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Outline of the talk 

1.  QHE & phase transition at νT = 1 
2.  nature of the condensed phase 
3.  counterflow transport in Hall bars 
4.  pause… 
5.  counterflow transport in Corbino rings 
6.  perfect and imperfect Coulomb drag 
7.  dissipation in counterflow 



phase transition 
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No QHE at half-filling of the lowest Landau level 

N = 0 

N = 1 

ν = ½ 

Quantum Hall Effect in a Single Layer 2D System 
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QHE in Double Layer 2D Systems 

νT = 1 
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 νT = 1 = ½ + ½ 

 νT = ½ = ¼ + ¼ 

 νT = ν1 + ν2 
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Phase Diagram at νT = 1 

Continuous evolution of QHE 

18 nm 

10 nm 

Al0.9Ga0.1As 
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Phase Diagram at νT = 1 

10 nm 

Al0.9Ga0.1As 

ΔSAS ~ 10 µK ~ 10-7 e2/ ε  

Extreme Coulomb limit 

layer spacing 0 
Quantum critical point 

νT = 1/2 + 1/2 νT = 1 

18 nm 

Δ SAS (e2/ ε)	
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Tunneling signature of transition 
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νT = 1/2 + 1/2 νT = 1 

Coulomb gap replaced by resonant enhancement. 

Tunneling signature of transition 
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Josephson-like tunneling I-V 

Onset coincident with appearance of QHE. 



nature of the condensed phase  



Pure many-body effect 
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Halperin 111 state 

z - layer 

w - layer 

Laughlin-like intra- and inter-layer correlations 

Essentially exact in the d/      0 limit.   
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layer index  →  pseudospin 
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pseudospin waves (Goldstone modes)  

charged vortices 

Kosterlitz-Thouless transition 

Exchange-driven “spontaneous interlayer phase coherence” 



Excitonic Bose Condensate 

electrons 

+ 
electrons 

LAYER 1 LAYER 2 

electrons holes filled Landau 
level 
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Two Transport Channels 

1. Parallel Transport 

quantized Hall effect 

I1 

I2 

+e/2 

+e/2 

meron / anti-meron pair 



Two Transport Channels 

2. Counterflow Transport 

collective exciton transport in condensate  

∇φ = constant 

Jex = ρs ∇φ  

Jex 

I1 

I2 
+ 
_ 



counterflow in Hall bars 



Counterflow Experiment 
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Counterflow Experiment 



νT = 1 
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Counterflow Experiment 

Kellogg 2004 
Tutuc 2004 
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Excitonic superfluidity? 

Counterflow Experiment 
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Counterflow dissipation small but non-zero at all finite T. 

Counterflow Experiment 



1.  phase transition 
2.  QHE 
3.  tunneling anomaly 
4.  Goldstone modes (pseudospin waves) 
5.  quantized Hall drag 
6.  counterflow transport 
7.  etc. 

Qualitatively, theory = experiment   

Pause and reflect… 



Pause and reflect… 

Qualitatively, theory = experiment, 
but 

deep questions remain. 

1.  phase transition 
2.  QHE 
3.  tunneling anomaly 
4.  Goldstone modes (pseudospin waves) 
5.  quantized Hall drag 
6.  counterflow transport 
7.  etc. 



What is really going on?  
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Counterflow Experiment 
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Counterflow Experiment 

Andreev reflection and exciton transport? 

Su & MacDonald 2008 



Counterflow Experiment 

What role does the ν = 1 edge state play? 



Counterflow Experiment 

Experiments on simply connected Hall bars cannot directly 
demonstrate bulk exciton transport. 



counterflow in Corbino rings 



Contacts on different edges are isolated. 

I = 0 
V 

Quantum Hall systems are topological insulators 
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Corbino geometry measures bulk conductivity 

Bulk conductivity vanishes when QHE is well-developed. 

T = 50 mK 



Corbino Experiments 
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QHE suppresses parallel charge transport across the bulk 

T = 25 mK 
 
d/ = 1.5 

No surprise here. 
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Tunneling configuration 
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Tunneling intentionally suppressed by tilting. 
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Tunneling vs. Corbino counterflow 

Remote short vastly enhances current. 
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No current 

Lots of current 

A Paradox? 
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Lots of current 

Enhanced tunneling? 

How can it be? 



I 

V 

I 

V 

No current 

Lots of current 

Counterflow? 

How can it be? 
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No current 

Lots of current 

Counterflow? 
Measure current  

here! 

How can it be? 
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Measuring the shunt current 

It IS counterflow. 
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Counterflowing electrical currents can cross the insulating bulk; 
parallel currents cannot. 

 
Counterflow is an intrinsically bilayer phenomenon. 

Counterflow IS exciton transport. 

What we now know… 



The mechanism 
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Excitons are launched and absorbed via Andreev reflection. 
Excitons transport energy but not charge. 

coherent ν = 1 bilayer independent layers 
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Analogy to superconductivity 
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one bilayer exciton condensate 



Coulomb Drag 
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Usually a weak, perturbative effect. 
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Longitudinal drag 

Hall drag 

Coulomb drag in magnetic fields 
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Corbino Coulomb Drag 

Su & MacDonald 2008 
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Corbino Coulomb Drag:  
Incoherent Phase 

Negligible drag current when layers are independent.   



T = 20 mK 
d/l = 1.5 

Significant drag only at νT = 1   

Corbino Coulomb Drag:  
Coherent Phase 



Drag and drive currents equal at small V. 
“Perfect” Coulomb Drag   

Corbino Coulomb Drag:  
Coherent Phase 

T = 20 mK 
d/l = 1.5 



Inducing exciton transport 
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Ideally, I1 = I2 



Breakdown of Perfect Coulomb Drag   

When I1 ≠ I2 , there is charge transport across annulus.   
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Modeling the Breakdown 
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Modeling the Breakdown 
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Charged quasiparticle transport 

Charge gap Δ ≈ 360 mK  



Model vs. Experiment 

Combined condensate and quasiparticle transport 



dissipation in counterflow 
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Hall Bar Counterflow Experiment 

But do Hall bars really detect bulk exciton dissipation? 



Exciton dissipation masked by extrinsic series resistances 

R2 

R1 V 

I1 
I2 

I2 = I1 =
V

R1 +R2

R2 R1 

V 

I1 I2 



Exciton dissipation masked by extrinsic series resistances 
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R1 V 
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I2 = I1 =
V

R1 +R2 +Rex

How can we determine R1 and R2? 



Tunneling: 2-terminal vs. 4-terminal 

At θ = 0,  2-terminal I-V dominated by series resistances. 
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Conclusions 

Direct observation of exciton transport across 
insulating bulk of the bilayer νT = 1 QHE state. 
 
Energy transport without charge transport. 
 
“Perfect” Coulomb drag at low T, d/l, and V. 
 

Questions 

Dissipation in exciton transport is small, but how 
small?   Can we detect the KT transition? 
 
Exciton transport is coherent. But on what length 
scale? 
 
Can we make an excitonic Josephson junction? 


