Уравнения Ландау-Лифшица

При переходе в наномасштабную область феноменологические уравнения Ландау-Лифшица перестают правильно описывать спиновые системы и требуют уточнения. Для уточнения феноменологического уравнения Ландау-Лифшица и для получения из первых принципов его более строгой формы рассмотрена модель Гейзенберга с обменным и магнитным дипольным взаимодействиями. Обобщенные уравнения Ландау-Лифшица для наноразмерных спиновых структур получены на основе диаграммного разложения для спинового ансамбля с внутренней динамической группой Ли *Spin(3)* [2, 3]. Учет магнитного дипольного взаимодействия является важным. Благодаря дальнодействующему характеру, относительно слабое магнитное дипольное взаимодействие трансформирует спинволновой спектр в спектр дискретных мод, зависящий от размерности и формы ферромагнитного образца. Для наноразмерных спиновых систем эта трасформация приводит к существенному изменению способа описания диссипации спиновых волн.

Спектр спинволновых возбуждений.

Согласно общим правилам диаграммного разложения возбуждения квантовой системы определяются полюсами *P*-матрицы. Для модели Гейзенберга с обменным и магнитным дипольным взаимодействиями нахождение полюсов *P*-матрицы эквивалентно совместному решению обобщенных уравнений Ландау-Лифшица и уравнения для магнитостатического потенциала – потенциала переменного магнитного поля, возбуждаемого спиновой волной. Обобщенные уравнения Ландау-Лифшица имеют вид

$$E_{\pm}m_{\pm}(\vec{1},\omega) = 2\gamma M(\vec{1})h_{\mp}(\vec{1},\omega) \tag{1}$$

$$E_{z}m_{z}(\vec{1},\omega) = \frac{B^{[1]}(p)}{B(p)}\gamma M(\vec{1})h_{z}(\vec{1},\omega),$$
(2)

где γ - гиромагнитное отношение, $M(\vec{1})$ - плотность магнитного момента, $m_{\pm} = m_x \pm im_y$, m_z – изменения плотности магнитного момента, $h_{\pm} = h_x \pm ih_y$, h_z – внешнее переменное магнитное поле, $\vec{1}$ - вектор кристаллической решетки, ω - частота, B(p) – функция Бриллюэна, $p = g\mu_B H_z^{(c)} / kT$, g – фактор Ланде, μ_B – магнетон Бора, $H_z^{(c)}$ - самосогласованное поле, k – постоянная Больцмана, T – температура. Операторы E_{\pm} , E_z , которые названы операторами Ландау-Лифшица, выражаются через внешнее магнитное поле $H(\vec{1})$, магнитное поле соседних спинов $H^{(m)}(\vec{1})$ и Фурье-образ обменного взаимодействия $I(\vec{q}) = I(0) - \sum_{n=2}^{\infty} w_n q^n$

$$E_{\pm}m_{\pm}(\vec{1},\omega) = \left\{ \gamma \Big[H(\vec{1}) + H^{(m)}(\vec{1}) \Big] \pm \omega \right\} m_{\pm}(\vec{1},\omega) + \frac{4\pi\gamma M(\vec{1})}{V_b} \sum_{\vec{1}',n=2} \int_{V_b} \alpha_n q^n \exp[i\vec{q}(\vec{1}-\vec{1}')] m_{\pm}(\vec{1}',\omega) d^3 q$$
$$E_z m_z(\vec{1},\omega) = \omega \left\{ m_z(\vec{1},\omega) - \frac{B^{[1]}(p)}{V_b} \sum_{\vec{1}'} \int_{V_b} I(\vec{q}) \exp[i\vec{q}(\vec{1}-\vec{1}')] m_z(\vec{1}',\omega) d^3 q \right\},$$

где V_b - объем первой зоны Бриллюэна, $\alpha_n = 2\pi^2 w_n/(g\mu_B)^2 V_b$ – константы обменного взаимодействия. При низких температурах производная функции Бриллюэна $B^{[1]}(p)$ стремится к 0 и продольные изменения намагниченности m_z становятся пренебрежимо малыми. Учитывая уравнения Ландау-Лифшица, дисперсионные соотношения спинволновых возбуждений даются собственными значениями уравнения магнитостатического потенциала φ

$$-\Delta\varphi(\vec{r},\omega) + 4\pi\nabla_{\nu}m_{\nu}(\vec{r},\omega) = 0.$$

Благодаря дальнодействующему характеру магнитного дипольного взаимодействия, спинволновой спектр трансформируется в спектр дискретных мод. В качестве примера на рис. 1

показаны дисперсионные соотношения для нормально намагниченной ферромагнитной пленки железо-иттриевого граната с обменной константой α₂ ≠ 0.

