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Scattering Geometry

perfect conductor

x3

x1

θ0
θs

x3=ζ(x1)
vacuum

The surface profile function ζ(x1) is a single-valued function of x1 that is
differentiable and constitutes a random process, but not necessarily a stationary
one.
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S-Polarization

E(x; t) = (0, E2(x1, x3|ω), 0) exp(−iωt)

H(x; t) = (H1(x1, x3|ω), 0, H3(x1, x3|ω)) exp(−iωt)

x3 > ζ(x1)max

E>
2 (x1, x3|ω) = exp[ikx1 − iα0(k)x3]

+

∞∫
−∞

dq

2π
R(q|k) exp[iqx1 + iα0(q)x3],

where

α0(q) = [(ω/c)2 − q2]
1
2 |q| < ω/c

= i[q2 − (ω/c)2]
1
2 |q| > ω/c.
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Mean Differential Reflection Coefficient 〈∂R/∂θs〉:

∂R

∂θs
dθs = fraction of total time-averaged

incident flux scattered into(θs, θs + dθs)

∂R

∂θs
=

1
L1

ω

2πc

cos2 θs

cos θ0
|R(q|k)|2,

where L1 is the length of the x1-axis covered by the random surface, while θ0

and θs are the angles of incidence and scattering, respectively, and are related to
the wavenumbers k and q by

k = (ω/c) sin θ0, q = (ω/c) sin θs.
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Since we are concerned with the scattering of light from a randomly rough
surface, it is the mean differential reflection coefficient that we need to calculate.
It is given by

〈
∂R
∂θs

〉
= 1

L1

ω
2πc

cos2 θs

cos θ0
〈|R(q|k)|2〉,

where the angle brackets denote an average over the ensemble of realizations of
ζ(x1).

In the Kirchhoff approximation〈
∂R

∂θs

〉
=

1
L1

ω

2πc

1
cos θ0

[
1 + cos(θ0 + θs)
cos θ0 + cos θs

]2

×
∞∫

−∞
dx1

∞∫
−∞

dx′
1 exp[−i(q − k)(x1 − x′

1)]〈exp[−ia(ζ(x1) − ζ(x′
1))]〉

a =
ω

c
(cos θ0 + cos θs).
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Geometrical Optics Limit of the Kirchhoff Approximation

x′
1 = x1 + u

ζ(x1) − ζ(x′
1) = ζ(x1) − ζ(x1 + u) ∼= −uζ ′(x1)

〈
∂R

∂θs

〉
=

1
L1

ω

2πc

1
cos θ0

[
1 + cos(θ0 + θs)
cos θ0 + cos θs

]2

×
∞∫

−∞
dx1

∞∫
−∞

du exp[i(q − k)u]〈exp iauζ ′(x1)〉.
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xn = nb n = 0,±1,±2, . . .

ζ(x1) = anx1 + bn nb ≤ x1 ≤ (n + 1)b,

where the {an} are independent identically distributed random deviates, and b

is a characteristic length. Therefore, the probability density function (pdf) of an,

f(γ) = 〈δ(γ − an)〉,
is independent of n.
For this surface

ζ ′(x1) = an nb < x1 < (n + 1)b.

In order that the surface be continuous at x1 = (n + 1)b

an(n + 1)b + bn = an+1(n + 1)b + bn+1

or

bn+1 = bn − (n + 1)b (an+1 − an).

It is convenient to choose b0 = 0, and we do so.
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∞∫
−∞

dx1

∞∫
−∞

du exp[i(q − k)u]〈exp iauζ ′(x1)〉

=

∞∫
−∞

du exp[i(q − k)u]
N−1∑

n=−N

(n+1)b∫
nb

dx1〈exp iauan〉

=

∞∫
−∞

du exp[i(q − k)u]
N−1∑

n=−N

(n+1)b∫
nb

dx1

∞∫
−∞

dγf(γ) exp(iauγ)

= L1

∞∫
−∞

du exp[i(q − k)u]

∞∫
−∞

dγf(γ) exp(iauγ)

= L1

∞∫
−∞

dγf(γ)2πδ(q − k + aγ)

=
2πL1

a
f

(
k − q

a

)
=

2πL1

(ω/c)(cos θ0 + cos θs)
f

(
sin θ0 − sin θs

cos θ0 + cos θs

)
,

where L1 = 2Nb.
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〈
∂R

∂θs

〉
=

[1 + cos(θ0 + θs)]2

cos θ0(cos θ0 + cos θs)3
f

(
sin θ0 − sin θs

cos θ0 + cos θs)

)
.

