Quantum optics with quantum dots in photonic wires : basics and application to ultrabright single-photon sources

Jean-Michel GERARD

Équipe mixte CEA-CNRS Nanophysique et Semiconducteurs

Grenoble

J. Claudon, J. Bleuse N.S. Malik, M. Munsch, E. Dupuy MBE growth, microfabrication and optics

P. Lalanne Modelling

N. Gregersen Modelling

Nanophysics and Semiconductors CEA-CNRS joint group Grenoble, France

Institut d'Optique Palaiseau, France

Institut d'Optique

DTU Fotonik Copenhaguen,Denmark

Work supported by the ANR CAFÉ and WIFO projects

SpE control : an important concept for optoelectronics... since the 80's !

Novel devices based on controled SpE, e.g. single-photon sources

Spontaneous emission control in lasers: why? (as of ~1985)

Only a tiny fraction of spontaneous emission is useful! $\beta \sim 10^{-5}$

100000 times decrease of I_s expected for $\beta \sim 1$!

A novel device based on SpE control : the single photon source

Source able to emit single photons pulses on demand

Non-classical state of light

Applications : quantum cryptography metrology (energy standard) optical quantum computing

For most applications, the single photons must be prepared in the same quantum state !!

Single mode spontaneous emission wanted !!

Di Vicenzo's two « additionnal » criteria

7. The ability faithfully to transmit flying qubits between specified locations

SpE control is not a dream !

Fermi's Golden Rule : exponential decay $\frac{1}{\tau} \propto \text{density of modes per unit volume}$

One can tailor the spontaneous emission dynamics !

Photonic crystals Yablonovitch 1987

QD SpE inhibition in photonic crystals

From S. Noda et al, Nature Photon. 1, 449, 2007

Normalized frequency a/λ

wells, due to the lifetime shortening induced by surface recombination

Inhibition of SpE into all useless modes (proposal E. Yablonovitch ~1990)

Selective enhancement of SpE into a single resonant cavity mode (Purcell effect)

JM Gérard et al, PRL 1998

The dielectric photonic wire :

a very simple photonic microstructure

providing nearly perfect SpE control

=> « novel » template for solid-state CQED

Basics of photonic wires

Controling QD SpE with photonic wires

A first practical application : an « ultrabright » QD single photon source

Perspectives

novel opportunities opened by PWs

Single mode optical waveguide with a high refractive index

=> Highly preferential coupling of QD SpE into the guided mode !

Coupling to the fundamental guided mode

I. Friedler et al., Opt. Express 17, 2095 (2009).

Dielectric screening : simulation

Strong screening of the incident field when the polarisation is \perp to the wire axis

SpE control in an infinite photonic wire (1)

I. Friedler et al., Opt. Express **17**, 2095 (2009).

SpE in the guided mode predominant for $0.2 < d/\lambda < 0.3$

SpE control in an infinite photonic wire (2)

Efficient and broadband SE control Small diameter ($0.2 < d/\lambda < 0.28$), close to the single mode cut-off

InAs QDs as test emitters in photonic wires

Low energy excitonic complexes have

- in plane optical dipoles
- Bright X, X-, X+ : x or y polarized dipole

XX : x and y polarized dipoles

=> InAs QDs in vertical PWs

Overview of the fabrication process

2. Etching mask definition :

E-beam lithography, Deposition of Ni, lift-off

GaAs Photonic Nanowires

J. Bleuse et al, PRL 106, 103601 (2011)

Time resolved PL for QDs in PWs

$\Gamma_{\rm m} >> \gamma$

QD spontaneous emission is funnelled into the guided mode

J. Bleuse et al, PRL 106, 103601 (2011)

Strong SpE inhibition for all QDs in the « thin wire » regime Dispersion of QD SpE rates due to random QD position in larger wires Good agreement between exp. and theory

Cylindrical photonic wires have two polarization-degenerate guided modes

Standard semiconductor nanostructures (QWs, QDs) have both x and y in-plane dipoles

=> Coupling to both guided modes ($\beta \sim 0.5$) How to get true single mode SpE?

Elliptical photonic wires for true single mode SpE

M. Munsch et al, PRL 108, 077405 (2012)

>Selective deconfinement of one guided mode

 \gg ~1 and linearly polarized SpE

Isotropic, planar dipole

- β_X > 0.9
- Wide choice of $(R_x/\lambda, R_y/\lambda)$
- Broadband operation

$$\beta_{X} = \frac{\Gamma_{M} (X)}{\Gamma_{M} (X) + \Gamma_{M} (Y) + \gamma_{leaky}}$$

QD position vs axis is not critical

Polarization-control in elliptical PWs

Rem: InAs QDs in bulk GaAs display a weak linear polarisation (0-20%)

-Strong polarization ratio for all QDs: 0.75 < PR < 0.95

- -Polarization angle corresponds to the **wire major axis**
- Broadband effect: effect measured on a bandwidth larger than $5 \ \mathrm{nm}$

M. Munsch et al, PRL 108, 077405 (2012)

The linear polarization angle is determined by the photonic structure

Application of photonic nanowires to QD single photon sources

Source able to emit single photons pulses on demand

Non-classical state of light

Applications : quantum cryptography metrology (energy standard) optical quantum computing

For most applications, the single photons must be prepared in the same quantum state !!

