k

Êzmz(~1, ω) = ω





mz(~1, ω)− βB[1](p)
Vb

∑

~1′

∫

Vb

Ĩ(~k) exp[i~k(~1− ~1′)]mz(~1′, ω) d3k





are Landau-Lifshitz operators. The field H(m)(~1) is defined by relation (49) and depends
on the magnetic moment density M(~1); Vb = (2π)3/Va is the volume of the first Brillouin
zone; α = wVa/4π(gµB)2 is the exchange interaction constant. If the scale of the spatial
distribution of the variable magnetization mν(~1, ω) and the sample size are much greater
than the lattice constant a, then the sum over the lattice variables

∑
~1 in Ê±, Êz can be

converted into an integral over the sample volume V −1
a

∫
d3r and the operators Ê±, Êz are

pseudodifferential operators of order 2 [38].
Equations (56), (57) have the generalized form of the Landau-Lifshitz equations [39,

40]. Solutions m± of equations (56) depend on temperature, because β = 1/kT is con-
tained in the variable of the Brillouin function B(p), through which the magnetic moment
density M(~1) is expressed. Equation (57) describes longitudinal variations of the variable
magnetization under the influence of the field hz . At low temperature the derivative of
the Brillouin function B[1](p) tends to 0 and the longitudinal variable magnetization mz is
negligible.

From the form of the magnetic dipole interaction in relation (46) it follows that the field
hν in equations (53), (54) is magnetostatic, i.e. it is expressed in terms of the magnetostatic
potential ϕ: hν = −∇νϕ. We transform equation (53) to the equation for the magnetostatic
potential ϕ(~r, ω). Taking into account formula (54) and the explicit form of the magnetic
dipole interaction in relation (46), performing the derivation∇µ, the analytical continuation
iωm → ω− iε and the summation of equation (53) over the index µ, we obtain the equation
expressed in terms of ϕ, mν

−∆ϕ(~r, ω) + 4π∇νmν(~1, ω)|~1→~r = 0. (58)

Thus, in consideration of the Landau-Lifshitz equations (56), (57), the dispersion relations
of spin excitations are given by eigenvalues of equation (58).

Let us consider the case, when the temperature is low, and, therefore, diagrams contain-
ing blocks with isolated parts can be dropped. Since derivatives of the Brillouin function
B

[n]
S (p) in relation (48) tend to 0 exponentially with temperature decreasing, it follows that

the contribution of these diagrams to effective propagators is negligible. Owing to this,
from equation (57) we obtain that mz → 0 and equation (57) is dropped. In this case, in
order to find dispersion relations for spin excitations we should solve equations (56), (58).
Equations (56) are pseudodifferential equations and their solvability is determined by the
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existence of the parametrices Ê−1
± for the Landau-Lifshitz operators Ê±(~r, ω) [38]. Para-

metrices are inverse pseudodifferential operators modulo a pseudodifferential operator of
order −∞ and can be determined by methods of the symbol calculus. The parametrices
Ê−1
± exist on the functional space N orthogonal to the eigenvectors of operators Ê± or to

the kernel spaces Ker Ê± =
∑

j Cj
±m

(0)j
± (~r, ω), where m

(0)j
± (~r, ω) are zero solutions of

equations Ê±(~r, ω)m(0)j
± (~r, ω) = 0. Discarding the zeroth eigensolutions m

(0)j
± is equiv-

alent to requiring that m±(~1, ω) = 0 in relation (54) for zero values of the magnetic field
h±(~1, ω), i.e. there does not exist a spin excitation with m±(~1, ω) 6= 0 and h±(~1, ω) = 0.
Taking into account equation (56) and the condition that the parametrices Ê−1

± exist on the
space N , from equation (58) we obtain the equation for the magnetostatic potential ϕ

{∆ + 8π[∇+Ê−1
+ (~r, ω)γM(~r)∇− +∇−Ê−1

− (~r, ω)γM(~r)∇+]}ϕ(~r, ω) = 0. (59)

Equation (59) gives dispersion relations of spin excitations and eigenfunctions
ϕ(λ)(~r, ω) corresponding to the EGFI approximation.

Consider a ferromagnetic film with the cubic lattice and with the thickness 2d À a. For
a normal magnetized ( ~M ‖ Oz) homogeneous over thickness z ∈ [−d, d] ferromagnetic
film the spectral parameter λ of eigenfunctions consists of the mode number j and the wave
vector ~q, and the eigensolutions of equation (59) are the wave functions [41]:

ϕ(j,~q)(x, y, z) = (2π)−1ϕ(j)(z) exp(iqxx + iqyy) (60)

ϕ(j)(z) = f (j)−1/2





cos[q(j)
z z + π(j − 1)/2], z ∈ [−d, d]

(−1)j−1q
(j)
z exp[q(d− z)]/q

(j)
0 , z ≥ d

q
(j)
z exp[q(d + z)]/q

(j)
0 , z ≤ −d

where j = 1, 2, 3, . . . is the mode number, q
(j)2
0 = q2 + q

(j)2
z , ~q is the two-dimensional

longitudinal wave vector, q2 = q2
x + q2

y , f (j) = d + q/q
(j)2
0 . The transverse wave vector

q
(j)
z is closely connected to the longitudinal wave vector q = |~q| by the relation

2 cot 2q(j)
z d =

q
(j)
z

q
− q

q
(j)
z

. (61)

For q ¿ q
(j)
z solutions of equation (61) are approximately equal to the expressions

j = 1 : q(j)
z =

√
q

d
+

q3/2d1/2

2
+ O(q2)

j > 1 : q(j)
z =

π(j − 1)
2d

+
2q

π(j − 1)
+ O(q2).