Set

sin θ0 − sin θs

cos θ0 + cos θs
= −γ,

so that

cos θs =
(1 − γ2) cos θ0 − 2γ sin θ0

1 + γ2
,

sin θs =
(1 − γ2) sin θ0 + 2γ cos θ0

1 + γ2
.

Then

f(γ) =
2

1 + γ2

cos θ0

cos θ0 + γ sin θ0

〈
∂R

∂θs

〉
(−γ, θ0).
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At normal incidence, θ0 = 0〈
∂R

∂θs

〉
=

1
1 + cos θs

f

( − sin θs

1 + cos θs

)
.

It follows from this expression and the normalization of f(γ) that
π
2∫

−π
2

〈
∂R

∂θs

〉
dθs = 1.

Set
sin θs

1 + cos θs
= tan

θs

2
= γ.

Then 〈
∂R

∂θs

〉
(γ) =

1
2
(1 + γ2)f(−γ),

so that

f(γ) =
2

1 + γ2

〈
∂R

∂θs

〉
(−γ),

independent of the wavelength of the incident light.
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A Band-Limited Uniform Diffuser

〈
∂R

∂θs

〉
=

θ(θm − |θs|)
2θm

=
θ(tan(θm/2) − | tan(θs/2)|)

2θm

=
θ(γm − |γ|)
4 tan−1 γm

,

where γm = tan(θm/2). Therefore

f(γ) =
1

2 tan−1 γm

θ(γm − |γ|)
1 + γ2

.
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A Band–Limited Uniform Diffuser
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A segment of the surface profile function ζ(x1) and the derivative ζ ′(x1) of this
surface profile function. b = 22µm.
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Kirchhoff approximation

0.0

0.5

1.0

1.5

〈∂
R

/∂
θ s

〉

L=44,000µm

b=22µm
ideal distribution
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〉

b=220µm
ideal distribution

The mean differential reflection coefficient 〈∂R/∂θs〉 estimated from
Np = 120, 000 realizations of perfectly conducting surface profiles: θm = 20◦,
λ = 632.8nm.
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A rigorous computer simulation calculations

A perfectly conducting random surface

θs [deg]

-40 -30 -20 -10 0 10 20 30 40
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∂ R

/∂
θ s

>
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1.6

1.8

p polarization
s polarization
ideal distribution

 

The mean differential reflection coefficient 〈∂R/∂θs〉 estimated from Np = 20, 000
realizations of perfectly conducting surface profiles: θm = 20◦, b = 22 µm,
λ = 632.8nm.
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A rigorous computer simulation calculations

A perfectly conducting random surface
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The mean differential reflection coefficient 〈∂R/∂θs〉 estimated from Np = 20, 000
realizations of perfectly conducting surface profiles: θm = 20◦, b = 22 µm.
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A rigorous computer simulation calculations

A metallic random surface

−40 −20 0 20 40
θs [deg]

0.0

0.5

1.0
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〈∂
R

/∂
θ s

〉

λ=0.633µm
λ=0.532µm
λ=0.442µm
ideal distribution

λ = 0.633µm, ε = −15.91 + i1.07

λ = 0.532µm, ε = −10.19 + i0.83

λ = 0.442µm, ε = −5.7 + i0.75

The mean differential coefficient 〈∂R/∂θs〉 estimated from Np = 40, 000
realizations of metallic surface profiles in s polarization: θm = 20◦, b = 22 µm.
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A Lambertian Diffuser

〈
∂R

∂θs

〉
=

1
2

cos θs − π

2
≤ θs ≤ π

2

=
1
2

1 − γ2

1 + γ2
− 1 ≤ γ ≤ 1.

