
циклотронной частоте. При увеличении подвижности осцилляции усилива-
лись с ростом мощности падающей волны, и при низких температурах сопро-
тивление (для холловских образцов) или проводимость (для корбиновских
образцов) исчезали [3, 4] в конечных интервалах магнитного поля, рис. 2.
Реализация таких «бездиссипативных состояний» вызвала лавину теоретиче-
ских работ. Предложенные в литературе сценарии позволяют качественно
понять ряд важных особенностей обсуждаемых эффектов, но удовлетвори-
тельное объяснение в настоящее время отсутствует.

В конце 2003 г. в аналогичной системе обнаружен [5] еще один тип ос-
цилляций магнитосопротивления, индуцированных СВЧ-излучением, рис. 3,
и периодических по B, рис. 4, который объяснен возбуждением краевых маг-
нитоплазмонов.

Доклад посвящен обзору полученных в этой области экспериментальных
результатов и попыток их теоретического осмысления. Работа поддержана
грантами РФФИ и ОФН РАН.
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Puzzles of low-temperature electron dephasing
V. I. Kozub
Ioffe Physico-Technical Institute of RAS, St. Petersburg, Russia

As early as in 1984, studying weak localization correction to the conductiv-
ity of In2O3−x films Ovadyahu [1] has found a puzzling behavior of the electron
dephasing time τϕ as a function of the static disorder. Namely, for a given tem-
perature τ−1

ϕ was scaled with a sample conductivity. This result contradicts the
naive considerations that the disorder should lead to an increase of any scattering
rate. While the similar behavior was predicted by Schmid [2] for electron-phonon
scattering in dirty metals, in the experiments of [1] such a mechanism was ruled
out by the observed temperature dependence of τϕ (∼ 1/T at temperatures about
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10 K). To the best of our knowledge, the behavior has not obtained a relevant
explanation until now.

Recently the question seems to arise again in relation to the problem of appar-
ent low temperature saturation of the weak localization dephasing rate which has
been extensively discussed during last years, for a review e. g. Ref. [3] Namely, the
correlation [3, 4] between the “saturated” dephasing rate, τ−1

ϕ , and the diffusion
constant D was reported.

This report aims to show that the correlation mentioned above can be explained
within a framework of the model of tunneling states (TS) proposed in Ref [5] and
considered in detail in Ref. [6]. According to this model, the dephasing is produced
by dynamical structural defects with two (or more) configurations with very close
energies. Due to interaction with a thermal bath these defects switch between the
above states producing time-dependent fields acting upon the electrons.

There exist two mechanisms of electron dephasing due to dynamic defects. The
first one is induced by direct inelastic transitions between the levels of the TS lead-
ing to a possibility of determining the actual path of the electron, and consequently
to loss of interference. The second one is due to relaxation dynamics of dynamic
of TSs, which fluctuate due to interaction with the thermal bath. Time dependence
of the electron scattering crossection due to the defects fluctuations leads to vio-
lation of the time-reversal symmetry and, as a consequence, to decoherence. The
effective Hamiltonian of a TS,

H̃d = (� σ3 − �σ1)/2 , (1)

is characterized by the asymmetry, �, and the tunneling matrix element, �. Since
these parameters are random, their distribution, P(�,�), is crucially important.
In crystalline materials, it is naturally to assume that the TSs keep intrinsic crystal
symmetry. As a result, the �-distribution is limited from above by some value �0.
To keep the model simple it is sufficient to assume that P(�,�) ∝ δ(�− �0).

To evaluate the distribution over � let us assume [5] that the distribution is due
to some mesoscopic disorder around a generically symmetric defect and consider
adiabatic renormalization of the site energy ε1 of one of TS component due to
conduction electrons scattered by some defect i, [5]

ε1i = V1�
[∑

k

fi(θ)
R1i

eikR1i(1−cos θ)

1 + e(εk−εF )/kBT

]
.

Here θ = ∠{k,R1i}, fi is the scattering amplitude by the ith defect, R1j is the
vector connecting the sites 1 and i, while V1 is the potential of the defect 1. This
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correction is due to Friedel oscillations of the electron density induced by the
defect i. Assuming that the scattering potentials for the defects 1 and i are the
same we get an order-of-magnitude estimate for this quantity as

ε1i ≈ −|V |2
εF

cos(2kF R1i)
(kF R1i)3

.

