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Designer surfaces
A.A.Maradudin
Department of Physics and Astronomy and Institute for Surface and Interface Science
University of California, Irvine, CA 92697, USA

In many practical situations it is desirable to have optical diffusers with specific
light scattering properties. For example, a nonabsorbing diffuser that scatters light
uniformly within a specified range of scattering angles, and produces no scatter-
ing outside this range, could have applications in projection systems where one
wishes to illuminate a screen with uniform intensity but not to waste light by
illuminating outside the boundaries of the screen. We will call such an optical
element a band-limited uniform diffuser. Band-limited uniform diffusers can also
be useful in microscope illumination systems, in the fabrication of displays and
projection screens, and in Fourier transform holography. A random surface that
acts as a band-limited uniform diffuser would consequently be a useful optical
element. Lambertian diffusers, which produce a scattered intensity that is propor-
tional to the cosine of the polar scattering angle, are frequently used in the optical
industry, e.g. for calibrating scatterometers [1]. Such diffusers have the property
that their radiance or luminance is the same in all scattering directions. In the
visible region of the optical spectrum volume disordered media, e.g. compacted
powdered barium sulfate, and freshly smoked magnesium oxide are used as Lam-
bertian diffusers [2]. However, this type of diffuser is inapplicable in the infrared
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region due to its strong absorption and the presence of a specular component
in the scattered light, in this frequency range. The design of a random surface
that acts as a Lambertian diffuser, especially in the infrared region of the optical
spectrum is therefore a desirable goal, and one that has been regarded as difficult
to achieve [3]. Yet another example is provided by the fact that in the scattering
of light from a random surface the multiple-scattering processes that give rise to
such interesting weak localization effects as enhanced backscattering, enhanced
transmission, satellite peaks, and new angular intensity correlation functions, are
accompanied by single-scattering processes on which these, often subtle, effects
are superimposed. The design of random surfaces that suppress single-scattering
in a suitable range of scattering angles could be useful in increasing the visibility
of these effects.

The design of band-limited uniform diffusers, some of which employ one- or
two-dimensional random surfaces, has been considered by several authors [4–7].
Diffractive optical elements that scatter light uniformly over specified angular re-
gions have become commercially available [8]. These elements, however, are not
random and possess the desired characteristics over only a relatively narrow range
of wavelengths. Thus, they are not achromatic. Another kind of diffuser, whose
design is based on a randomized microlenslet concept, is also available commer-
cially [9]. Although these holographic light shaping diffusers are achromatic, and
possess characteristics that approximate the desired ones, the scattering distribu-
tion they produce is not uniform, and they do not have a well-defined maximum
angle of scattering.

Despite the interest in this subject, until recently there were no clear pro-
cedures reported in the literature for designing and fabricating randomly rough
surfaces that behave as band-limited uniform diffusers, or scatter light in other
specified ways, and it was unclear what kind of surface statistics were required
for the production of such optical elements. In this lecture I will present ap-
proaches due to my colleagues and myself to the design and fabrication of one-
and two-dimensional randomly rough surfaces that possess the scattering proper-
ties described above [10–21] These methods are based on the geometrical optics
limit of the Kirchhoff approximation, a single-scattering approximation, for the
scattering of scalar plane waves from impenetrable surfaces. However, as we will
see, the results obtained by these methods have a significantly wider range of
applicability. We have chosen to work with random surfaces in designing optical
diffusers that scatter light in a prescribed fashion because, as will be shown, the
use of such surfaces leads to a precise algorithm for designing them, something
that we have been unable to find in dealing with deterministic surfaces.

I begin by considering one-dimensional random surfaces. The physical system
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that is assumed initially consists of vacuum in the region x3 > ζ(x1) and a perfect
conductor in the region x3 < ζ(x1). The surface profile function ζ(x1) is assumed
to be a single-valued function of x1 that is differentiable and constitutes a random
process, but not necessarily a stationary one. The surface x3 = ζ(x1) is illuminated
from the vacuum region by an s-polarized plane wave of frequency ω, whose plane
of incidence is the x1x3-plane. The single nonzero component of the electric field
E>
2 (x1, x3; t) = E>

2 (x1, x3|ω) exp(−iωt) in the region x3 > ζ(x1)max is the sum
of an incident plane wave and a superposition of outgoing scattered plane waves,

E>
2 (x1, x3|ω) = exp[ikx1 − iα0(k)x3] +

∞∫
−∞

dq

2π
R(q|k) exp[iqx1 + iα0(q)x3], (1)

where α0(q) = [(ω/c)2 − q2]
1
2 , with Reα0(q) > 0, Imα0(q) > 0.

