Электростатические модели фазовых переходов металл-изолятор в кристаллах Ge и Si с водородоподобными примесями

Н.А.Поклонский

Белорусский государственный университет, Минск, Республика Беларусь

В лекции излагаются результаты расчета параметров концентрационных фазовых переходов изолятор-металл и металл-изолятор в пределе нулевой температуры $(T \rightarrow 0)$.

1. На изоляторной стороне перехода изолятор-металл при увеличении концентрации N легирующей примеси вплоть до критической концентрации N_c происходит неограниченное возрастание статической относительной диэлектрической проницаемости $\varepsilon_r(N)$ кристаллического образца [1–3]. Для определенности рассмотрим кристаллический полупроводник *n*-типа с концентрацией доноров $N = N_0 + N_{+1}$ в зарядовых состояниях (0) и (+1) и акцепторов в зарядовом состоянии (-1) с концентрацией $N_{-1} = KN$, где K — степень компенсации доноров. Условие электронейтральности: $N_{+1} = KN$.

По модели [4, 5] с учетом поляризуемости как атомов кристаллической матрицы, так и электрически нейтральных доноров, критическая концентрация N_c для перехода изолятор-металл и зависимость $\varepsilon_r(N)$ от концентрации доноров N на изоляторной стороне имеют вид:

$$N_{\rm c}^{1/3}a_{\rm H} = \frac{0.542}{[(1-K)(\varepsilon_{\rm r}+2)]^{1/3}}, \quad \varepsilon_{\rm r}(N) = \frac{\varepsilon_{\rm r}+2N/N_{\rm c}}{1-N/N_{\rm c}},\tag{1}$$

где $a_{\rm H} = e^2/8\pi\varepsilon_{\rm r}\varepsilon_0 I_{\rm d(a)}$ — радиус орбиты электрона (дырки) одиночного водородоподобного донора (акцептора) с энергией ионизации $I_{\rm d(a)}$ в кристаллической решетке с диэлектрической проницаемостью $\varepsilon_{\rm r}\varepsilon_0$; e — заряд электрона; $K \ll 1$; $\varepsilon_{\rm r}(N \to 0) = \varepsilon_{\rm r}$.

Расчет зависимости $\varepsilon_{\rm r}(N)$ по формуле 1 для кристаллов кремния показан в сравнении с экспериментальными данными на рис. 1. При обработке экспериментальных данных [1, 3, 6, 7] использовались средние значения критических концентраций примесей для $K \to 0$ (см. табл. 1): $N_{\rm c}({\rm Si:As}) = 7.8 \cdot 10^{18} \, {\rm cm}^{-3},$ $N_{\rm c}({\rm Si:P}) = 3.8 \cdot 10^{18} \, {\rm cm}^{-3},$ $N_{\rm c}({\rm Si:B}) = 4.1 \cdot 10^{18} \, {\rm cm}^{-3}.$

Рис. 1. Зависимость макроскопической относительной диэлектрической проницаемости $\varepsilon_r(N)$ слабо компенсированного кремния от концентрации N основных легирующих примесей. Точки — экспериментальные данные: a — n-Si:As [1], b — n-Si:P [6], c — n-Si:P [7], d — p-Si:B [3]. Кривая — расчет $\varepsilon_r(N)$ по 1 при K = 0 и $\varepsilon_r = 11.5$

Таблица 1. Экспериментальные значения критической концентрации N_c примеси в кристаллах Si при разных степенях компенсации K

Параметры кристалла, электронов (n) и дырок (p) [8, 9]	Легиро- ванный полупровод- ник	I _{d(a)} , мэВ [8, 9]	<i>N</i> _с , см ^{−3}	K	Источник
1	2	3	4	5	6
Si	<i>n</i> -Si:As	53.8	$7.8 \cdot 10^{18}$	< 0.01	[10]
$\varepsilon_r = 11.5$	n-Si:P	45.6	$3.48 \cdot 10^{18}$	< 0.01	[11]
$m_{\rm n} = 0.322 m_0$			$3.7 \cdot 10^{18}$	< 0.01	[12]
$\nu_n = 6$			$(4.15 \pm 0.2) \cdot 10^{18}$	< 0.01	[13]
$m_{\rm p} = 0.591 m_0$			$(4.74\pm0.5){\cdot}10^{18}$	0.15 ± 0.05	
$\nu_{\rm p} = 1$			$(6.77 \pm 0.8) \cdot 10^{18}$	0.37 ± 0.05	
-			$(1.2\pm0.2){\cdot}10^{19}$	0.54 ± 0.05	
	n-Si:Sb	42.7	2.9·10 ¹⁸	< 0.01	[14]
	p-Si:B	44.4	$4.1 \cdot 10^{18}$	< 0.01	[15]

2. С металлической стороны переход металл–диэлектрик экспериментально наблюдается как неограниченный рост электрического сопротивления на постоянном токе при уменьшении концентрации N примеси вплоть до N_c или при увеличении ее степени компенсации.