The eigenfunctions ϕ(j)(z) form a set of complete orthogonal functions over the interval
[−d, d]. The eigenvalues of equation (59) corresponding to ϕ(j)(z) determine the dispersion
relations of spin waves

ω(j)2(~q) = Ω(j)(Ω(j) + ΩMq2/q
(j)2
0 ), (62)
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where Ω(j) = γ(H − 4πM + 4παMq
(j)2
0 ), ΩM = 4πγM , q

(j)
0 = (q2 + q

(j)2
z )1/2 is the

function of q given by equation (61). Dispersion curves for the first eleven spin wave modes
propagating in the magnetic film of thickness D = 2d = 0.5 µm with 4πM = 1750 Oe
and α = 3.2·10−12 cm2 are shown in figure 5. The external magnetic field H is equal to
3500 Oe.
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Figure 5. Dispersion curves for the first eleven spin wave modes propagating in the normal
magnetized film of thickness D = 0.5 µm with 4πM = 1750 Oe, α = 3.2·10−12 cm2 at the
applied magnetic field H = 3500 Oe. a - Transitions between thermal excited spin wave
modes with mode numbers i and k in the confluence process ω(j)(0) + ω(k)(~q) = ω(i)(~q)
with the first (j = 1) long wavelength spin wave mode. The confluence of the j-mode with
the thermal excited k-mode forms the i-mode.

In the ϕ(j,~q)(~r)-representation (60) at low temperature elements of the P-matrix (39)
are given by

P
(1)
AB(j, j′, ~q, ~q′, ωm) =

∫ ∫
ϕ(j,~q)∗(~r)P (1)

AB(~r, ~r′, ωm)ϕ(j′,~q′) d3r d3r′

= F (j)P̄AB(j, ~q, ωm)δjj′δ(~q − ~q′), (63)

where

P̄(1−)(1+)(j, ~q, ωm) = 2ρV 2
a (Ω(j) + 2η

(j)
−+ + iωm)
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P̄(1+)(1+)(j, ~q, ωm) = −4ρV 2
a η

(j)
−−

P̄(1−)(1−)(j, ~q, ωm) = −4ρV 2
a η

(j)
++

P̄(1z)(1ν)(j, ~q, ωm) = P̄(1ν)(1z)(j, ~q, ωm) = P̄(1z)(2ν)(j, ~q, ωm)
= P̄(2ν)(1z)(j, ~q, ωm) = 0 (ν = −,+, z)

P̄(1−)(2−)(j, ~q, ωm) = P̄(1+)(2+)(j, ~q,−ωm)

=
(

B(p)
~

Ĩ(~q(j)
0 )− 2η

(j)
−+

)
(Ω(j) + iωm) +

2B(p)
~

Ĩ(~q(j)
0 )η(j)

−+

P̄(1−)(2+)(j, ~q, ωm) = −2η
(j)
++(p̄ + iωm)

P̄(1+)(2−)(j, ~q, ωm) = −2η
(j)
−−(p̄− iωm)

P̄(1±)(2z)(j, ~q, ωm) = −2η
(j)
∓z(Ω

(j) ∓ iωm)

P̄(2−)(2−)(j, ~q, ωm) = −ρ−1η
(j)
−−(p̄2 + ω2

m)

P̄(2+)(2+)(j, ~q, ωm) = −ρ−1η
(j)
++(p̄2 + ω2

m)

P̄(2−)(2+)(j, ~q, ωm) =
1
2
ρ−1(p̄ + iωm)

[(
B(p)
~

Ĩ(~q(j)
0 )− 2η

(j)
−+

)
(Ω(j) − iωm) +

2B(p)
~

Ĩ(~q(j)
0 )η(j)

−+

]

P̄(2±)(2z)(j, ~q, ωm) = −ρ−1η
(j)
±z(p̄∓ iωm)(Ω(j) ± iωm)

P̄(2z)(2z)(j, ~q, ωm) = F (j)−1βVaI(~q(j)
0 )− ρ−1η(j)

zz (Ω(j)2 + iω2
m)

F (j) = (ω(j)2 + ω2
m)−1, ρ =

B(p)
β~Va

, p̄ = γH(c)
z

η(j)
µν =

ΩMqµqν

q
(j)2
0

(µ, ν = −, +, z)

q± =
1
2
(qx ∓ iqy), Ĩ(~q(j)

0 ) = Ĩ(0)− wq
(j)2
0 .

Besides this, the symmetry relation P̄(aµ)(bν)(j, ~q, ωm) = P̄(bν)(aµ)(j, ~q,−ωm) is hold.

