Возрастание фотолюминесценции пористого кремния под действием лазерного излучения

Е. А. Алексеева СПбГПУ, С.-Петербург, Россия

Благодаря способности люминесцировать в видимой области в последние годы широко изучается квантово-размерная модификация кремния — пористый кремний (ПК). Однако это вещество характеризуется нестабильностью свето-излучающих свойств, что затрудняет создание на его основе надежных приборов. В настоящее время исследователи видят причину данной нестабильности в переносе энергии от возбужденного под действием лазерного излучения ПК на молекулы кислорода, при этом генерируется синглетный кислород (химически активное возбужденное состояние молекулы кислорода) [1].

Исследовалась временная зависимость интенсивности как быстрой так и медленной составляющих фотолюминесценции (ФЛ) ПК, а также системы ПК-фуллерен (C_{60}) при мощном импульсном лазерном облучении ($\lambda=337$ нм, 10 нс, 100 Гц, 100–300 кВт \times см $^{-2}$). ПК был изготовлен стандартной методикой электрохимического травления. C_{60} наносился на поверхность ПК напылением методом горячей стенки в вакууме [2].

Обнаружилось, что в атмосфере воздуха интенсивность и быстрой, и медленной составляющих Φ Л ПК убывает. Однако в вакууме (около 10^{-2} мм.рт.ст.) наблюдается возрастание Φ Л образцов ПК (на 10–20% от начальной величины в течение часа). Последующее воздействие кислорода снова приводит к уменьшению интенсивности Φ Л ПК. Эксперимент указывает на решающую роль кислорода в процессе тушения Φ Л ПК. Возрастание же Φ Л ПК может быть связано с пассивацией поверхностных дефектов и уменьшению безызлучательных каналов рекомбинации под действием света.

После нанесения C_{60} на ПК характер ФЛ значительно изменяется. Интенсивность меделнной составляющей ФЛ системы ПК- C_{60} уменьшается, а быстрой составляющей — увеличивается. Под действием лазерного излучения в атмосфере воздуха интенсивность быстрой составляющей ФЛ системы заметно увеличивается от времени, а максимум спектра сдвигается в коротковолновую область. Данный факт может быть объяснен формированием быстрых излучательных центров на границе раздела системы ПК- C_{60} при нанесении фуллерена на поверхность ПК [3].

Работа поддержана программой Президента Российской Федерации «Ведущие научные школы» (грант НШ-2223.2003.02).

Литература

- [1] D. Kovalev, M. Fujii. Adv. Mater., 17, 1 (2005).
- [2] T. L. Makarova, I. B. Zakharova, T. I. Zubkova, A. Ya. Vul'. Phys. Solid State 41, 319 (1999).
- [3] O. M. Sreseli, D. N. Goryachev, L. V. Belyakov, S. P. Vul', I. B. Zakharova, E. A. Alekseeva. Semiconductors, **38**, 120 (2004).