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Multiple scattering effects in rough surface

scattering
A. A.Maradudin

Department of Physics and Astronomy and Institute for Surface and Interface Science
University of California, Irvine, CA 92697, USA

The first theoretical study of the scattering of light from a randomly rough
surface was carried out by Mandel’shtam in 1913, in the context of the scattering
of light from the surface of a liquid [1]. These calculations were carried out
on the basis of a single-scattering approximation, and for more than 70 years
after the work of Mandel’shtam single-scattering approaches continued to underlie
theoretical investigations of rough surface scattering. These approaches consisted
either of small-amplitude perturbation theory [2], in which the amplitude of the
scattered or transmitted field was calculated to first order in the surface profile
function — the function that gives the departure of a random surface from a
planar surface at each point of the latter — or of the Kirchhoff approximation [3],
in which the light is assumed to be scattered from and transmitted through the
plane tangent to each point of the random surface.

In 1985, however, it was predicted theoretically on the basis of a multiple-
scattering calculation of the scattering of p-polarized (transverse magnetic) light
from a one-dimensional weakly rough random metal surface that the angular de-
pendence of the intensity of the light scattered incoherently (diffusely) displays
a well-defined peak in the retroreflection direction [4]. This is a weak localiza-
tion effect that is caused by the coherent interaction of the multiply-scattered,
p-polarized, surface electromagnetic waves — surface plasmon polaritons — sup-
ported by the vacuum metal interface with their reciprocal partners. This effect
was observed experimentally two years later [5], in experiments in which, however,
metal surfaces considerably rougher than those for which the theory or Ref. [4]
is valid were used. These results stimulated the development of computational
approaches for calculating the scattering of light from large-amplitude, large slope,
random surfaces, and searches for additional phenomena that reveal themselves
only when multiple scattering is taken into account in these approaches, activities
that continue to this day.

In this lecture some of the techniques that have been used to investigate
multiple-scattering phenomena in rough surface scattering are outlined, and ef-
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fects obtained by their use are described. Where experimental confirmations of
the latter exist, they, too, are presented.

The most widely studied weak localization effect in rough surface scattering
studied both theoretically and experimentally is the enhanced backscattering effect
described above. In the earliest theoretical investigation of it [4] for the scattering
of p-polarized light from weakly rough one-dimensional randomly rough metal
surfaces, an infinite-order perturbation theory (the solution of a Bethe-Salpeter
equation for a two-particle Green’s function) that exploited the existence of surface
plasmon polaritons at the vacuum-metal interface, was used to calculate the mean
differential reflection coefficient. Subsequently, it was shown [6] that if small-
amplitude perturbation theory is used for this purpose, it is necessary to work
to fourth order in the surface profile function in calculating the mean differential
reflection coefficient in order for this effect to reveal itself. Recent perturbative
calculations of this effect have included terms of sixth order in the surface profile
function [7], and even terms of ecighth order [8]. Enhanced backscattering due
to the coherent interference of multiply-scattered surface plasmon polaritons with
their reciprocal partners in which the surface plasmons scatter from the same
points on the surface but in the reverse order, was observed in a clever experiment
by West and O’Donnell in 1995 [9] that was analyzed theoretically by Maradudin
et al [10].

To deal with scattering from large-amplitude, large-slope one-dimensional ran-
domly rough surfaces, computer simulation approaches were developed [11, 12,
13]. Among other results these methods showed that enhanced backscattering
can be observed in the scattering of s-polarized (transverse electric) light from
a sufficiently rough metal surface [13]. This is not the case in the scattering of
s-polarized light from a weakly rough metal surface, because the latter does not
support s-polarized surface plasmon polaritons.

Computer simulation calculations of the scattering of scalar plane waves from
two-dimensional randomly rough Dirichlet [14, 15] and Neumann [16] surfaces
were carried out, as well as such calculations of the scattering of electromagnetic
(vector) waves from two-dimensional perfectly conducting [17] and metallic [18]
surfaces.

If one compares the successive terms in the expansion in powers of the surface
profile function of the amplitude for the transmission of p-polarized light through
a thin, free-standing metal film, whose illuminated surface is a weakly rough one-
dimensional random surface, with the corresponding expansion for the scattering
amplitude, one finds that the denominators, and hence the poles, in both expan-
sions are the same. These poles give the dispersion relation for the two surface
electromagnetic waves supported by the film that are responsible for enhanced
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backscattering from the film. Consequently, one might expect that an analogous
effect should occur in transmission. This expectation was confirmed theoretically
in [19], where it was shown that the angular dependence of the intensity of the light
transmitted incoherently displays a well-defined peak in the antispecular direction.
This peak was subsequently observed experimentally [20].