7.5. Relaxation of Spin Wave Modes

The relaxation of spin wave modes are described in the next approximation of theP-matrix,
in the one-loop approximation. Because every sum over ~q, q

(j)
z is proportional to Va/R3

int,
where Rint is the radius of the interaction between spins, then the diagrams containing
n loops give correction terms to the Green functions Gµν in equation (50) and to the P-
matrix in relation (39) proportional to (Va/R3

int)
n [7, 8]. For Va/R3

int ¿ 1 the one-loop
diagrams give the greatest correction term to Gµν and to P and correspond with the three-
magnon processes induced by the MDI. Correction terms to the spin wave spectrum and the
relaxation are determined by self-energy one-loop diagram insertions to the P-matrix given
by relation (63). Analytical expressions of the self-energy diagrams form the self-energy
matrix Σ̂ = ‖ΣAB‖. Damping of excitations is defined by the imaginary part of the pole of
the forming matrix P(Σ) = ‖P (Σ)

AB ‖ with insertions under the analytical continuation (32).
The matrix P(Σ) is connected with the P(1)-matrix by the equation of the Dyson type
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P
(Σ)
AB (j, j′, ~q, ~q′, ωm) = P

(1)
AB(j, j′, ~q, ~q′, ωm) +

1
V 2

a

∑

j1,j2,C,D

∫ ∫
P

(Σ)
AC (j, j1, ~q, ~q1, ωm)

×ΣCD(j1, j2, ~q1, ~q2, ωm)P (1)
DB(j2, j

′, ~q2, ~q′, ωm) d2~q1d
2~q2. (64)

The factor V −2
a in equation (64) is appeared due to the transition from the lattice variables

~1 to the spatial variables ~r.
We consider relaxation of long wavelength spin waves at low temperature. Since deriv-

atives of the Brillouin function B
[n]
S (p) (48) tend to 0 exponentially with temperature de-

creasing, it follows that diagrams containing blocks with isolated parts can be dropped [7].
Therefore, non-zero elements of the Σ̂-matrix are described by one-loop diagrams with two
c-vertices (figure 6)

Σ̂ =




Σ(1−)(1−) Σ(1−)(1+) 0
... 0 0 Σ(1−)(2z)

Σ(1+)(1−) Σ(1+)(1+) 0
... 0 0 Σ(1+)(2z)

0 0 0
... 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0

... 0 0 0

0 0 0
... 0 0 0

Σ(2z)(1−) Σ(2z)(1+) 0
... 0 0 Σ(2z)(2z)




.

If we consider the spin wave mode j in the frequency range, where its dispersion curve
does not intersect with dispersion curves of other modes, then from equation (64) we find
that the pole of the matrix P(Σ) is determined by the equation

det[1−
∑

D

Σ̄CD(j, j, ~q, ωm)F (j)P̄DB(j, ~q, ωm)]|iωm→ω+iε sign ω = 0, (65)

where the regular part Σ̄CD is connected with ΣCD by the relation ΣCD(j, j′, ~q, ~q′, ωm) =
Σ̄CD(j, j′, ~q, ωm)Vaδ(~q − ~q′). F (j), P̄DB are defined in relations (63). Performing the
polynomial decomposition of the determinant (65) with respect to Σ̄CD, neglecting higher
orders and holding linear terms containing Σ̄CD in the decomposition, we obtain that for
long wavelength spin waves the term with Σ̄(1+)(1−), which is determined by two diagrams
in Fig. 6a, makes a major contribution to the pole singularity of the P(Σ)-matrix. In this
case, equation (65) is simplified

1− Σ̄(1+)(1−)(j, j, ~q, ωm)F (j)P̄(1−)(1+)(j, ~q, ωm)]|iωm→ω+iε sign ω = 0

Substituting F (j), P̄(1−)(1+) according to relations (63), we find the relationship be-
tween the reciprocal lifetime of spin waves δω(j) and the imaginary part Σ̄(1+)(1−)

δω(j)(~q) =
2B(p)Va

~β
Im Σ̄(1+)(1−)(j, j, ~q, ωm)|iωm→ω+iε sign ω
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Figure 6. Self-energy diagrams ΣAB in the low temperature one-loop approximation. Sec-
ond and third diagrams in (d) are needed to perform partial summation and substitution of
effective Green functions for bare propagators in the first diagram.

The analytical expressions for diagrams of the self-energy matrix element Σ̄(1+)(1−) are
determined by rules of the diagram technique (31)

Σ̄(1+)(1−)(j, j, ~q, ωm) =
1

4B(p)

∑

n,i,k

∫
F (i)F (k)
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×[P̄(1−)(1+)(i,−~q1,−ωn)P̄(2z)(2z)(k, ~q − ~q1, ωm − ωn)

+
1

8B(p)
P̄(1−)(2z)(i, ~q1, ωn)P̄(2z)(1+)(k, ~q − ~q1, ωm − ωn)]N̄2(j, ~q; i, ~q1; k, ~q − ~q1) d2q1,

where the factor N̄ arises in the ϕ-representation (60) from the coincidence of sites in a
block

N̄(j, ~q; i, ~q1; k, ~q − ~q1) =
Ξjik

2πVa[f (j)(~q)f (i)(~q1)f (k)(~q − ~q1)]1/2
,

Ξjik =
∑

σi,σk=±1

sin(q(j)
z + σiq

(i)
z + σkq

(k)
z )d

q
(j)
z + σiq

(i)
z + σkq

(k)
z

cos[π(j + σii + σkk − 3)/2].