Therefore

f(γ) =
1 − γ2

(1 + γ2)2
θ(1 − |γ|).
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A rigorous computer simulation calculations

A perfectly conducting random surface
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The mean differential reflection coefficient 〈∂R/∂θs〉 estimated from Np = 20, 000
realizations of perfectly conducting surface profiles: b = 22 µm.
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Schematic diagram of the proposed experimental arrangement

for the fabrication of surfaces with specified scattering properties
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An experimental result for the angular dependence of the mean intensity of
s−polarized light transmitted through a photoresist film. The angle of incidence
is θ0 = 0◦, θm = 10◦.
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Scattering Angle [deg]
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Scattering Geometry

θ
0θ

φ
s

q
x

1

x 3

2
x

||

||
k

φ
s

0

The scattering surface is defined by x3 = ζ(x‖), where x‖ = (x1, x2, 0). The
surface profile function ζ(x‖) is a single–valued function of x‖, and is
differentiable with respect to x1 and x2. It constitutes a random process, but not
necessarily a stationary one.
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Incident field

Ψ(x, t)inc = Ψ̂(x|ω)inc exp(−iωt)

where
Ψ̂(x|ω)inc = exp[ik‖ · x‖ − iα0(k‖)x3]

k‖ = (k1, k2, 0), x‖ = (x1, x2, 0)

α0(k‖) = [(ω/c)2 − k2
‖]

1
2 k‖ < ω/c

= i[k2
‖ − (ω/c)2]

1
2 k‖ > ω/c.

Scattered field

Ψ(x, t)sc = Ψ̂(x|ω)sc exp(−iωt)

where

Ψ̂(x|ω)sc =
∫

d2q‖
(2π)2

R(q‖|k‖) exp[iq‖ · x‖ + iα0(q‖)x3] x3 > ζ(x‖)max.

Dirichlet boundary condition

[Ψ(x, t)inc + Ψ(x, t)sc]|x3=ζ(x‖) = 0.
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The differential reflection coefficient ∂R/∂Ωs is defined such that (∂R/∂Ωs)dΩs

is the fraction of the total time-averaged incident flux that is scattered into the
element of solid angle dΩs about a given scattering direction. It is given by

∂R

∂Ωs
=

1
S

( ω

2πc

)2 cos2 θs

cos θ0
|R(q‖|k‖)|2,

where S is the area of the plane x3 = 0 covered by the random surface, and

q‖ = (ω/c) sin θs(cosφs, sinφs, 0)

k‖ = (ω/c) sin θ0(cosφ0, sinφ0, 0).

In scattering from a random surface it is the mean differential reflection
coefficient that is of interest. It is given by〈

∂R

∂Ωs

〉
=

1
S

( ω

2πc

)2 cos2 θs

cos θ0
〈|R(q‖|k‖)|2〉.
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In the Kirchhoff approximation

〈
∂R

∂Ωs

〉
=

1
S

( ω

2πc

)2 [1 + cos θ0 cos θs − sin θ0 sin θs cos(φs − φ0)]2

cos θ0(cos θ0 + cos θs)2

×
∫

d2x‖

∫
d2x′

‖ exp[−i(q‖ − k‖) · (x‖ − x′
‖)]

×〈exp[−i(ω/c)(cos θ0 + cos θs)(ζ(x‖) − ζ(x′
‖))]〉.

In the case of normal incidence, θ0 = 0, k‖ = 0,〈
∂R

∂Ωs

〉
=

1
S

( ω

2πc

)2
∫

d2x‖

∫
d2x′

‖ exp[−iq‖ · (x‖ − x′
‖)]

×〈exp[−ia(ζ(x‖) − ζ(x′
‖))]〉,

where

a = (ω/c)(1 + cos θs).



Designer Surfaces: Two–Dimensional Surfaces A.A. Maradudin

Geometrical optics limit

of the Kirchhoff approximation:

x′
‖ = x‖ − u‖

ζ(x‖) − ζ(x′
‖) → ζ(x‖) − ζ(x‖ − u‖)

∼= u‖ · ∇ζ(x‖).

Therefore

〈
∂R

∂Ωs

〉
=

1
S

( ω

2πc

)2
∫

d2u exp(−iq‖ · u‖)
∫

d2x‖〈exp[−iau‖ · ∇ζ(x‖)]〉.
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To evaluate the double integral we begin by covering the x1x2-plane by
equilateral triangles of edge b:

The vertices of these triangles are given by the vectors x‖(m, n) = ma1 + na2,

where a1 = (b, 0), a2 =
(

b
2 ,

√
3b
2

)
. Each triangle is labeled by the coordinates of

its center of gravity.
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For (x1, x2) contained in the triangle (m + 1
3 , n + 1

3 )

ζ(x‖) = b
(0)

m+ 1
3 ,n+ 1

3
+ a

(1)

m+ 1
3 ,n+ 1

3
x1 + a

(2)

m+ 1
3 ,n+ 1

3
x2.