When the scattering structure with a randomly rough surface supports two or
more surface or guided waves, as does the free-standing metal film mentioned
in the preceding paragraph, or a dielectric film deposited on a metal substrate,
additional features can arise in the angular dependence of the intensity of the light
scattered from it or transmitted through it, namely satellite peaks [21]. These are
also multiple-scattering effects that arise due to the fact that the scattering structure
supports two or more modes, with different wave numbers, at the frequency w of
the incident light. Thus, if the wavenumbers of the N (> 2) modes supported by
the structure are k1 (w), ka(w), ..., kn(w), peaks will occur at scattering angles 6
measured clockwise from the normal to the mean surface, given by sinfy =
—sinfy +(w/c)[km(w) — kn(w)], where 6y is the angle of incidence, measured
counterclockwise from the normal to the mean surface. When m = n the peak
is the enhanced backscattering peak, when m # n, the peaks are satellite peaks.
These satellite peaks have now been observed experimentally [22]. The satellite
peaks that can arise in transmission have yet to be observed.

In a series of papers published in 1987 [23] E. Wolf considered radiation from
a three-dimensional quasihomogeneous source and showed that if the spectral
coherence of the source i.e. the correlation in the fluctuations of the source, is
appropriately chosen, the spectrum of the emitted radiation can be redshifted or
blueshifted with respect to that of the source, even when the source is at rest with
respect to the observer, and the radiation propagates in free space. There is an
analogy between scattering and radiation that has its origin in the following cir-
cumstances. In the scattering of polychromatic light from a static random medium
the different frequency components of the incident light, which are scattered in
any particular direction, will be scattered with different strengths. Consequently,
the spectrum of the scattered light will differ from that of the incident light, even
though the different frequency components are uncorrelated. The possibility of
generating a spectral redistribution by scattering is analogous to the possibility of
generating a spectral redistribution in light emitted from a source caused by cor-
relations in the fluctuations of the source. The only difference is that in scattering
one is dealing with secondary sources, namely with the polarization induced in
the scattering medium by the incident field. The induced polarization, in gen-
eral, is correlated over finite distances of the scattering medium, and thus imitates
correlations in primary sources. This analogy between scattering and radiation
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prompted theoretical [24, 25] and experimental [25, 26] investigations of spectral
redistributions of light scattered from randomly rough surfaces that showed that
the spectrum of the scattered light indeed differs from that of the incident light.

Up to now I have considered only the intensity of the light scattered from, or
transmitted through, a randomly rough surface, namely a second moment of the
scattered field. Recently, angular intensity correlation functions of light scattered
from randomly rough surfaces have begun to be studied both theoretically and
experimentally. These are correlation functions of the type (61(g|k)dI(¢'|K')),
where 61(g|k) = I(q|k) — (I(q|k)), and the angle brackets denote an average over
the ensemble of realizations of the surface profile. They represent a fourth moment
of the scattered field. I(g|k) is the intensity with which an incident plane wave
whose wave vector has a component k parallel to the mean scattering surface is
scattered into a plane wave whose wave vector has a component ¢ parallel to the
mean scattering surface. These wavenumbers are related to angles of incident 6
and scattering 6, by k = (w/c)sinfy, ¢ = (w/c)sinbs, k' = (w/c)sinby, ¢ =
(w/c) sin@,. The theoretical calculations, which take multiple-scattering processes
into account, have predicted a memory effect and a reciprocal memory effect,
as well as a new correlation function that exists when the scattered field obeys
complex Gaussian statistics and vanishes when it obeys circular complex Gaussian
statistics [27, 28]. These angular intensity correlation functions have been observed
in recent experiments [29].

When highly intense light is incident on a metal surface second harmonic light
is generated in reflection. When the metal surface is randomly rough, weak local-
ization effects are present in the angular dependence of the intensity of the second
harmonic light. When the surface is weakly rough and is characterized by a power
spectrum that enhances the excitation of surface plasmon polaritons of frequency
2w, by incident light of frequency w, computer simulation and small-amplitude
perturbation theory calculations of the second harmonic intensity predict a dip in
the retroreflection direction for all angles of incidence [30, 31]. This prediction is
in agreement with experimental results presented in [32]. When the surface rough-
ness is characterized by a power spectrum that enhances the excitation of surface
plasmon polaritons of frequency w by incident light of frequency w, peaks are pre-
dicted at scattering angles defined by ¢ = k £ ks, (w) [31], where k = (w/c) sin b,
q = (w/c)sinfs, and ksp(w) is the wavenumber of surface plasmon polaritons of
frequency w. They are associated with the resonant nonlinear interaction of the ex-
cited surface plasmon polariton with the incident light. These peaks are observed
in the experimental results of [33]. In the case of second harmonic generation from
strongly rough metal surfaces, computer simulation calculations[34] show dips in
the retroreflection direction in the angular dependence of the scattered light at the
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harmonic frequency, in agreement with the experimental results presented in [35].