Рис. 2. Зависимость критической концентрации N_c доноров (акцепторов) в Ge и Si от степени их компенсации K. Точки — экспериментальные данные: a - p-Ge:Ga [27–29], b - p-Ge:Ga [21], c - p- Ge:Ga [30], d - n-Ge:As [23, 27, 31], e - n- Ge:As [22], f - n-Ge:As [24], g - n-Ge:Sb [24], h - n- Ge:Sb [23], i - n-Ge:Sb [32], j - n-Ge:P [23, 27], k - n-Si:P [13]. Сплошная линия — расчет по 3; штриховая линия — расчет по модели [17]. (Пунктиром при K = 0.01 показан диапазон экспериментальных данных по N_c из работ [10–15, 18–26], представленных в табл. 1 и 2, со средним значением $N_c^{1/3} a_B / \nu^{2/3} = 0.1$)

Предполагается, что флуктуации электростатической энергии, создаваемые в кристалле ионами примесей и электронами проводимости, имеют гауссово (нормальное) распределение с дисперсией W^2 . Из условия равенства уровня протекания (порога подвижности) E_{μ} уровню Ферми $E_{\rm F}$, зависимость критической для перехода металл-изолятор концентрации $N_{\rm c}$ примеси от степени ее компенсации K при температуре $T \rightarrow 0$ можно получить [4, 5, 16] в виде (ср. [17]):

$$N_{\rm c}^{1/3}a_{\rm B} = 0.238 \left(\frac{W}{E_{\rm B}}\right)^{1/2} \left[\frac{\nu}{1-K} \int_{-\infty}^{E_{\mu}/W} \left(\frac{E_{\mu}}{W} - x\right)^{3/2} \exp\left(\frac{-x^2}{2}\right) {\rm d}x\right]^{1/3}, \quad (2)$$

где $a_{\rm B} = 4\pi\varepsilon_{\rm r}\varepsilon_0\hbar^2/me^2$, $E_{\rm B} = e^2/8\pi\varepsilon_{\rm r}\varepsilon_0a_{\rm B}$ — боровские радиус¹ и энергия; ν — число долин в разрешенной для основных носителей заряда энергетиче-

 $^{^1}$ Для кристаллов Ge и Si как
 n-, так и p-типа $a_{\rm H}\neq a_{\rm B}.$ Ясно, что для атома водорода в вакуум
е $\varepsilon_{\rm r}=1,\ m=m_0$ и $a_{\rm H}=a_{\rm B}.$