For (x1, x2) contained in the triangle (m + 2
3 , n + 2

3 )

ζ(x‖) = b
(0)

m+ 2
3 ,n+ 2

3
+ a

(1)

m+ 2
3 ,n+ 2

3
x1 + a

(2)

m+ 2
3 ,n+ 2

3
x2.

The coefficients a
(1,2)

m+ 1
3 ,n+ 1

3
and a

(1,2)

m+ 2
3 ,n+ 2

3
are assumed to be independent

indentically distributed random deviates. Therefore the joint probability density
function

〈δ(γ1 − a
(1)

m+ 1
3 ,n+ 1

3
)δ(γ2 − a

(2)

m+ 1
3 ,n+ 1

3
)〉

= 〈δ(γ1 − a
(1)

m+ 2
3 ,n+ 2

3
)δ(γ2 − a

(2)

m+ 2
3 ,n+ 2

3
)〉

= f(γ1, γ2)

is independent of the subscripts to these coefficients.
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The double integral becomes∫
d2u‖e−i(q1u1+q2u2)

∑
m,n

{ ∫
m+ 1

3 ,n+ 1
3

d2x‖

〈
e
−iau1a

(1)

m+ 1
3 ,n+ 1

3
−iau2a

(2)

m+ 1
3 ,n+ 1

3

〉

+
∫

m+ 2
3 ,n+ 2

3

d2x‖

〈
e
−iau1a

(1)

m+ 2
3 ,n+ 2

3
−iau2a

(2)

m+ 2
3 ,n+ 2

3

〉}

=
∫

d2u‖e−i(q1u1+q2u2)
∑
m,n

{ ∫
m+ 1

3 ,n+ 1
3

d2x‖

∫
d2γ‖f(γ1, γ2)e−iau1γ1−iau2γ2

+
∫

m+ 2
3 ,n+ 2

3

d2x‖

∫
d2γ‖f(γ1, γ2)e−iau1γ1−iau2γ2

}

= S

∫
d2u‖

∫
d2γ‖f(γ1, γ2)e−i(q1u1+q2u2)e−iau1γ1−iau2γ2

= S

∫
d2γ‖f(γ1, γ2)2πδ(q1 + aγ1)2πδ(q2 + aγ2)

= S

(
2π

a

)2

f

(
− q1

a
,−q2

a

)
.
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The mean differential reflection coefficient

〈
∂R

∂Ωs

〉
=
(

ω

ac

)2

f

(
− q1

a
,−q2

a

)
.

We can invert this equation to obtain

f

(
q1

a
,
q2

a

)
=
(

1 + cos θs

)2〈
∂R

∂Ωs

〉
(−q1,−q2),

where 〈∂R/∂Ωs〉(q1, q2) is the mean DRC expressed in terms of the components
of the wave vector q‖.
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Make the changes of variables

q1

a
= s1 =

sin θs cosφs

1 + cos θs
= tan

θs

2
cosφs

q2

a
= s2 =

sin θs sinφs

1 + cos θs
= tan

θs

2
sinφs.

It follows that

sin θs =
2s‖

1 + s2
‖
, cos θs =

1 − s2
‖

1 + s2
‖
,

where

s‖ =
(
s2
1 + s2

2

) 1
2 .

Then

f(s1, s2) =
4

(1 + s2
‖)

2

〈
∂R

∂Ωs

〉
(−s1,−s2),

where 〈∂R/∂Ωs〉(s1, s2) is the form that 〈∂R/∂Ωs〉(q1, q2) takes when q1 and q2

are replaced by s1 and s2.
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A Band-Limited Uniform Diffuser within a Circular Domain

〈
∂R

∂Ωs

〉
(q1, q2) = Aθ

(
qm

ω

c
−
√

q2
1 + q2

2

)

f(s1, s2) =
4A

(1 + s2
‖)

2
θ

(
qm − 2s‖

1 + s2
‖

)

=
4A

(1 + s2
‖)

2
θ
(
q∗ − s‖

)
,

where

q∗ =
1 −√1 − q2

m

qm
.

A is determined by the normalization of f(s1, s2):

A =
1
4π

1 + q∗2

q∗2
.
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The marginal pdf f(s1) is

f(s1) =
∫ ∞

−∞
ds2f(s1, s2) = 〈δ(s1 − a

(1)

m+ 1
3 ,n+ 1

3
)〉

= 〈δ(s1 − a
(1)

m+ 2
3 ,n+ 2

3
)〉

=
4A

(1 + s2
1)3/2

[
tan−1

(
q∗2 − s2

1

1 + s2
1

)1/2

+
(q∗2 − s2

1)
1/2(1 + s2

1)
1/2

1 + q∗2

]
θ(q∗ − |s1|).