The preceding discussion does not cover all the weak localization effects pre-

dicted theoretically and observed experimentally when multiple-scattering effects
are taken into account in studies of rough surface scattering. Yet they illustrate the
richness of the phenomena multiple scattering produces, and raise the expectation
that there are still more to be discovered.
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Designer surfaces
A. A.Maradudin

Department of Physics and Astronomy and Institute for Surface and Interface Science
University of California, Irvine, CA 92697, USA

In many practical situations it is desirable to have optical diffusers with specific
light scattering properties. For example, a nonabsorbing diffuser that scatters light
uniformly within a specified range of scattering angles, and produces no scatter-
ing outside this range, could have applications in projection systems where one
wishes to illuminate a screen with uniform intensity but not to waste light by
illuminating outside the boundaries of the screen. We will call such an optical
element a band-limited uniform diffuser. Band-limited uniform diffusers can also
be useful in microscope illumination systems, in the fabrication of displays and
projection screens, and in Fourier transform holography. A random surface that
acts as a band-limited uniform diffuser would consequently be a useful optical
element. Lambertian diffusers, which produce a scattered intensity that is propor-
tional to the cosine of the polar scattering angle, are frequently used in the optical
industry, e.g. for calibrating scatterometers [1]. Such diffusers have the property
that their radiance or luminance is the same in a/l scattering directions. In the
visible region of the optical spectrum volume disordered media, e.g. compacted
powdered barium sulfate, and freshly smoked magnesium oxide are used as Lam-
bertian diffusers [2]. However, this type of diffuser is inapplicable in the infrared
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region due to its strong absorption and the presence of a specular component
in the scattered light, in this frequency range. The design of a random surface
that acts as a Lambertian diffuser, especially in the infrared region of the optical
spectrum is therefore a desirable goal, and one that has been regarded as difficult
to achieve [3]. Yet another example is provided by the fact that in the scattering
of light from a random surface the multiple-scattering processes that give rise to
such interesting weak localization effects as enhanced backscattering, enhanced
transmission, satellite peaks, and new angular intensity correlation functions, are
accompanied by single-scattering processes on which these, often subtle, effects
are superimposed. The design of random surfaces that suppress single-scattering
in a suitable range of scattering angles could be useful in increasing the visibility
of these effects.

The design of band-limited uniform diffusers, some of which employ one- or
two-dimensional random surfaces, has been considered by several authors [4-7].
Diffractive optical elements that scatter light uniformly over specified angular re-
gions have become commercially available [8]. These elements, however, are not
random and possess the desired characteristics over only a relatively narrow range
of wavelengths. Thus, they are not achromatic. Another kind of diffuser, whose
design is based on a randomized microlenslet concept, is also available commer-
cially [9]. Although these holographic light shaping diffusers are achromatic, and
possess characteristics that approximate the desired ones, the scattering distribu-
tion they produce is not uniform, and they do not have a well-defined maximum
angle of scattering,

Despite the interest in this subject, until recently there were no clear pro-
cedures reported in the literature for designing and fabricating randomly rough
surfaces that behave as band-limited uniform diffusers, or scatter light in other
specified ways, and it was unclear what kind of surface statistics were required
for the production of such optical elements. In this lecture 1 will present ap-
proaches due to my colleagues and myself to the design and fabrication of one-
and two-dimensional randomly rough surfaces that possess the scattering proper-
ties described above [10-21] These methods are based on the geometrical optics
limit of the Kirchhoff approximation, a single-scattering approximation, for the
scattering of scalar plane waves from impenetrable surfaces. However, as we will
see, the results obtained by these methods have a significantly wider range of
applicability. We have chosen to work with random surfaces in designing optical
diffusers that scatter light in a prescribed fashion because, as will be shown, the
use of such surfaces leads to a precise algorithm for designing them, something
that we have been unable to find in dealing with deterministic surfaces.