Summing over the frequency variable ωn and performing the analytical continuation,
for β~ω(p) ¿ 1 (p = j, i, k) we get the final expression of the damping for the spin wave
mode j

∆(j)(~q) =
δω(j)(~q)

ω(j)
=

Va

16πβ~f (j)

∑

i,k,s

∫ Ξ2
jik

f (i)f (k)ω(i)2ω(k)2|v(i) − v(k)|

×
[(

Ω(i) + 2η
(i)
−+ + ω(i)

)
Ω(k)η(k)

zz η
(k)
−+ +

(
Ω(k) + 2η

(k)
−+ − ω(k)

)
Ω(i)η(i)

zz η
(i)
−+

+
1

16B(p)

(
Ω(i) + ω(i)

)(
Ω(k) − ω(k)

)(
η

(i)
+zη

(k)
−z + η

(i)
−zη

(k)
+z

)]
δ(~q1 − ~q (s)) d2q1, (66)

where ~q (s) is the solution of the equation

ω(j)(~q) = ω(i)(~q (s))− ω(k)(~q − ~q (s)),

v(i) = v(i)(~q1), v(k) = v(k)(~q−~q1) are the group velocities dω/dq of i- and k-modes given
by equation (62) at the wavevectors ~q1 and ~q − ~q1, respectively. Values of q

(i)
z , q

(i)
0 , ω(i),

Ω(i), η
(i)
µν , f (i) are calculated at the wavevector ~q1, and values of q

(k)
z , q

(k)
0 , ω(k), Ω(k), η

(k)
µν ,

f (k) are calculated at the vector ~q − ~q1.
Relation (66) describes relaxation of the long wavelength spin wave j-mode caused by

inelastic scattering on thermal excited spin wave modes. Relaxation occurs through the
confluence of the j-mode with the k-mode to form the i-mode. The confluence processes
are induced by the MDI and are accompanied by transitions between thermal excited i and
k-modes (figure 5). From the explicit form of Ξjik it follows that the confluence processes
take place, when the sum of mode numbers j+i+k is equal to an odd number. The damping
∆(j) is grown directly proportional to the temperature. The linear temperature dependence
of ∆(j) is characteristic for all three-spin-wave confluence processes independently of the
shape sample.
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8. Spin System Model with an Uniaxial Anisotropy

As the case of application of the developed diagram technique for models with more com-
plicated internal Lie-group dynamics, we consider a model of a spin ensemble with an
uniaxial anisotropy

H0 = −gµB

∑

~1

[Sz(~1)Hz(~1)+(Sz)2(~1)Ha(~1)]−1
2

∑

~1,~1′

J(~1−~1′)[Sz(~1)Sz(~1′)+S−(~1)S+(~1′)],

(67)
where Hz(~1) is the external magnetic field, Ha(~1) is the anisotropy field. We assume that
the absolute value of spins is 1, |S| = 1. g and µB are the Lande factor and the Bohr
magneton, respectively.

Let us perform transformation from the Lie algebra L(0) = {S+, S−, Sz} to the Lie
algebra L(1) generated by the composite operators SµSν . This transformation allows us
to take into account the anisotropy in the zero-order approximation. The algebra L(1) is
isomorphic to the algebra gl(3) of 3 × 3-matrices and describes the quadrupole spin dy-
namics [42, 43]. The operator (Sz)2 is contained in the algebra L(1) and the algebra L(0) is
the subalgebra of L(1): L(0) ⊂ L(1). Matrices

Eij = i

j


0
... 0

· · · 1 · · ·
0

... 0




form the basis of the algebra gl(3). Spin operators, by whose the Hamiltonian H0 (67) is
written, are expressed via the matrices Eij

Sz = E11 −E33

Sz2 = E11 + E33

S+ = E12 + E23

S− = E21 + E32.

The algebraL(1) = gl(3) can be decomposed with the direct sumL(1) = SpanI⊕sl(3),
where sl(3) is the semisimple Lie algebra isomorphic to the algebra of matrices with zero
traces and I is the identical operator. The Cartan subalgebra H of the algebra gl(3) can
be chosen as the subalgebra spanned on diagonal operators h(1) = ‖h(1)

ij ‖ = E11 − E33,

h(2) = ‖h(2)
ij ‖ = E11 − E22 and h(3) = ‖h(3)

ij ‖ = E11 + E22 + E33. The operator (Sz)2

is expressed via operators h(k), (Sz)2 = −h(1)/3 + 2h(2)/3 + 2h(3)/3. Roots αij of the
Lie algebra gl(3) are linear forms satisfied the condition αij(h(k)) = h

(k)
ii − h

(k)
jj . The root

space corresponding to the form αij is the one-dimensional space Eαij = cEij (c ∈ C).
This leads to the absence of f -vertices. In order to define propagators (29), we choose the
operator ordering (22)
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E12 Â E32 Â E13 Â H Â E31 Â E23 Â E21.