Now let us consider a TS formed by the site 1 and some state 2, such as R12 �
R1i, R2i. Then the effective two-level system acquires the diagonal splitting �i ≡
(ε1i − ε2) given by the expression

�(Ri, µ) ≈ 2|V |2
εF

sin(kF R12µ) · sin(2kF Ri)
(kF Ri)3

. (2)

Here Ri = R1i ≈ R2i, µ = cos∠{R12,Ri} . The probability to find a TS with the
splitting � is then

W (�) = 2πnd

∫
R2 dR

∫ 1

−1
dµ δ [�− �(R, µ)] . (3)

Here nd is the density of defects, while �(R, µ) is given by Eq. (2). The density
of TSs is given as P(�) = NTSW (�) where NTS is the density of TSs. Note
that the integral in Eq. (3) is determined by R � N

−1/3
D since the contributions of

different defects have quasi-random signs, the main contribution being due to the
nearest defect.

A straightforward analysis shows that there is a characteristic energy

E∗ =
|V |2nd

εF k3
F

≈ 1
2π

�

τel
∼ �v2F

D
(4)

where τel is the elastic mean free time. At � 
 E∗ the probability W (�) decays
∝ E∗/�2, while at � � E∗ the function W (�) is smooth. As a result, we arrive
to the model for the density of TSs adopted in Ref. [6],

P(�,�) ≈ (NTS/E∗) δ(�− �0) . (5)

As shown in Ref. [6], the two of the contributions to the dephasing rate τ−1
ϕ

can be estimated in the relevant temperature region as

τ−1
ϕ,in ∼ τ−1

� = νTS(�0/E∗) (6)
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for “inelastic” channel and

τ−1
ϕ,e ∼ τ−1

� (Tτ�/�)1/3 (7)

Thus the resulting rate can be written as an interpolation

τ−1
ϕ = τ−1

� [α(Tτ�/�)1/3 + ζ] . (8)

Here νTS is the effective collision frequency with the tunneling defects, α and ζ
are constants of the order 1. Since τ−1

� ∝ D we conclude that for a fixed number
of tunneling defects the “saturated” dephasing rate increases with the diffusion
constant D, the corresponding dependence of τ−1

ϕ tends to direct proportionality
when the two items in Eq. (8) are comparable.

To make estimated we rewrite the expression for νTS in the form

νTS = σde vF nd (9)

where σde is the cross-section of elastic electron scattering by a dynamic defect.
Correspondingly, the key parameter of our theory, τ�, is given as

τ−1
� = �0PdσinvF (10)

where Pd = nd/E∗ is the density of states of the dynamic defects.
The density of states Pd can be, in principle, estimated for a given material on

the base of point contact measurements. Namely, metallic point contacts are known
to exhibit, first, telegraph resistance noise[7] and, second, zero-bias anomalies [8];
both effects are expected to be associated with the dynamic defects [7, 8, 5].

Although we appreciate that the material preparation procedure can signifi-
cantly affect the defect system, we believe that such experiments can provide
more or less reasonable estimates for Pd. The telegraph noise studies [7] for
Cu nanoconstriction with a size of ∼ 10 nm revealed a presence of about sev-
eral dynamic defects at energies less than 10 mV. This would give us the value
Pd ∼ (3−5) × 1032 erg−1cm−1. However, the telegraph noise is related to TLS
with rather slow relaxation rates (� 103 s−1) while we are interested in the defects
with switching times of the order of 10−9 s. Consequently, these estimates most
probably significantly underestimate Pd. What is more instructive, the magnitude
of the resistance noise revealed rather large defect asymmetry corresponding to
the estimate σin ∼ σde ∼ 10−15 cm2.

We believe that the zero bias anomalies can give more reliable information
concerning Pd. The magnitude of these anomalies for Cu nanoconstrictions[8]
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of the same type as mentioned above corresponds to a presence of several tens
of TLS at the energy region about 1 meV [8, 5]. Correspondingly, one obtains
Pd ∼ (3− 5) × 1034 erg−1cm−3.