I begin by considering one-dimensional random surfaces. The physical system
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that is assumed initially consists of vacuum in the region x3 > ((x) and a perfect
conductor in the region x3 < ((x1). The surface profile function ¢(z) is assumed
to be a single-valued function of z; that is differentiable and constitutes a random
process, but not necessarily a stationary one. The surface x3 = ((z) is illuminated
from the vacuum region by an s-polarized plane wave of frequency w, whose plane
of incidence is the x;z3-plane. The single nonzero component of the electric field
E5 (w1, 23;t) = E5 (21, 23|w) exp(—iwt) in the region x3 > ((1)max is the sum
of an incident plane wave and a superposition of outgoing scattered plane waves,

. . rd o
5 (ar,22)) = explikar — iao(k)oa] + [ 51 R(glk) expliga + iao(a)a), (1)

— 00

where ag(q) = [(w/¢)? — ¢*]2, with Reag(q) > 0,Imag(q) > 0.

The differential reflection coefficient, 9R/06,, which is defined in such a way
that (OR/00,)d6 is the fraction of the total time-averaged incident flux that is
scattered into the angular interval (6, 65 + df), is given in terms of the scattering
amplitude R(q|k) by

1 w cos?b,
80, L, 2mc cosb

where L; is the length of the x;-axis covered by the random surface, while 6y
and 0, are the angles of incidence and scattering measured counterclockwise and
clockwise from the +ux3-axis, respectively, and are related to the wavenumbers &
and g by k = (w/c)sinfy, ¢ = (w/c)sinf,. As we are concerned with the scat-
tering of light from a randomly rough surface, it is the mean differential reflection
that we need to calculate. It is defined by

OR 1 w cos?é, )
() = 1o e RGP, ®)

where the angle brackets here and in all that follows denote an average over the
ensemble of realizations of the surface profile function.

In the Kirchhoff approximation, which we adopt here for simplicity, the scat-
tering amplitude R(q|k) is given by[11]

(w/e)? + ao(q)ao(k) — gk
ao(q)[0(q) + ao(k)]

|R(qlk)P, )

Rlglk) = -

X / dxy exp[—i(q — k)z1] exp{—i[ao(q) + ao(k)]C(z1)}.  (4)

— 00
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The mean differential reflection coefficient in this approximation thus takes the
form

R\ 1 w 1 [1+cos(fs+60)]’
80,/ — Ly2mccosby | cosfs + cosby

/ iy / dy expl—i(g — k) (1 — )] (exp{—ial((z1) — CEDI) (5)

— 00

where, to simplify the notation, we have defined a = (q)+ag(k)=(w/c)(cos s+
costp).

Our goal is to determine the surface profile function ((x;) that produces a
specified form for (OR/06;) as a function of 6, and 6y. As it stands, the expression
given by Eq. (5) is too difficult to invert to obtain {(x;) in terms of (OR/06;). To
simplify it we pass to the geometrical optics limit of the Kirchhoff approximation
by making the change of variable z} = x; + v in Eq. (5), expanding the difference
¢(z1) — ¢(z1 + u) in powers of u, and retaining only the leading nonzero term:

OR _LL 1 1 + cos(0s + 6p) /d:p /duex .
80,/ Ly2mccosfy | cosfy + cosby ! pli(e
x (expliau’ (z1)]). (6)

To proceed, we represent the surface profile function ((z) in the form

C(x1) =apz1 +by, nb<z;<(n+1)b, n=0=x1,£2,..., (7)

where b is a characteristic length, and the {a,} are independent, identically dis-
tributed random deviates. Therefore, the probability density function (pdf) of a,,
f(y) = {6(y — ay)), is independent of n. In order that the surface be continuous
at z; = (n + 1)b, the relation

b1 = by — (n+ 1)(an+1 — an)b (8)

must be satisfied. From this recurrence relation the {b,,} can be determined from
a knowledge of the {a, }, provided that an initial value, e.g. that of by, is specified.
It is convenient to set by = 0, and we do so. The double integral in Eq. (6) can
now be evaluated, with the result

/ day / du expli(g — k)u] (expliauc (z1)])
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o 27TL1 f sin 90 — sin 95 (9)
~ (w/c)(cosbp + cos ) \ cosbly + cosb )

The mean differential reflection coefficient thus is given in terms of the pdf of a,,,

OR\ [l +cos(fp + cos 05)]2 sin 6y — sin 0 (10)
005/ cosfp(cos By + coshy)3” \ cosby +cosby )
The change of variable (sin 6y — sin 6,)/(cos 6y + cos0s) = —~, allows us to write
f(v) in terms of the mean differential reflection coefficient,
2 cos fgy OR
= -7, 6 11
f0) 1+’yzcos€o+*ysin00<805>( 7 00); (1)

where (OR/005)(7, 0p) is the expression for (OR/06,) in which its dependence
on 65 has been replaced by its dependence on v and 6 through the use of the
change of variable we have made.

