Condensate and Quasiparticle Transport in a Bilayer Quantum Hall Excitonic Superfluid

Jim Eisenstein

Aaron Finck

Debaleena Nandi

Loren Pfeiffer

Ken West

U.S. DEPARTMENT OF ENERGY: BASIC ENERGY SCIENCE

Division of Materials Sciences

ISSO-2012 St. Petersburg, July 2012

Outline of the talk

- 1. QHE & phase transition at $v_T = 1$
- 2. nature of the condensed phase
- 3. counterflow transport in Hall bars
- 4. pause...
- 5. counterflow transport in Corbino rings
- 6. perfect and imperfect Coulomb drag
- 7. dissipation in counterflow

phase transition

Quantum Hall Effect in a Single Layer 2D System

No QHE at half-filling of the lowest Landau level

QHE in Double Layer 2D Systems

A CONTRACTION OF THE OWNER

Continuous evolution of QHE

Tunneling signature of transition

Tunneling signature of transition

Coulomb gap replaced by resonant enhancement.

Onset coincident with appearance of QHE.

nature of the condensed phase

Halperin 111 state

Pure many-body effect

$$\Psi \sim \prod_{i,\dots,n} (z_i - z_j) (w_k - w_l) (z_m - w_n)$$

Laughlin-like intra- and inter-layer correlations

Exchange-driven "spontaneous interlayer phase coherence"

pseudospin waves (Goldstone modes)

charged vortices

Kosterlitz-Thouless transition

quantized Hall effect

Two Transport Channels

2. Counterflow Transport

collective exciton transport in condensate

counterflow in Hall bars

 $d/\ell = 1.5$

Counterflow dissipation small but non-zero at all finite T.

Pause and reflect...

- 1. phase transition
- 2. QHE
- 3. tunneling anomaly
- 4. Goldstone modes (pseudospin waves)
- 5. quantized Hall drag
- 6. counterflow transport
- 7. etc.

Qualitatively, theory = experiment

Pause and reflect...

- 1. phase transition
- 2. QHE
- 3. tunneling anomaly
- 4. Goldstone modes (pseudospin waves)
- 5. quantized Hall drag
- 6. counterflow transport
- 7. etc.

Qualitatively, theory = experiment, but deep questions remain.

What is really going on?

Andreev reflection and exciton transport?

Su & MacDonald 2008

What role does the v = 1 edge state play?

Experiments on simply connected Hall bars cannot directly demonstrate bulk exciton transport.

counterflow in Corbino rings

Quantum Hall systems are topological insulators

Contacts on different edges are isolated.

Corbino geometry measures bulk conductivity

Bulk conductivity vanishes when QHE is well-developed.

Corbino Experiments

QHE suppresses parallel charge transport across the bulk

Tunneling configuration

Tunneling configuration

LASTITUTE OF TECHNOLOGIES

Tunneling intentionally suppressed by tilting.

Tunneling vs. Corbino counterflow

Measuring the shunt current

Counterflowing electrical currents can cross the insulating bulk; parallel currents cannot.

Counterflow is an intrinsically bilayer phenomenon.

Counterflow IS exciton transport.

Excitons are launched and absorbed via Andreev reflection. Excitons transport energy but not charge.

Usually a weak, perturbative effect.

Coulomb drag in magnetic fields

Drag Coefficients at $v_T = 1$

Corbino Coulomb Drag

Su & MacDonald 2008

Corbino Coulomb Drag: Incoherent Phase

Negligible drag current when layers are independent.

Corbino Coulomb Drag: Coherent Phase

Significant drag only at $v_T = 1$

Corbino Coulomb Drag: Coherent Phase

THE OF TH

Drag and drive currents equal at small V. "Perfect" Coulomb Drag

Inducing exciton transport

Breakdown of Perfect Coulomb Drag

When $I_1 \neq I_2$, there is charge transport across annulus.

Modeling the Breakdown

Su-MacDonald 1D model:

$$\sigma_{xx}^{CF} = \infty$$

$$\sigma_{xx}^{||} = 0$$

$$R_1 + R_2 \ge 2h/e^2$$

$$I_2 = I_1 = \frac{V}{R_1 + R_2}$$

Modeling the Breakdown

Generalized Su-MacDonald model:

$$\sigma_{xx}^{CF} = \infty$$

$$\sigma_{xx}^{\parallel} > 0$$

$$R_1 + R_2 \ge 2h/e^2$$

$$I_{2} = \frac{V}{R_{1} + R_{2} + R_{1}R_{2}\sigma_{xx}^{\parallel}}$$
$$\frac{I_{2}}{I_{1}} = \frac{1}{1 + R_{2}\sigma_{xx}^{\parallel}}$$

Charged quasiparticle transport

Charge gap $\Delta \approx 360 \text{ mK}$

Model vs. Experiment

Combined condensate and quasiparticle transport

dissipation in counterflow

Hall Bar Counterflow Experiment

But do Hall bars really detect bulk exciton dissipation?

Exciton dissipation masked by extrinsic series resistances

$$I_2 = I_1 = \frac{V}{R_1 + R_2}$$

Exciton dissipation masked by extrinsic series resistances

$$I_2 = I_1 = \frac{V}{R_1 + R_2 + R_{ex}}$$

How can we determine R_1 and R_2 ?

Tunneling: 2-terminal vs. 4-terminal

At $\theta = 0$, 2-terminal I-V dominated by series resistances.

Exciton dissipation "small"

New, multi-terminal measurements needed.

Exciton dissipation "small"

New, multi-terminal measurements needed.

Direct observation of exciton transport across insulating bulk of the bilayer $v_T = 1$ QHE state.

Energy transport without charge transport.

"Perfect" Coulomb drag at low T, d/l, and V.

Questions

Dissipation in exciton transport is small, but how small? Can we detect the KT transition?

Exciton transport is coherent. But on what length scale?

Can we make an excitonic Josephson junction?