Single mode spontaneous emission wanted !!

2001 : The first single-mode single-photon source

proposal: J.M. Gérard et B. Gayral, J Lightwave Technol. 17, 2089 (1999)

first exps : E. Moreau, JMG et al, APL 2001 Santori et al (Stanford), Nature 2002 Purcell effect

 \Rightarrow Efficient collection single-mode behavior

QD-microcavity SPS : reported efficiencies

 \mathcal{E} : average number of photons per pulse

Optically pumped :

€~0.4 for a QD in a micropillar
E.Moreau et al, Physica E13, 418 (2002) M Pelton et al, PRL. 89, 23 3602 (2002)

E=0.38 in an oxide-apertured planar cavity S Strauf et al, Nat. Phot. 1, 704 (2007)

Electrically pumped:

E~ 0.14 in a VCSEL like structure DJP Ellis et al, New J Phys (2008)

C~ 0.34 for a QD in a micropillar
T Heindel et al, APL 96, 11107 (2010)

Photon losses due to scattering by sidewall roughness

N.B: The far-field radiation pattern of high Q microcavities is highly sensitive to imperfections !

The $g^{(2)}(0)$ issue for QD-microcavity SPS

Moreau APL 2001, Pelton PRL 2002, Heindel APL 2010

Low $g^{(2)}(0)$ only observed for weak pumping levels $g^{(2)}(0)>0.5$ at QD saturation level !

Cavity feeding by detuned emitters (other QDs, XX and multi X...) due to dephasing

Naesby et al, PRA **78** (2008) Suffczynski *et al.*, PRL **103** (2009) Hohenester *et al.*, PRB **80** (2009) Winger *et al.*, PRL **103** (2009) etc...

2) Repumping of the QD after the (fast) X emission

Let's get rid of high Q cavities !

QD in a photonic wire

Courtesy A.L. Henneghien, CEA/LETI/DOPT, Grenoble

Collection efficiency limited by :

Divergence of the output beam (vs NA) => shape engineering

Photon escape toward the substrate => integrated mirror

Control of the far field radiation pattern

Optical characterization by µPL

Micro-photoluminescence setup QD pumping: optical, pulsed, non-resonant (835nm)

A high-efficiency single-photon source

Assets of photonic wire SPS

o One can get simultaneously

- a high efficiency (0.72 photon per pulse)

 $-g^{(2)}(0) < 0.01$

J Claudon et al, Nature Phot. 4, 174 (2010)

o Efficiency > 0.92 within reach for a QD on axis I Friedler et al, Opt Exp (2009)

o Many other assets related to the broadband SE control

- _ Spectrally tunable QD SPS
- _ Single-mode SPS exploiting a non-monochromatic emitter

F-center in diamond, QD at high temperature...

_ Efficient source of entangled photon pairs

V. Zwiller's group, U. Deft, Nat. Comm. 2012

Intrinsic assets :

Single QD in the wire Self-alignement on axis

Sharp tips feasible

Present limitations:

QD blinking (X<-> X-) control of QD location vs mirror

 \Rightarrow Until now, $\varepsilon \sim 0.4$

but clearly a promising approach!

 $\varepsilon > 0.8$ for optimized structure

Gregersen et al, Opt. Exp. 2010

... but tricky process!

.

Adiabatic mode expansion inside the photonic wire

Easier contacting process

ε> 0.9 for optimized structure

Gregersen et al, Opt. Exp. 2010 CEA+DTU patent 2010

Far-field divergence defined by the size of the top facet

e.g. V Zwiller et al, Nat Comm 2012

Photonic wire SPS with inverted tapers

AR coating

Top down fabrication e-beam lithography + RIE

ε> 0.75 photon/pulse demonstratedunder optical pumping

J Claudon et al, subm.

A "one-dimensional atom"

Name introduced by Kimble et al in the context of atoms in cavities (PRL 1995)

The artificial atom interacts (~ ONLY) with a 1D photonic channel

Very rich physics, at the single photon level !!!

- _ Giant non-linearity at the single photon level
 - Auffèves et al, PRA 2007
- _ Amplification by the stimulated emission
 - from a single QD (Valente et al, PRA 2012)

- => single photon transistor
- => single photon adder optimum quantum cloner

Quantum interface for QIP : flying QuBits <-> material QuBits

Photonic wires : a new template for CQED experiments with QDs ...or QWs!

Already demonstrated for InAs QDs:

Strong SpE inhibition (x1/20) Single-mode behavior of SpE Polarization control

Very promising application prospects in quantum optoelectronics sources of single-photons devices exploiting 1D-atom physics β ~1 microlasers