If we seek to design a random surface that gives rise to a mean differential
reflection coefficient that is a constant in the angular interval —6,, < 0; < 6,,,
and vanishes outside this interval,i.e. for which

(55 = 4000, + 0,000, ) (12

where 6(z) is the Heaviside unit step function, it is found that the corresponding
pdf f(v) is given by

2A cos O — 6o 000
= - . 1
1) 1+~2 cos90+7sin909 <7+ tan = ) b <tan 2 7) (13)

The coefficient A in this expression is obtained by normalizing f(-y) to unity.
From this result for f(v) a long sequence of {a,} is generated by the rejection
method [22], and the corresponding sequence of {b,} is obtained from Eq. (8).
The surface profile function ((x;) is then constructed on the basis of Eq. (7).

To determine whether the random surface generated in this fashion indeed
produces the scattering pattern specified by Eq. (12), we proceed as follows. A
large number NV, of realizations of the random surface is generated by the method
just described, and for each realization the scattering problem is solved by, for
example, a rigorous computer-based method [23] to yield the scattering amplitude
R(q|k). An arithmetic average of the N, results for | R(q|k)|* obtained in this way
yields the average (|R(q|k)[?) entering the expression for the mean differential
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reflection coefficient given by Eq. (3). The computed result for (OR/06;) is then
compared with the result given by Eq. (12).

Numerical results illustrating this approach to the design of one-dimensional
random surfaces with specified scattering properties will be presented in this lec-
ture, as well as a method for fabricating them on photoresist. Experimental results
for the mean differential reflection coefficients measured in scattering from surfaces
designed in the manner described will be also presented.

Extensions of the method described here for the design of one-dimensional
randomly rough surfaces with specified scattering properties to the design of two-
dimensional randomly rough surfaces with specified scattering properties will also
be described, together with methods for fabricating them on photoresist. Ex-
perimental results for scattering from surfaces designed and fabricated by these
methods will also be presented.
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Lateral surface superlattices:

minibands, transport, and chaos

U.Rossler
Fakultit fir Physik, Universitdt Regensburg, D-93040 Regensburg, Germany

The two-dimensional electron gas (2DEG), realized in semiconductor het-
erostructures and quantum wells, has become a model system for many different
investigations. One field of research is based on applying modern semiconductor
technologies, to impose a lateral periodic structure onto the 2DEG with periods a
(now in the range of 100 nm) which are much smaller than the electron mean-free
path Iy at low temperatures but comparable to the Fermi wavelength Ap [1-
3]. Thus, in a low-temperature transport experiment, the electrons can explore
the periodic potential landscape without being scattered by impurities or phonons
(Imfp < @). Considering at the same time that for the prevailing carrier densities
Ar = 27 /kp is comparable to a, the electrons in a lateral superlattice represent a
model of a solid, but with lattice constants very much larger than the crystalline
ones of a few A. The characteristic energy spectrum of electrons in a periodic po-
tential is a band structure, which due to the scaling of the lattice constant results
here in minibands, with widths and gaps in the meV range. The demonstration of
miniband formation has been one of the challenges of this system.

Experimental investigations of these systems preferentially employ magneto-
transport measurements with the magnetic field applied perpendicular to the plane
of the 2DES. With the magnetic length [ = //i/eB a new scale is introduced
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which can be tuned from the outside to study different regimes. If ip < a, the
periodic modulation becomes irrelevant and the electrons behave (up to small
modifications) as the free 2D electrons in high magnetic field where the magneto-
conductivity shows Shubnikov—de-Haas (SdH) oscillations. However, for magnetic
fields with [p ~ a, the conductivity is significantly determined by the periodic
structure, showing for A < @ and strong potential modulation pronounced com-
mensurability peaks [3], which are well described by classical [4] and quantum-
mechanical [5, 6] transport simulations using the Kubo formula.

For even smaller magnetic fields in only moderately modulated systems and
Ar =~ a, the electron motion can be described in the semiclassical picture which
employs the formation of a band structure (with small gaps) and Fermi contours
defining k-space orbits for electrons moving in the applied magnetic field. Within
this picture, observed magnetotransport oscillations have been identified as finger-
prints of a band structure in lateral surface superlattices [7].