Roots α12, α32, α13 correspond to senior operators E12, E32, E13, respectively. Then,
in the frequency representation three roots αjk determine three propagators

D(jk)(~1, ωn) =
1

iωn − fjk(~1)
, (68)

where ωn = 2πn; fjk(~1) =
∑3

l=1 αjk(h(l))bl(~1); (jk) is the double index equal 12, 32 and
13; b1(~1) = −gµB[Hz(~1)−Ha(~1)/3], b2(~1) = −2gµBHa(~1)/3, b3(~1) = −2gµBHa(~1)/3
are external fields in the Hamiltonian (2) corresponding to the operators h(1), h(2), h(3) of
Cartan’s subalgebra, respectively. Taking into account the explicit form of the fields bl(~1)
and the scale transformation −βbl → bl performed in section 2, we can write the energies
fjk(~1) in relation (68) as

f12(~1) = βgµB[Hz(~1) + Ha(~1)]

f32(~1) = βgµB[−Hz(~1) + Ha(~1)] (69)

f13(~1) = 2βgµBHz(~1).

The functional W [p(H)] (23) can be written in the form

W [p(H)] =
∑

~1

ln Sp exp{
∑

j

[uj(~1)h(j)]}

=
∑

~1

ln[exp(u1(~1)+u2(~1)+u3(~1))+exp(−u2(~1)+u3(~1))+exp(−u1(~1)+u3(~1))], (70)

where uj(~1) = −β[bj(~1) + p
(H)
j (~1)], p

(H)
j (~1) are infinitesimal auxiliary fields. In the self-

consistent-field approximation (35) the magnetic field Hz(~1) is rearranged

H(s)
z (~1) = Hz(~1) +

∑

~1′

J(~1−~1′)〈〈Sz(~1′)〉〉0.

The transformation Hz(~1) → H
(s)
z (~1) results in changes in the external field b1(~1) and in

the energies fjk(~1) in relation (69). In the self-consistent-field approximation the nonzero
bare Green functions (37) with indices (jk) corresponding to nondiagonal operators Ejk

have the form

G
(0)
(12)(21)(~1,~1, ωn) =

exp(βgµBHz)− exp(−βgµBHa)
F [iωn − f12(~1)]

G
(0)
(32)(23)(~1,~1, ωn) =

exp(−βgµBHz)− exp(−βgµBHa)
F [iωn − f32(~1)]

(71)

G
(0)
(13)(31)(~1,~1, ωn) =

exp(βgµBHz)− exp(−βgµBHz)
F [iωn − f13(~1)]

,
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where F = exp(βgµBHz) + exp(−βgµBHz) + exp(−βgµBHa). The bare Green func-
tions with indices corresponding to diagonal operators h(k) (k = 1, 2, 3) are functions
G

(0)
(jj)(ii)(~1,~1, ωn) = [δ2W/δbi(~1)δbj(~1)] · δn0. For indices i, j = 1,2 Green’s functions

G
(0)
(jj)(ii) differ from zero. If one of indices i or j is equal to 3, then G

(0)
(jj)(ii) = 0. Bare

Green’s functions G
(0)
(ij)(kn) and the bare interaction J(~1 − ~1′) determine the matrix of ef-

fective Green’s functions and interactions P(1) (39). Dispersion relations of quasi-particle
excitations (40) are given by the P(1)-matrix poles. Taking into account relations (69), (70)
and (71), we can conclude that the given spin model possesses three modes of spin waves
corresponding to transitions between energy levels of non-equidistant spectrum. Transi-
tions between levels are induced by nondiagonal operators Eij . The non-equidistance of
the spectrum is due to the anisotropy field Ha. Initial points of spin wave dispersion curves
are determined by differences of energies of non-equidistant spectrum levels and correspond
to energies f12, f32, f13.

The spin model (67) is important for applications as the model describing spin memory
cells [19]. For Ha > Hz , two states with energy minima exist in a cell, |1〉 with Sz = 1 and
| − 1〉 with Sz = −1. Due to high values of the field Ha, transitions between these states,
|1〉 → |0〉 → | − 1〉 and | − 1〉 → |0〉 → |1〉, are realized by jumping over the state |0〉
(Sz = 0) with the energy maximum. This makes possible to write one bit of information.

9. Hubbard Model

The Hubbard model is an approximate model used in solid state physics to describe the
transition between conducting and insulating states and the high-temperature superconduc-
tivity in strongly correlated electron systems [44]. In the Hubbard model, electrons are
viewed as occupying the standard orbitals of their constituent atoms, and then hopping be-
tween atoms during conduction. If the strength of the interactions between electrons is
comparable to their kinetic energy, then due to strong electronic correlations the theoret-
ical description of these systems becomes difficult. A great progress was achieved with
the development of the dynamical mean-field theory (DMFT), which takes into account
a large local part of electronic correlations and is formally exact in the limit of infinite
dimensions (d = ∞) [45, 46]. Despite the success of the DMFT, nonlocal corrections are
required. Nonlocal correlations are responsible for a rich variety of phenomena such as spin
waves, screening of the Coulomb interaction, and phase transitions. Different extensions
of the DMFT were proposed to cure this deficiency: the dynamical cluster approximation
and the cellular DMFT [16, 47, 48, 49], the extended DMFT [50, 51] and the DMFT +
Σk approach [52, 53, 54]. These approaches have certain drawbacks: (1) these general-
ized theories do not give systematic expansion in series of order 1/d and (2) the cluster
approximation and the cellular DMFT take into account only short-range correlations. Re-
cent progress to go beyond the DMFT is achieved in the dynamical vertex approximation
(DΓA), which is the systematic diagrammatic extension of the DMFT by long-range cor-
relations [55]. Taking into account the above-mentioned theories, one can conclude that
development of the diagram technique of the Hubbard model is important for derivation of
next, more precise approximations.
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In the general case, the Hubbard model is characterized by the Hamiltonian