The conditional pdf of a
(2)

m+ 1
3 ,n+ 1

3

(
a
(2)

m+ 2
3 ,n+ 2

3

)
given a

(1)

m+ 1
3 ,n+ 1

3

(
a
(1)

m+ 2
3 ,n+ 2

3

)
is

f(s2|s1) =
f(s1, s2)

f(s1)
.
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A segment of the surface profile function ζ(x‖).
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A Band-Limited Uniform Diffuser within a Rectangular Domain

〈
∂R

∂Ωs

〉
(q1, q2) = Aθ

(
q
(m)
1 − |q1|

)
θ

(
q
(m)
2 − |q2|

)
.

When s‖ is small enough that 1 + s2
‖ ∼= 1,

〈
∂R

∂Ωs

〉
(s1, s2) = Aθ

(
s
(m)
1 − |s1|

)
θ
(
s
(m)
2 − |s2|

)
,

where

A =
1

16s
(m)
1 s

(m)
2

, s
(m)
j =

cq
(m)
j

2ω
j = 1, 2.

f(s1, s2) = 4A

〈
∂R

∂Ωs

〉
(s1, s2) = Aθ

(
s
(m)
1 − |s1|

)
θ
(
s
(m)
2 − |s2|

)
,

f(s1) =
θ
(
s
(m)
1 − |s1|

)

2s
(m)
1

, f(s2|s1) =
θ
(
s
(m)
2 − |s2|

)

2s
(m)
2

.



The mean differential reflection coefficient estimated from Np = 10,000 realizations of 
surface profiles : θ1 =10o, θ2 =6o
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The surface x3 = ζ(x‖) is illuminated from the vacuum side by a scalar plane
wave of frequency ω,

ψ(x|ω)inc = exp[ik‖ · x‖ − iα0(k‖)x3],

where α0(k‖) =
√

(ω/c)2 − k2
‖.

By the use of Green’s second integral identity the scattered field in this region
can be written in the form

ψ(x|ω)sc = − 1
4π

∫
d2x′‖[g0(x|x′)]x′

3=ζ(x′
‖)L(x′

‖|ω),

where g0(x|x′) is the scalar free-space Green’s function

g0(x|x′) =
ei ω

c |x−x′|

|x − x′| .

In the Kirchhoff approximation the source function L(x‖|ω) is given by

L(x‖|ω) = 2
(
−∂ζ(x‖)

∂x1

∂

∂x1
− ∂ζ(x‖)

∂x2

∂

∂x2
+

∂

∂x3

)
ψ(x|ω)inc

∣∣∣∣
x3=ζ(x‖)

= −2i
(
∂ζ(x‖)
∂x1

k1 +
∂ζ(x‖)
∂x2

k2 + α0(k‖)
)
eik‖·x‖−iα0(k‖)ζ(x‖).
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In the case of normal incidence, k‖ = 0, the scattered field in the Fresnel limit
x3 � x1, x2 and x3 � x′1, x

′
2 has the form

ψ(x|ω)sc
∼= i

2π
ω

c

ei ω
c x3

x3

∫
d2x′‖ exp

{
−2i

ω

c
ζ(x′

‖) + i
ω

c

(x‖ − x′
‖)

2

2x3

}
.

We assume that the surface profile function ζ(x‖) is a function of x‖ only
through its magnitude, |x‖| = r, and write

ζ(x‖) = H(r).

Then, the expression for the scattered field takes the form

ψ(x|ω)sc
∼= i

(ω
c

) ei ω
c (x3+

r2
2x3

)

x3

∞∫
0

dr′r′J0

(
ωr

cx3
r′

)
ei ω

2cx3
r′2−i 2ω

c H(r′).
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Our goal is to find the function H(r) that produces a specified form for the mean
intensity of the scattered field along the x3-axis, 〈I(x3)〉 = 〈|ψ(0, 0, x3|ω)sc|2〉,
where

ψ(0, 0, x3|ω)sc = i
(ω
c

) ei ω
c x3

x3

∞∫
0

dr r e−2i ω
c H(r)+i ω

c
r2
2x3 .