In the classical regime, the 2DEG with periodic potential and perpendicular
magnetic field represents a system with nonlinear dynamics. Depending on the
relation between [, a, and the cyclotron radius R, = lsz: r, the electrons move
on (distorted) localized cyclotron orbits (for high magnetic field) but explore the
hole space in chaotic orbits at lower fields. Commensurability peaks can be well
understood as a result of this chaotic behavior by simulating magnetotransport with
the classical Kubo formula [4]. In a quantum-mechanical picture the signatures of
chaos are identified by level statistics [8-12].

One of the most striking properties of the electronic structure in a periodic
potential in dependence on a magnetic field is the Hofstadter butterfly [13, 14]:
depending on the magnetic flux threading a unit cell the electronic spectrum
shows a fractal structure of bands and gaps which after long efforts has finally
been verified in magnetotransport experiments [15].

Besides by electrostatic modulation investigations have been carried out also for
lateral surface superlattices with magnetostatic modulation [16, 17], with a periodic
structure created by superconducting islands [18], and for 2D hole systems [19].
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Pa30aBiiennble peppoMardHuTHbIe

HOJIYHPOBOI[HI’IKI’L Teopl’lﬂ /| 3KCHepHMeHT
K. A. Kuxonn

Ynusepcurer ben-I'ypuon, beep-Illesa, M3pamib

Pas6aBiieHnble MarHuTHbIC TOTynpoBogHUKU (PMIT) — 3T0 momympoBogHuMKO-
Bble coefMHEHUs rpynnsl A3Bs, B KOTOPBIX YacTb aTOMOB OIHOU M3 MOIPEIIETOK
3aMelleHa IPUMECSIMU MEPEXOOHBIX WIN PelKo3eMesIbHbIX MeTayuioB. [Ipu nocra-
TOYHO BBICOKON KOHIICHTPAILIMA MarHUTHBIX HOHOB B CIIJIaBE€ BO3HHUKAET (heppomar-
HUTHBI nopsinok. Ecin remneparypa Kiopu 7 10CcTaTovHO BBICOKA, TO TOSIBJICHAC
TaKOro MaTepraja Ype3BBYAiiHO pacHIIMpsieT BO3MOKXHOCTH COBPEMEHHON MHKpPO-
9JIEKTPOHUKU U CIIMHTPOHHMKU. Maprasen okasajcsi HauOoJiee MOIXOOAIIEeH Mar-
HUTHOH NpUMechio OJiarofapsi cBoeil BBICOKON PacTBOPHMMOCTH U muddy3noHHOM
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cnocobnoctu. K Hacrosmemy Bpemenu nosrydensl PMII ¢ T ~ 160 K nHa ocHo-
Be p-(Gaj_;Mn,)As. B mmpoxoruesnessix Matepuaiax p-(Ga,Mn)P, a Tawke p- u
n-(Ga,Mn)N ¢deppomaraeTnsm 00HAPYKEH U IIPH TEMIICPATYPax, IPEBHIIIAIOIIIX
KOMHATHYIO.

Ha mepBbiif B3rJ15i1 BO3HMKHOBEHHE MAarHUTHOTO TOPSOKA B 3TUX CHCTEMax
TIPE/ICTABIISIETCS BIIOJIHE €CTECTBEHHBIM CJICACTBUEM HAJIMYIXS MAarHATHOI'O MOMCH-
Ta y NOHOB MapraHna. Ecim HaiiieHa TeXHOJIOTHYeCcKasi BOSMOKHOCTb PaCTBOPSITH
9TH MOHBI B MOJIYNPOBOOHUKAX B HOCTATOYHOU KOHIIEHTpaLNU 0e3 KilacTepu3aluu
npuMeceil Wi oO0pa3oBaHUA NPELUIUTATOB APYrux (a3, TO MPUMECHBI MarHe-
TH3M BO3HHUKHET B COOTBETCTBHM C U3BECTHBIMH CLICHAPUAMH TEOPUH HEYHNOPSHO-
YeHHBIX MarHeTHKoB [1]: cHavasma oOpasyeTcsi MepKONISALMOHHAsT CeTKa MarHUTHBIX
MOMEHTOB, CBSI3aHHBIX OOMEHHBIM B3aNMOICHCTBHEM, a NPH JaJbHEHIIEM ITOBHI-
LIEHUH KOHIEeHTpauuu Mn Bo3HuKaeT 3(p(eKTUBHOE MOJIEKY/IApHOE I0Je, obecre-
YuBaolee JaJbHUI MarHUTHBIA HOPSIOK.