1	2	3	4	5	6
Ge	<i>n</i> -Ge:As	14.2 мэВ	$3 \cdot 10^{17} \mathrm{cm}^{-3}$	<i>K</i> < 0.01	[18]
$\varepsilon_{\rm r} = 15.4$			3.5·10 ¹⁷	< 0.01	[19, 20]
$m_{\rm n} = 0.22 m_0$			$(3.5 \pm 0.18) \cdot 10^{17}$	< 0.01	[22]
$\nu_{\rm n} = 4$			$(4 \pm 0.2) \cdot 10^{17}$	K = 0.12	
$m_{\rm p}=0.38m_0$			$(8.8 \pm 0.2) \cdot 10^{17}$	0.38	
$\nu_{\rm p} = 1$			$(1.87\pm0.9){\cdot}10^{18}$	0.54	
			$3.83 \cdot 10^{17}$	< 0.01	[23]
			$(5 \pm 1) \cdot 10^{17}$	0.21 ± 0.07	[27]
			5.64·10 ¹⁷	0.3	[31]
			1.86·10 ¹⁸	0.58	[24]
			$3.3 \cdot 10^{18}$	0.73	
			$5.1 \cdot 10^{18}$	0.78	
	<i>n</i> -Ge:P	12.88	$2.5 \cdot 10^{17}$	< 0.01	[19, 20]
			$2.56 \cdot 10^{17}$	< 0.01	[23]
			$(5 \pm 1) \cdot 10^{18}$	0.73	[27]
	n-Ge:Sb	10.45	$1.5 \cdot 10^{17}$	< 0.01	[18]
			$1.53 \cdot 10^{17}$	< 0.01	[23]
			$1.68 \cdot 10^{17}$	< 0.01	[25]
			$2 \cdot 10^{17}$	< 0.01	[24]
			8.9·10 ¹⁷	0.46	
			4.5·10 ¹⁷	0.3	[32]
	p-Ge:Ga	11.32	10 ¹⁷	< 0.01	[21]
			$2 \cdot 10^{17}$	0.4	
			$1.13 \cdot 10^{17}$	< 0.01	[23]
			$1.86 \cdot 10^{17}$	< 0.01	[26]
			$2.5 \cdot 10^{17}$	0.3	[28]
			1.85.1017	0.35	[29]
			$(1.8 \pm 0.3) \cdot 10^{17}$	0.4	[30]
			$(2.1 \pm 0.3) \cdot 10^{17}$	0.6	
			$(1.2 \pm 0.3) \cdot 10^{19}$	0.9	
			$(7 \pm 1) \cdot 10^{17}$	0.59 ± 0.02	[27]
			$(1 \pm 0.2) \cdot 10^{18}$	0.6 ± 0.02	
			$(6 \pm 1) \cdot 10^{18}$	0.77 ± 0.02	

Таблица 2. Критическая концентрация N_c примеси в кристаллах Ge при разных степенях компенсации K (номера в названиях столбцов соответствуют табл. 1)

ской зоне ($\nu_n = 4$ для *n*-Ge, $\nu_n = 6$ для *n*-Si; $\nu_p = 1$ для *p*-Ge и *p*-Si); *m* — эффективная масса электрона (дырки) в одной долине.

В модели [4, 16] величина $W = W_{\rm nn} \approx 1.64 (e^2/4\pi\varepsilon_{\rm r}\varepsilon_0)(8\pi N_{\rm c}/3)^{1/3}$ обусловлена кулоновским взаимодействием только ближайших зарядов (ионов примесей с концентрацией $(1 + K)N_{\rm c}$ и электронов проводимости с концен-

трацией $n_{\rm c} = (1-K)N_{\rm c}$). Значение $E_{\mu}/W_{\rm nn} = -1.15$ находится согласованием 2 с экспериментальными данными [10–15, 18–26] для некомпенсированных кристаллов: $[N_{\rm c}(K \to 0)]^{1/3}a_{\rm B}/\nu^{2/3} = 0.1$ (см. табл. 1, 2). Если принять, что отношение $E_{\mu}/W_{\rm nn}$ равно -1.15 для 0 < K < 1, то из 2 следует зависимость $N_{\rm c}(K)$ для перехода металл–изолятор в виде (сплошная линия на рис. 2):

$$\frac{N_{\rm c}^{1/3}a_{\rm B}}{\nu^{2/3}} = \frac{0.1}{(1-K)^{2/3}}.$$
(3)

В модели [17] величина $W = W_{\rm s} = (e^2/4\sqrt{2}\pi\varepsilon_{\rm r}\varepsilon_0)(1+K)^{2/3}[N_{\rm c}/(1-K)]^{1/3}$ обусловлена экранированием электронами (или дырками) флуктуаций концентрации ионов примесей. Полагая, что критическая доля объема полупроводника, содержащая электроны и соответствующая уровню их протекания, равна 0.17, имеем $E_{\mu}/W_{\rm s} = -0.675\sqrt{2}$. Расчет $N_{\rm c}(K)$ по модели [17] с учетом формулы 2 при $W = W_{\rm s}$ показан на рис. 2 штриховой линией.