H0 =
∑

σ,~1,~1′
(~16=~1′)

t(~1−~1′)c+
σ (~1)cσ(~1′)−

∑

~1

{
µ(~1)[n↑(~1) + n↓(~1)]

+ H̃(~1)[n↑(~1)− n↓(~1)]− U(~1)n↑(~1)n↓(~1)
}

, (72)

where t(~1 − ~1′) is the hopping parameter, c+
σ (~1) and cσ(~1′) are creation and annihilation

Fermi operators, respectively, σ = {↑, ↓} is the spin index, nσ(~1) = c+
σ (~1)cσ(~1) is the oper-

ator of the number of electrons with the spin σ on the site~1, U is the energy of the Coulomb
repulsion on crystal lattice sites, µ is the chemical potential, H̃ = 1

2gµBHz . g, µB , Hz are
the Lande factor, the Bohr magneton and the external magnetic field, respectively. Four
electron states can occur on the given crystal lattice site

|j〉 = {|0〉, | ↑〉, | ↓〉, | ↑↓〉}
or in the equivalent conventional notation [12]

|j〉 = {|0〉, |+〉, |−〉, |2〉}.
In order to take into account the energy of the Coulomb repulsion on crystal lattice sites

in the zero-order approximation, we perform transformation from operators c+
σ (~1), cσ(~1) to

Hubbard’s operators [10, 11, 12, 13, 14]

Xij(~1) = |i〉〈j| = i

j


0
... 0

· · · 1 · · ·
0

... 0




The set of operators {X0+, X0−, X+2, X−2 + conjugate operators} is the set of Fermi
type operators. Operators Xii (i = {0, +,−, 2}), X02, X+− and conjugate ones are of
the Bose type. Hubbard’s operators generate the Lie superalgebra gl(2, 2) = Span{I} ⊕
sl(2, 2) with commutation relations

[Xij(~1), Xpq(~1′)] = (δjpXiq(~1)− κ(ij)(pq)δiqXpj(~1))δ~1~1′ ,

where, according to relation (3), for Fermi type operators Xij , Xpq κ(ij)(pq) = −1 and
for other cases κ(ij)(pq) = 1. Operators c+

σ (~1), cσ(~1), nσ(~1) are expressed via Hubbard’s
operators

c↑(~1) = X0+(~1) + X−2(~1)

c↓(~1) = X0−(~1)−X+2(~1)

c+
↑ (~1) = X+0(~1) + X2−(~1)



Diagram Technique 181

c+
↓ (~1) = X−0(~1)−X2+(~1)

n↑(~1) = X++(~1) + X22(~1)

n↓(~1) = X−−(~1) + X22(~1).

The Hamiltonian (72) can be written as

H0 =
∑
~1,~1′

(~16=~1′)

t(~1−~1′)
{

[X+0(~1) + X2−(~1)][X0+(~1′) + X−2(~1′)] + [X−0(~1)−X2+(~1)]

× [X0−(~1′)−X+2(~1′)]
}

+
∑

~1

[p1(~1)h(1)(~1)−µ(~1)h(2)(~1)+H̃h(3)(~1)+Ũh(4)(~1)], (73)

where Ũ = U − 2µ, h(1)(~1) = I is the identical operator, h(2)(~1) = X++(~1) + X−−(~1),
h(3)(~1) = −X++(~1) + X−−(~1) and h(4)(~1) = X22(~1). For generality, we add the formal
field p1(~1) corresponding to h(1)(~1). The Cartan subalgebra H of the algebra gl(2, 2) can
be chosen as the subalgebra spanned on diagonal operators h(i)(~1) (i = 1, 2, 3, 4). Roots
αij = (α(1)

ij , α
(2)
ij , α

(3)
ij , α

(4)
ij ) of nondiagonal Hubbard’s operators Xij(~1) belong to the dual

space H∗

[h(k)(~1), Xij(~1′)] = α
(k)
ij Xij(~1)δ~1~1′

and in the basis {h(i)(~1)} can be written in the form

α0± = (0,−1,±1, 0)

α±2 = (0, 1,∓1,−1)

α02 = (0, 0, 0,−1) (74)

α+− = (0, 0,−2, 0).