Opnako, geppomazHummplli XapakTep MarHUTHOIO YINOPSIOYEHUS B JIETHPO-
BaHHBIX ITOJTYIIPOBOTHHKAX IMPEICTABIISCT OIMPEICIICHHBIN BEI30B I Teopui. Bo-
TIEPBHIX, IPSIMOE OOMEHHOE B3aNMOICUCTBHE B Pa30aBJICHHBIX MAarHATHBIX CIUTaBaxX
CJIMIIKOM MaJlo, YTOOBl 00ECIeUUTh Takue BBICOKHME 1, a OOJIBIIMHCTBO HM3BECT-
HBIX MEXaHU3MOB KOCBEHHOI'0 0OMeHa OJIaronpHUATCTBYET dHMUBEPPOMAHUMOM)
yIopsimoueHno. Bo-BTOpBIX, MOH MapraHmna Kak IpUMech 3aMEIIeHUsI B MOIyIpo-
BomHUKaX A3 Bs sIBiIsIeTCSI TOBOJIBHO CIIOKHBIM I€(DEKTOM, KOTOPEI HE TOJIBKO ITPH-
BHOCHUT B MaTpPHUIy MarHUTHBII MOMEHT, HO M IIPpeo0Opa3yeT 3JICKTPOHHBIN CIICKTP
OsKaliinero oKpyxeHust npumecu [2, 3].

IMpocreimmit (1 Hanbosiee TOMY/IAPHBIT) (peHOMEHoIornYecKuii noxxon [4] ur-
HOPHUPYET 3TH IIPpo0IeMbl. B kadecTBe UCXOMHOTO B3aUMOAEUCTBUA MEXKIY JIOKaJIb-
HBIM CIIMHOM MAarHUTHOM [IPUMECH U 3JICKTPOHAMH (IBIPKaMK) B BAJICHTHOM 30HE
Oepercst sd-oomeH BoncoBckoro-3maepa. OH MOpOKAAET KOCBEHHOE B3aMMOLCH-
ctBusi Pynepmana-KuTrensa Mexmy MarHUTHBIME HOHaMH, KOTOPOMY ITPUIIUCHIBA-
etTca (eppomarHuTHbIM 3HaK. TemmepaTtypa Kiopu BbMucisercss B NpuOIMKEHUN
CpefHero MoJjisl Ul IpUMecHOro MarHetmsma [S]. Bosee peamucTideckuil mon-
XOJl OCHOBaH Ha pacueTe 3jieKTpoHHoro crnexktpa PMII ¢ momomplo 4uciieHHOrO
MeTOIa PAaCIIMPEHHBIX KJIaCTepPOB, B KOTOPOM B3aMMOJEHCTBAE MAarHUTHOIO MOHA
¢ OJKalIIM OKPY)KEeHHEM YUYHMTBIBAeTCA MAaKCUMaJIbHO TOYHO, 3aTeM CTPOMTCA
MepUOINIECKasl CBEPXPELIeTKa U IeJIaeTCsl 30HHBIA pacyeT CIUH-TIOIAPH30BaHHON
JIEKTPOHHOM CTPYKTYPBL, MHOIZIA ¢ Y4eTOM JIOKAJIbHBIX IOIPABOK THIIA KOT€PEeHT-
HOro MoTeHIWana [6]. DTOT MOAXox IMO3BOJISET BBHIMUCIUTh T¢ M obJiafaeT ompe-
JEJIEHHOM IpefCcKa3aTeIbHOU CHUJIOH, HO Ha €ro OCHOBE JOBOJIBHO TPYIHO OIpefe-
JINTh, KaK UMEHHO YCTPOEH MEXaHU3M OOMEHHOI'0 B3aUMOICUCTBUA MEXIY HOHAMU
Maprasua .
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M=l ocTaBIM cebe 3agady BBIBECTH MEXIPHMECHOE (heppOMarHUTHOE B3ad-
Mopeticteue B PMIT mukpockonuuecku, 0CHOBBIBAsICh Ha JICTAIBHOM 3HAHHUH HJICK-
TPOHHO CTPYKTYpBI H30JIMPOBaHHOI mpuMecn Mn B matpuiax A3Bs [3]. Okasa-
Jioch [7], 9TO B KpUCTA/UIaX p-THIA 3TO B3aMMOJCHCTBUEC HE CBOAMTCS HU K Of-
HOMY M3 M3BECTHBIX THUIIOB HENpAMOro oOMeHa, XOTS M HAallOMHHAeT MEXaHU3M
[BOIHOrO 0OMEHa, MPEJIOXKEHBI 3HHEPOM MoNIBeKa ToMy Hasan [8]. B cucreme n-
(Ga,Mn)N 3uHepoBcKHil 0OMEH pea3yeTcst MOYTH B CBOEM KJIACCHYECKOM BHJIE.
IMoydennsie GpopMyITHI IS KOHIICHTPAIIMOHHOH 3aBUCHMOCTH T BOCIIPOH3BOIAT
SKCIepUMeHTaJIbHbIe TaHHbIe 11 p-(Ga,Mn)As. {1 Apyrux cucteM 3aBHCHMOCTb
T OT KOHLEHTpAUK HOCUTEJICH ellle SKCIIepIMEHTAIbHO He YCTAaHOBJICHA, OHAKO
TEOpHUsl MO3BOJIAET MONYUNTh 1 BBIIIE KOMHATHOH TeMIIEpaTyphl IPH Pa3yMHBIX
3HAYCHUSX ITapaMeTPOB MOJICITH.