The differential reflection coefficient, ∂R/∂θs, which is defined in such a way
that (∂R/∂θs)dθs is the fraction of the total time-averaged incident flux that is
scattered into the angular interval (θs, θs + dθs), is given in terms of the scattering
amplitude R(q|k) by

∂R

∂θs
=

1
L1

ω

2πc

cos2 θs

cos θ0
|R(q|k)|2, (2)

where L1 is the length of the x1-axis covered by the random surface, while θ0
and θs are the angles of incidence and scattering measured counterclockwise and
clockwise from the +x3-axis, respectively, and are related to the wavenumbers k
and q by k = (ω/c) sin θ0, q = (ω/c) sin θs. As we are concerned with the scat-
tering of light from a randomly rough surface, it is the mean differential reflection
that we need to calculate. It is defined by〈

∂R

∂θs

〉
=

1
L1

ω

2πc

cos2 θs

cos θ0
〈|R(q|k)|2〉, (3)

where the angle brackets here and in all that follows denote an average over the
ensemble of realizations of the surface profile function.

In the Kirchhoff approximation, which we adopt here for simplicity, the scat-
tering amplitude R(q|k) is given by[11]

R(q|k) = − (ω/c)2 + α0(q)α0(k) − qk

α0(q)[α0(q) + α0(k)]

×
∞∫

−∞
dx1 exp[−i(q − k)x1] exp{−i[α0(q) + α0(k)]ζ(x1)}. (4)
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The mean differential reflection coefficient in this approximation thus takes the
form〈

∂R

∂θs

〉
=

1
L1

ω

2πc

1
cos θ0

[
1+ cos(θs + θ0)
cos θs + cos θ0

]2

×
∞∫

−∞
dx1

∞∫
−∞

dx′
1 exp[−i(q − k)(x1 − x′

1)]〈exp{−ia[ζ(x1) − ζ(x′
1)]}〉 (5)

where, to simplify the notation, we have defined a=α0(q)+α0(k)=(ω/c)(cos θs+
cos θ0).

Our goal is to determine the surface profile function ζ(x1) that produces a
specified form for 〈∂R/∂θs〉 as a function of θs and θ0. As it stands, the expression
given by Eq. (5) is too difficult to invert to obtain ζ(x1) in terms of 〈∂R/∂θs〉. To
simplify it we pass to the geometrical optics limit of the Kirchhoff approximation
by making the change of variable x′

1 = x1 +u in Eq. (5), expanding the difference
ζ(x1) − ζ(x1 + u) in powers of u, and retaining only the leading nonzero term:

〈
∂R

∂θs

〉
=

1
L1

ω

2πc

1
cos θ0

[
1 + cos(θs + θ0)
cos θs + cos θ0

]2 ∞∫
−∞

dx1

∞∫
−∞

du exp[i(q − k)u]

×〈exp[iauζ′(x1)]〉. (6)

To proceed, we represent the surface profile function ζ(x1) in the form

ζ(x1) = anx1 + bn, nb ≤ x1 ≤ (n + 1)b, n = 0,±1,±2, . . . , (7)

where b is a characteristic length, and the {an} are independent, identically dis-
tributed random deviates. Therefore, the probability density function (pdf) of an,
f(γ) = 〈δ(γ − an)〉, is independent of n. In order that the surface be continuous
at x1 = (n + 1)b, the relation

bn+1 = bn − (n + 1)(an+1 − an)b (8)

must be satisfied. From this recurrence relation the {bn} can be determined from
a knowledge of the {an}, provided that an initial value, e.g. that of b0, is specified.
It is convenient to set b0 = 0, and we do so. The double integral in Eq. (6) can
now be evaluated, with the result

∞∫
−∞

dx1

∞∫
−∞

du exp[i(q − k)u]〈exp[iauζ′(x1)]〉
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=
2πL1

(ω/c)(cos θ0 + cos θs)
f

(
sin θ0 − sin θs

cos θ0 + cos θs

)
. (9)