Roots of conjugate operators are expressed via roots (74) by the relation αji = −αij .
According to relation (22), we choose the following ordering in the set of Hubbard’s oper-
ators

X02 Â X+− Â X0+ Â X−2 Â X0− Â X+2 Â Cartan subalgebra H

Â X2+ Â X−0 Â X2− Â X+0 Â X−+ Â X20. (75)

Then, in the frequency representation (29), roots (74) determine propagators



182 L.V. Lutsev

D(0±)(~1, ωn) =
1

iωn + β[µ(~1)± H̃(~1)]

D(±2)(~1, ωn) =
1

iωn − β[µ(~1)± H̃(~1) + Ũ(~1)]

D(02)(~1, ωn) =
1

iωn − βŨ(~1)

D(+−)(~1, ωn) =
1

iωn − 2βH̃(~1)
,

where for Fermi propagators D(0±), D(±2) the Matsubara frequencies ωn are equal to 2πn+
1 and for Bose propagators D(02), D(+−) the frequencies ωn = 2πn (n = 0,±1, . . .),
respectively. The functional W [p(H)] (23) can be written as

W [p(H)] =
∑

~1

ln Sp exp

[∑

i

ui(~1)h(i)(~1)

]

=
∑

~1

{u1(~1) + ln[1 + exp(u2(~1)− u3(~1)) + exp(u2(~1) + u3(~1)) + exp(u4(~1))]},

where

u1(~1) = −β(p1(~1) + p
(H)
1 (~1))

u2(~1) = −β(−µ(~1) + p
(H)
2 (~1))

u3(~1) = −β(H̃(~1) + p
(H)
3 (~1))

u4(~1) = −β(Ũ(~1) + p
(H)
4 (~1)),

p
(H)
i (~1) are infinitesimal auxiliary fields.

Taking into account the form of the Hamiltonian (73) and that average values of nondi-
agonal operators are equal to zero, 〈〈Xij(~1)〉〉0 = 0, we find that in the self-consistent-field
approximation (35) parameters µ, H̃ , U are not changed. In the EGFI-approximation the
nonzero bare Green functions (37) corresponding to nondiagonal senior operators Xij (75)
have the form

G
(0)
(0±)(±0)(~1,~1, ωn) = A(~1)D(0±)(~1, ωn){exp[β(µ(~1)± H̃(~1))] + 1}

G
(0)
(±2)(2±)(~1,~1, ωn) = A(~1)D(±2)(~1, ωn){exp[β(µ(~1)± H̃(~1))] + exp(−βŨ(~1))}
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G
(0)
(02)(20)(~1,~1, ωn) = A(~1)D(02)(~1, ωn){exp(−βŨ(~1))− 1} (76)

G
(0)
(+−)(−+)(~1,~1, ωn) = A(~1)D(+−)(~1, ωn){exp[β(µ(~1)−H̃(~1))]−exp[β(µ(~1)+H̃(~1))]},

where A(~1) = {1 + exp[β(µ(~1) + H̃(~1))] + exp[β(µ(~1)− H̃(~1))] + exp[−βŨ(~1)]}−1.
The bare Green functions with indices corresponding to diagonal operators h(k) are

functions G
(0)
(jj)(ii)(~1,~1, ωn) = [δ2W/δui(~1)δuj(~1)] · δn0. If one of the indices i or j is

equal to 1, then G
(0)
(jj)(ii) = 0. For indices i, j = 2, 3, 4, Green’s functions G

(0)
(jj)(ii) differ

from zero

G
(0)
(22)(22)(~1,~1, ωn) = A2(~1)R(~1)S(~1)T (~1)δn0

G
(0)
(22)(33)(~1,~1, ωn) = G

(0)
(33)(22)(~1,~1, ωn) = −A2(~1)R(~1)F (~1)T (~1)δn0

G
(0)
(22)(44)(~1,~1, ωn) = G

(0)
(44)(22)(~1,~1, ωn) = −A2(~1)R(~1)S(~1)Q(~1)δn0

G
(0)
(33)(33)(~1,~1, ωn) = A2(~1)R(~1)[4R(~1) + S(~1)T (~1)]δn0 (77)

G
(0)
(33)(44)(~1,~1, ωn) = G

(0)
(44)(33)(~1,~1, ωn) = A2(~1)R(~1)F (~1)Q(~1)δn0

G
(0)
(44)(44)(~1,~1, ωn) = A2(~1)[1 + R(~1)S(~1)]Q(~1)δn0,

where R(~1) = exp[βµ(~1)], S(~1) = exp[βH̃(~1)] + exp[−βH̃(~1)], F (~1) = exp[βH̃(~1)] −
exp[−βH̃(~1)], Q(~1) = exp[−βŨ(~1)], T (~1) = 1 + Q(~1).