The solution is given by a surface defined by

H(r) =
an

b
r2 + bn,

√
nb ≤ r ≤ √

n+ 1b, n = 0, 1, 2, . . . , N − 1,

where {an} are independent identically distributed random deviates.
Consequently, the probability density function (pdf) of an, f(γ) = 〈δ(γ − an)〉, is
independent of n. The {bn} are determined from the condition that the surface
profile function H(r) be a continuous function of r, and are given by

bn = b0 + (a0 + a1 + · · · + an−1 − nan)b n ≥ 1.

We find that

f(γ) =
1
4π

c

ω

1
Nb

〈I( b
4γ )〉
γ2

.
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For example, we seek to design a surface that produces a constant scattered
intensity within the interval z1 < x3 < z2 of the x3-axis, and zero scattered
intensity along the rest of the x3-axis,

〈I(x3)〉 = π
ω

c

Nb2

z2 − z1
θ(x3 − z1)θ(z2 − x3) z2 > z1,

where θ(z) is the Heaviside unit step function.

The probability density function (pdf) of an then has the form

f(γ) =
b

4(z2 − z1)
1
γ2
θ

(
γ − b

4z2

)
θ

(
b

4z1
− γ

)
.
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A segment of the surface profile function H(r)
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The parameters employed in generating this segment were z1 = b, z2 = 2b, and
b = 400λ.
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z1 = b, z2 = 2b
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A color–level plot of 〈I(x1, x3)〉 calculated in the Kirchhoff approximation. The
parameters employed are z1 = b, z2 = 2b, b = 200λ, N = 200, and Np = 80, 000.
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z1 = b, z2 = 2b
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A plot of 〈I(x3)〉 calculated by a rigorous computer simulations method.
estimated from Np = 30, 000 realizations of the surface profile function. The
parameters employed are z1 = b, z2 = 2b, b = 200λ, N = 4, and Np = 30, 000.
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The nondiffracting beam introduced by Durnin is a solution of the free-space
wave equation of the form

E(ρ, z) = J0(αρ) exp(iβz),

in which

α2 + β2 = k2,

where k is the wave number, J0(x) is the zero-order Bessel function, and (ρ, θ, z)
are the cylindrical coordinates.
This beam has an infinite extent in the transverse plane, and is capable of
propagating to infinity in the z-direction without spreading. Such an ideal
nondiffracting beam contains an infinite amount of energy, and is impossible to
realize in practice.

Consequently, most recent studies of nondiffracting beams have focused on
pseudo-nondiffracting beams, which have a finite beam aperture. Such beams
have a finite propagation range, have variation in transverse beam profiles, and
intensity peaks in the direction of propagation. Nevertheless, the propagation
length can extend to several tens of centimeters, long enough for many
applications.
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A plot of 〈I(x3)〉 calculated in the Kirchhoff approximation. The parameters
employed are z1 = 1.26cm, z2 = 253cm, λ = 0.6328µm, b = 12mm, and
Np = 80, 000.
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Conclusions

• The results presented show that it is possible to

design, and to fabricate, one- and two–dimensional

randomly rough surfaces that scatter light in a

prescribed fashion.
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We now design a random surface that gives rise to a mean differential reflection
coefficient that is a constant in the angular interval |θs| < θm < π/2, and
vanishes for |θs| > θm, while the angle of incidence is θ0.

〈
∂R

∂θs

〉
= Aθ(sin θs + sin θm)θ(sin θm − sin θs)

In this case the pdf of an has the form

f(γ) =
2A

1 + γ2

cos θ0

cos θ0 + γ sin θ0

× θ

(
γ + tan

θm − θ0

2

)
θ

(
tan

θm + θ0

2
− γ

)
.

where the coefficient A is obtained from the normalization condition for f(γ)

A =
1

2 cos θ0

[
θm cos θ0 + sin θ0	n

cos
(

θm−θ0
2

)
cos

(
θm+θ0

2

)
]−1

.
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Segments of the surface profile functions ζ(x1) for different angles of incidence.
b = 22µm.
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A Band–Limited Uniform Diffuser

A rigorous computer simulation calculations

A perfectly conducting random surface
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The mean differential reflection coefficient 〈∂R/∂θs〉 estimated from Np = 20, 000
realizations of perfectly conducting surface profiles: θm = 20◦, λ = 632.8nm,
L = 100µm, b = 22µm.