The mean differential reflection coefficient thus is given in terms of the pdf of an,〈
∂R

∂θs

〉
=

[1 + cos(θ0 + cos θs)]2

cos θ0(cos θ0 + cos θs)3
f

(
sin θ0 − sin θs

cos θ0 + cos θs

)
. (10)

The change of variable (sin θ0 − sin θs)/(cos θ0 + cos θs) = −γ, allows us to write
f(γ) in terms of the mean differential reflection coefficient,

f(γ) =
2

1 + γ2

cos θ0
cos θ0 + γ sin θ0

〈
∂R

∂θs

〉
(−γ, θ0), (11)

where 〈∂R/∂θs〉(γ, θ0) is the expression for 〈∂R/∂θs〉 in which its dependence
on θs has been replaced by its dependence on γ and θ through the use of the
change of variable we have made.

If we seek to design a random surface that gives rise to a mean differential
reflection coefficient that is a constant in the angular interval −θm < θs < θm,
and vanishes outside this interval,i.e. for which〈

∂R

∂θs

〉
= Aθ(θs + θm)θ(θm − θs), (12)

where θ(z) is the Heaviside unit step function, it is found that the corresponding
pdf f(γ) is given by

f(γ) =
2A

1+γ2

cos θ0
cos θ0+γ sin θ0

θ

(
γ+ tan

θm−θ0
2

)
θ

(
tan

θm+θ0
2

− γ

)
. (13)

The coefficient A in this expression is obtained by normalizing f(γ) to unity.
From this result for f(γ) a long sequence of {an} is generated by the rejection
method [22], and the corresponding sequence of {bn} is obtained from Eq. (8).
The surface profile function ζ(x1) is then constructed on the basis of Eq. (7).

To determine whether the random surface generated in this fashion indeed
produces the scattering pattern specified by Eq. (12), we proceed as follows. A
large number Np of realizations of the random surface is generated by the method
just described, and for each realization the scattering problem is solved by, for
example, a rigorous computer-based method [23] to yield the scattering amplitude
R(q|k). An arithmetic average of the Np results for |R(q|k)|2 obtained in this way
yields the average 〈|R(q|k)|2〉 entering the expression for the mean differential
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reflection coefficient given by Eq. (3). The computed result for 〈∂R/∂θs〉 is then
compared with the result given by Eq. (12).

Numerical results illustrating this approach to the design of one-dimensional
random surfaces with specified scattering properties will be presented in this lec-
ture, as well as a method for fabricating them on photoresist. Experimental results
for the mean differential reflection coefficients measured in scattering from surfaces
designed in the manner described will be also presented.

Extensions of the method described here for the design of one-dimensional
randomly rough surfaces with specified scattering properties to the design of two-
dimensional randomly rough surfaces with specified scattering properties will also
be described, together with methods for fabricating them on photoresist. Ex-
perimental results for scattering from surfaces designed and fabricated by these
methods will also be presented.
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Lateral surface superlattices:
minibands, transport, and chaos

U.Rössler
Fakultät für Physik, Universität Regensburg, D-93040 Regensburg, Germany

The two-dimensional electron gas (2DEG), realized in semiconductor het-
erostructures and quantum wells, has become a model system for many different
investigations. One field of research is based on applying modern semiconductor
technologies, to impose a lateral periodic structure onto the 2DEG with periods a
(now in the range of 100 nm) which are much smaller than the electron mean-free
path lmfp at low temperatures but comparable to the Fermi wavelength λF [1–
3]. Thus, in a low-temperature transport experiment, the electrons can explore
the periodic potential landscape without being scattered by impurities or phonons
(lmfp � a). Considering at the same time that for the prevailing carrier densities
λF = 2π/kF is comparable to a, the electrons in a lateral superlattice represent a
model of a solid, but with lattice constants very much larger than the crystalline
ones of a few Å. The characteristic energy spectrum of electrons in a periodic po-
tential is a band structure, which due to the scaling of the lattice constant results
here in minibands, with widths and gaps in the meV range. The demonstration of
miniband formation has been one of the challenges of this system.

Experimental investigations of these systems preferentially employ magneto-
transport measurements with the magnetic field applied perpendicular to the plane
of the 2DES. With the magnetic length lB =

√
�/eB a new scale is introduced
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