Bare Green’s functions G
(0)
(ij)(kn) and the bare interaction t(~1−~1′) determine the matrix

of effective Green’s functions and interactions P(1) (39). In the EGFI-approximation bare
Green’s functions of the Fermi type G

(0)
(0±)(±0), G

(0)
(±2)(2±) (76) are transformed to effective

ones. Dispersion relations of quasi-particle electron excitations are given by equation (40)

p
(λ)
(±0)(~1, ωm)−

∑

~1′

t(~1−~1′)
[
G

(0)
(0±)(±0)(~1

′,~1′, ωm)

+G
(0)
(∓2)(2∓)(~1

′,~1′, ωm)
]
p
(λ)
(±0)(~1

′, ωm)
∣∣∣
iωm→ω+iεsignω

= 0. (78)

If the quantum system is homogeneous, then eigenvalues of equation (78) determine
four quasi-particle energies

ω1,2(~q) =
1
2
{A(ξ+η)t̄(~q)+ε1+ε2±[(A(ξ+η)t̄(~q)+ε1+ε2)2−4ε1ε2−4A(ξε2+ηε1)t̄(~q)]1/2},
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where A is determined in relations (76), ξ = exp[β(µ ± H̃)] + 1, η = exp[β(µ ∓ H̃)] +
exp(−βŨ), ε1 = −β(µ ± H̃), ε2 = β(µ ∓ H̃ + Ũ), t̄(~q) =

∑
~1 t(~1) exp(−i~q~1). Quasi-

particle energies ω1,2(~q) correspond to two Hubbard’s subbands and to two Zeeman levels
in the nonzero magnetic field H̃ .

Bare Green’s functions of the Bose type G
(0)
(02)(20), G

(0)
(+−)(−+) (76) corresponding to

excitations of electron pairs and spin waves, respectively, and Green’s functions G
(0)
(jj)(ii)

(77) are not changed in the EGFI-approximation. Transformation of these Green’s functions
can be performed in approximations of the P-matrix of higher orders.

It is need to note that for the Hubbard model the developed diagram technique based
on differential functional equations (10) has advantage in comparison with the diagram
technique for creation-annihilation operators and gives us the extended opportunity to in-
vestigate strongly correlated systems.

– Since in the representation of the algebra of Hubbard’s operators the energy of the
Coulomb repulsion on crystal lattice sites are taken into account in the zero-order approx-
imation, the contribution caused by short- and long-range electronic correlations can be
determined with higher precision.

– According to section 4, differential functional equations (10) can be generalized for
models on topologically nontrivial manifolds. After substitution of continuous space vari-
ables for crystal lattice sites, the developed diagram technique can be used to describe topo-
logically nontrivial quantum systems such as electron ensembles in fullerene and carbon
nanotube structures.

– Solutions of functional equations (10) and their symmetries can be studied by the
secondary differential calculus [20, 21, 22]. This gives us the opportunity to investigate
singularities and phase transitions in strongly correlated systems.

10. Conclusion

We have investigated quantum models with internal Lie-group dynamics and have obtained
the following results.

(1) We construct diagram expansions for models with internal Lie-group dynamics. In-
ternal Lie groups are related to finite-dimensional Lie algebras and Lie superalgebras. The
diagram technique is based on the expansion of the generating functional for the tempera-
ture Green functions, which is determined by differential functional equations. Solutions
of the differential functional equations are found in the form of series. This method of the
construction of the diagram expansion is more general, than the methods based on the Wick
theorem and on the expansion of functional integrals. The advantage of the developing dia-
gram technique is the opportunity to construct effective cluster approximations for models
with strongly local interactions. It can be realizable by substitution of composite operators
for single-particle operators in the Hamiltonian describing a model. This operator substi-
tution leads to the substitution of Lie algebras. The original Lie algebra L(0) describing
the internal dynamics of the quantum system is replaced by the Lie algebra L(1), which in-
cludes L(0) as the subalgebra: L(0) ⊂ L(1). The example of this substitution is the change
of Fermi creation-annihilation operators by Hubbard operators in the Hubbard model with
the strongly Coulomb interaction on crystal lattice sites.
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(2) The differential representation makes us possible to generalize functional equations
and the diagram technique for the case of quantum systems on topologically nontrivial
manifolds by the substitution of the generating functional on a sheaf of function rings on a
nontrivial manifold for the generating functional of a constant sheaf of functions. Nontrivial
cohomologies of the manifold, on which the quantum system is acted, lead to the existence
of additional excitations.

(3) In order to find quasi-particle excitations, we introduce the P-matrix – the matrix
of effective Green functions and interactions. The P-matrix is obtained by summation of
series of the bare interaction I(0) and the bare Green functions G(0). Dispersion relations
of quasi-particle excitations are given by the P-matrix poles – by zero eigenvalues of the
operator E − I(0)G(0), where E is the unity operator.

(4) The simplification of the diagram technique occurs for models with semi-simple Lie
algebras and with simple contragredient Lie superalgebras. For the case of the Heisenberg
algebra (superalgebra), the diagram expansion reduces to Feynman’s diagrams for Bose
(Fermi) quantum systems.

(5) Special cases of diagram expansions for models with different internal Lie-group
dynamics are considered. We carry out detailed consideration of the diagram technique
for the Heisenberg model of the spin system described by the Lie group Spin(3) and find
the self-consistent field, spin excitations and relaxation of spin wave modes. It is found
that the calculation of the poles of the P-matrix is equivalent to finding the simultaneous
solution of the linearized Landau-Lifshitz equations and equation for the magnetostatic
potential. We consider the diagram technique and excitations in the spin system model with
an uniaxial anisotropy and in the Hubbard model. Internal dynamics of these models are
more complicated and are described by Lie algebras gl(3) and gl(2, 2), respectively.
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