Рассмотрим образец, намагниченность $4\pi M(\vec{1})$ которого мало меняется внутри объема образца *V*. Если ферромагнитный образец имеет достаточно большие размеры, то вектор кристаллической решетки $\vec{1}$ можно заменить непрерывной пространственной переменной \vec{r} . В этом случае операторы E_{\pm} в уравнениях (1) сводятся к дифференциальным операторам. Общими решениями уравнений (1) являются

$$m_{\pm}(\vec{r},\omega) = m_{\pm}^{(s)}(\vec{r},\omega) + \sum_{i=2} C_{\pm}^{(i)} \exp(\vec{q}_{\pm}^{(i)}\vec{r}), \quad (3)$$

где $m_{\pm}^{(s)}(\vec{r},\omega)$ - частное решение неоднородных уравнений, $\exp(\vec{q}_{\pm}^{(i)}\vec{r})$ - собственные функции операторов E_{\pm} , $\vec{q}_{\pm}^{(i)}$ - *i*-корень уравнения

$$\Omega_H - \Omega_M \pm \omega + \Omega_M \sum_{n=2} \alpha_n q^n = 0,$$

Рис. 1. Дисперсионные кривые $\omega^{(j)}(q)$ первых одиннадцати спинволновых мод, распространяющихся в нормально намагниченной пленке Y₃Fe₅O₁₂ толщиной *D* = 0.5 µm с $4\pi M = 1750$ Oe, $\alpha_2 = 3.2 \cdot 10^{-12}$ cm² во внешнем магнитном поле H = 3500 Oe. $\Omega_M = \gamma 4\pi M$, $\gamma = 2.83$ MHz/Oe.

 $q = |\vec{q}|, \ \Omega_H = \gamma (H + H^{(m)}), \ \Omega_M = \gamma \cdot 4\pi M$. Для разрешения уравнений (1) необходимы условия существования обратных операторов E_{\pm}^{-1} , которыми являются условиями ортогональности $m_+(\vec{r}, \omega)$ к собственным функциям E_{\pm}

$$\int_{V} m_{\pm}(\vec{r},\omega) \exp(\vec{q}_{\pm}^{(i)}\vec{r}) d\vec{r} = 0.$$
 (4)

Из условий ортогональности (4) определяются коэффициенты $C_{\pm}^{(i)}$ в общем решении (3) и из них также следует, что коэффициенты $C_{\pm}^{(i)}$ являются линейными функционалами от переменных магнитных полей h_{\pm} .

Использование обменных граничных условий, применяемых в [Kalinikos B.A. and Slavin A.N., *Journal of Physics C: Solid State Physics* 1986, **19**(35), 7013], является некорректным.

Релаксация спинволновых возбуждений.

Спиновые системы макро- и микромасштаба описываются феноменологическими уравнениями Ландау-Лифшица с диссипационным членом, который выбирают в форме Ландау-Лифшица, Гильберта или Блоха-Бломбергена [Гуревич А.Г., Мелков Г.А. *Магнитные колебания*

и волны; Наука: Москва, 1994, 464 с.]. При переходе в наномасштабную область эти $\sum_{(1\mu)(1\nu)} = \frac{1}{2B} \prod_{\mu,q,j,\omega_m}$ диссипационные члены должны быть заменены на более точные выражения, вид которых зависит ОТ дисперсионных зависимостей спиновой системы И взаимодействия с другими квантовыми структурами. Рассмотрим В качестве примера собственную релаксацию спинволновых возбуждений в нормально

Рис. 2. Собственно-энергетические диаграммы, дающие наибольший вклад в затухание длинноволновых спиновых волн. Жирные прямые линии, пустые линии и комбинация из жирных и пустых линий соответствуют эффективным функциям Грина, эффективным взаимодействиям и перекрестным членам *P*-матрицы.

намагниченной ферромагнитной пленке в рамках модели Гейзенберга. В рамках однокольцевого приближения, которое соответствует распаду и слиянию двух спиновых волн (Рис. 2), для ферромагнитных пленок магнитное дипольное взаимодействие дает главный вклад в релаксацию однородной прецессии и длинноволновых спиновых волн по сравнению с обменным взаимодействием. Обменное взаимодействие дает нетривиальный вклад в затухание только в двухкольцевом приближении и этот вклад является малым. Затухание $\Delta^{(j)} = \Delta \omega^{(j)} / \omega^{(j)}$ уменьшается с увеличением толщины пленки и величины магнитного поля (Рис. 3) и растет пропорционально с увеличением температуры. Рассматриваемый процесс слияния, индуцируемый магнитным дипольным взаимодействием, является доминирующим в

релаксационном механизме в чистом $Y_3Fe_5O_{12}$, $Li_{0.5}Fe_{2.5}O_4$, $CdCr_2Se_4$, EuO. В ферромагнитных пленках наноразмерной толщины (в пленках $Y_3Fe_5O_{12}$ толщина должна быть меньше 60 nm в области частот 1 – 20 GHz) вышерассмотренный процесс слияния спинволновых мод запрещен и будут наблюдаться слабозатухающие спиновые волны (Рис. 4). Наличие таких волн открывает возможность построения спинволновых приборов наноразмерного масштаба (фильтров, линий задержек), работающих в CBЧ диапазоне и обладающих малыми потерями.

Рис. 3. Относительный коэффициент затухания $\Delta^{(l)} = \Delta \omega^{(l)} / \omega^{(l)}$ первой спинволновой моды, распространяющейся в нормально намагниченной пленке Y₃Fe₅O₁₂ толщиной D = 3 µm при разных значениях приложенных магнитных полей

Рис. 4. Зависимость толщины D_0 пленки $Y_3Fe_5O_{12}$ от частоты f, ограничивающая область существования слабозатухающих спиновых волн. При толщине $D < D_0$ в нормально намагниченной пленке $Y_3Fe_5O_{12}$ наблюдается слабозатухающая первая мода.