Литература

- [1] T.G. Castner. Phil. Mag. B 42 (6) 873–893 (1980).
- [2] T.G. Castner, N.K. Lee, H.S. Tan, L. Moberly, O. Symko. J. Low Temp. Phys. 38 (3-4) 447–473 (1980).
- [3] M. Lee, J. G. Massey, V. L. Nguyen, B. I. Shklovskii. Phys. Rev. B 60 (3) 1582–1591 (1999).
- [4] Н. А. Поклонский, А. И. Сягло. ФТТ 40 (1) 147–151 (1998).
- [5] Н. А. Поклонский, С. А. Вырко, А. Г. Забродский. ФТТ **46** (6) (2004).
- [6] M. Capizzi, G. A. Thomas, F. DeRosa, R. N. Bhatt, T. M. Rice. Phys. Rev. Lett. 44 (15) 1019–1022 (1980).
- [7] H. F. Hess, K. DeConde, T. F. Rosenbaum, G. A. Thomas. Phys. Rev. B 25 (8) 5578– 5580 (1982).
- [8] Semiconductors Basic data, ed. by O. Madelung (Berlin, Springer, 1996).
- Handbook series on semiconductor parameters, ed. by M. Levinstein, S. Rumyantsev, M. Shur (Singapore, World Scientific, 1996) v. 1; (Singapore, World Scientific, 1999) v. 2.
- [10] P. F. Newman, D. F. Holcomb. Phys. Rev. B 28 (2) 638–640 (1983).
- [11] P. Dai, Y. Zhang, M. P. Sarachik. Phys. Rev. B 49 (19) 14039–14042 (1994).
- [12] G. A. Thomas, M. Paalanen, T. F. Rosenbaum. Phys. Rev. B 27 (6) 3897–3900 (1983).
- [13] U. Thomanschefsky, D. F. Holcomb. Phys. Rev. B 45 (23) 13356–13362 (1992).
- [14] A. P. Long, H. V. Myron, M. Pepper. J. Phys. C 17 (17) L425–L432 (1984).
- [15] P. Dai, S. Bogdanovich, Y. Zhang, M. P. Sarachik. Phys. Rev. B 52 (16) 12439–12440 (1995).
- [16] Н. А. Поклонский, С. А. Вырко. Журн. прикл. спектр. 69 (3) 375–382 (2002).

- [17] B.I.Shklovskii, A.L.Efros. *Electronic properties of doped semiconductors* (Berlin, Springer, 1984).
- [18] А. Т. Лончаков, Г.А. Матвеев, И.М. Цидильковский. ФТП 22 (8) 1396–1400 (1988).
- [19] P. P. Edwards, M. J. Sienko. Phys. Rev. B 17 (6) 2575--2581 (1978).
- [20] M. N. Alexander, D. F. Holcomb. Rev. Mod. Phys. 40 (4) 815–829 (1968).
- [21] H. Fritzsche. Phil. Mag. B 42 (6) 835–844 (1980).
- [22] R. Rentzsch, M. Müller, Ch. Reich, B. Sandow, A. N. Ionov, P. Fozooni, M. J. Lea, V. Ginodman, I. Shlimak. Phys. Stat. Sol. (b) 218 (1) 233–236 (2000).
- [23] А. Г. Забродский, М. В. Алексеенко, А. Г. Андреев, М. П. Тимофеев. Тез. докл. 25го Всесоюзн. совещ. по физике низких температур (Ленинград, 1988) ч. 3, с. 60–61.
- [24] W. Sasaki, C. Yamanouchi. Journal of Non-Crystalline Solids 4 183–191 (1970).
- [25] S. B. Field, T. F. Rosenbaum. Phys. Rev. Lett. 55 (5) 522–524 (1985).
- [26] K. M. Itoh. Phys. Stat. Sol. (b) 218 (1) 211–216 (2000).
- [27] А. Г. Забродский. ФТП 14 (8) 1492–1498 (1980).
- [28] A. G. Zabrodskii, A. G. Andreev. Int. J. Mod. Phys. B 8 (7) 883–889 (1994).
- [29] A. G. Zabrodskii, A. G. Andreev, S. V. Egorov. Phys. Stat. Sol. (b) **205** (1) 61–68 (1998).
- [30] R. Rentzsch, O. Chiatti, M. Müller, A. N. Ionov. Phys. Stat. Sol. (b) 230 (1) 237–241 (2002).
- [31] А.Г.Забродский, К.Н.Зиновьева. ЖЭТФ **86** (2) 727–742 (1984).
- [32] F. R. Allen, R. H. Wallis, C. J. Adkins. Proc. 5th Int. Conf. Amorphous and liquid semiconductors (Garmisch-Partenkirchen, 1973), ed. by J. Stuke, W. Brening (London, Taylor & Francis, 1974) v. 2, p. 895–900.