Basing on these estimates and taking Pd ≈ 1034 erg−1cm−3, σin ≈ 10−15 cm2,
vF ≈ 108 cm/s, and �0 ≈ 10 mK we obtain τ� ≈ 10−9 s. Equations (9) and (10)
yield T� � �0. Thus at temperatures larger than T� ≈ �0 ≈ 10 mK one expects,
according to Eq. (8), temperature-independent contribution of resonant processes.

For the relaxation channel, one obtains Tα ≈ Tβ ≈ 10 mK. Consequently, at
T � Tα ≈ T� ≈ 10 mK one expects that dephasing rate obeys Eq. (8) with
τ� ≈ 10−9 s.

Now let us check if our assumption �0 ≈ 10 mK realistic. We will exploit a
crude estimate

�0 � �ω0

π
exp

(
−2

�

∫ a

0
dr
√
2MU(r)

)
(11)

where U(r) is a potential relief between the two stable defect positions sepa-
rated by a distance a, and M is the defect mass. Taking as an example U(r) =
(U0/2) [1− cos(2πr/a)] one obtains for the exponent (2a/π�)

√
2U0M . Taking

for a light defect ω0 ≈ 1014 s−1 and assuming a ≈ 10−8 cm, U0 ≈ 0.2 eV one
estimates that the value � = 10 mK is achievable for M ≈ 2 × 10−23 g which
corresponds to atomic weight ≈ 10.

Summarizing our estimates, we can conclude that for realistic parameters of
the dynamic defects one can indeed expect a slow temperature dependence of
the dephasing rate given by Eq. (8) crossing over to a rapid decrease at low tem-
peratures. The crossover temperature, as well as the behavior below than that
temperature, depends on the distribution of �. For a delta-like distribution of �
the TLS spectrum has a gap of �0. Thus the TLS contribution to dephasing rate
is exponentially frozen out at for T < �0, and we are left with the “standard”
mechanisms like electron-electron scattering. However for the Gaussian distribu-
tion of � with the variance λ̄ 
 1 the situation is different. In this case the
cut-off temperature is given by the renormalized tunneling coupling, �0e

λ̄ while
for lower temperatures one deals with rather flat distribution of λ within the region
λ ≤ λ0 + λ̄. Correspondingly, at these temperatures one deals with a glass-like
TLS distribution for which τϕ ∝ T−1.

One notes that the correlation between the dephasing rate and diffusion co-
efficient does not depend on the fact of “saturation” of dephasing. It depends
only on the two assumptions: (1) the density of dynamic defects is given, (2) the
density of states is proportional to 1/E∗ where the scatter of the defect energies
E∗ is controlled by the disorder. Consequently, if the two factors mentioned above
are at the stage, the correlation between τ−1

ϕ and the diffusion constant D should
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exist not only in the region of “saturated” dephasing. Here we return to the re-
sults obtained for three-dimensional low-resistivity In2O3−x films [1] where the
observed temperature behavior of τϕ corresponded to τ−1

ϕ ∝ T . We would like to
note that the systems in question, first, exhibited rather strong disorder (the elastic
mean free times as small as (2−5) ·10−15 s), second, some particular disorder was
expected to be related to oxygen non-stoheometry distribution. These systems are
expected to be some different from the ones where the saturation of dephasing
was typically studied (see e.g. [3, 4]) and which we mostly had in mind in our
paper [6]. First, in the case of In2O3−x there is a probable candidate to the role
of the mobile defects — oxygen atoms, the number of relevant ones is expected
to be fixed for a given x. Then, the large degree of disorder makes it possible to
expect that the barriers for the “mobile” defects are also affected. In particular, the
expected magnitude of the Friedel oscillations is also expected to be much larger
than for typical metallic crystals and their effect on the barriers can be significant.
As a result, the potential for the “mobile” atoms can be equivalent to the “glassy”
one allowing in particular “soft” configurations with weak barriers. If so, the
relaxation rates for the TLS are expected to have a temperature behavior typical
for glasses — τ−1 ∝ T — although at the same time the density of states is still
scaled with a degree of disorder. These considerations explains the experimental
results by Ovadyahu [1].

To conclude, we have demonstrated that the model of tunneling states formed
by light defects in crystalline conductors and affected by electronic mesoscopic
disorder can explain both of the puzzles mentioned above — that is low temper-
ature saturation-like behavior of the dephasing and the correlation between the
dephasing rate and the static disorder.
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