W3oBaneHTHbIe HpuMecH mepexofHbix MetamwioB (Tr), 3aMemanonme KaTHO-
Hel Ga B peleTKe IMHKOBON OOMAaHKM, JOJDKHBI OBITh TPEXBaJCHTHHIM HOHAMIL
Dt0 3HaunT, 9T0 aToMbl Tr(3d"4s?) HOHH3YIOTCS IO TPEXBATEHTHOTO COCTOSHHS
Tr3+(3d"~!). Mapranen, Mn(3d>4s?), siBisieTcst MCK/TIOUEHHEM U3 OOIIIEro MpaBH-
Jia, TIOCKOJIbKY IOJTy3arnosHeHHas 3d-000J104Ka 3TOro JIeMEeHTa aHOMAJIbHO YCTOM-
4uBa 1o mpaBwiy XyHna. B GospumacTBe citydaes [p-(Ga,Mn)As, p-(Ga,Mn)P]
SHEPTEeTHYECKU BHINOTHO 00pa3oBaHue MPUMECHOTO «KiacTepa» Mn* (3d°p) Bme-
cro mona Mn3*(3d*). 3ech cuMBOI p O3HAYAET JIOKATILHOE BIPOYHOE COCTOSIHHE,
MIOCTPOEHHOE KaK CyNepIO3ULs COCTOSHUI BaJIEHTHO!M 30HBI MaTpHIbL. B pesyip-
TaTe 3P (HEKTUBHBI OOMEH MEKIY COCEIHUMH MarHUTHBIMU HOHAMH B 3TON MaTpH-
Lle OCYLIECTBJIICTCA B Mepy IEpeKphITHs KiacTepoB. MUKpoCcKoIMYecKast Teopust
Takoro oOMeHa [7] CTPOUTCSA Ha OCHOBE NBYXIPUMECHOH Momesn AmpuepcoHa [9],
0000IIeHHO! Ha CiTydail IIOJIyIpOBOIHUKOBON MATpHIGI M YUUTHIBAIONICH peastb-
HYIO JIGKTPOHHYIO CTPYKTYpy Mn. B cooTBeTCTBHHM C 3TOii Teopueil sHepreTuye-
CKH TNPEIIOYTUTEIbHBIM OKa3bIBaeTCsl CBOEOOpasHbIl BapUaHT (eppOMAarHUTHOTO
IBOMHOro OOMEHa, KOrga cocefHue MOHB Mn oOMEHHMBAIOTCS Mapoil 3J1eKTPOHOB,
IIPIYEM TIEPECKOKH 6e3 nepegopoma CHuHa OCYIICCTBIIIOTCS depe3 He3aloJTHeH-
HBIC P-COCTOSIHHSI B PaifOHE IOTOJIKA BaJIEHTHOW 30HBL B cmcreme n-(Ga,Mn)N
C QHOMAJIBHO IMHMPOKON SHEPTreTUYECKOM IEITbI0 MPIMECH MApraHIla OKa3bIBAIOTCS
B cocTostari Mn3*(3d*) u o6pasyloT mpuMecHyIo 30Hy IJTyGOKO B 3alpelieHHOM
30He. [IpuMecHas 30Ha 4aCTUYHO 3aIlOJIHEHA, U 9TO O3HAa4yaeT, YTO YacTb HOHOB
HaxomuTcsi B cocTostany Mn?+(3d>). Takum 06pa3om peanusyeTcs ciIydail «IIpo-
MEXYTOYHOH BJICHTHOCTH», PACCMOTPEHHBIH B KiIaccH4eckoil pabote 3uHepa [8].
JBoitHoit oOMeH 3mHepa B MPUMECHOM 30HE maeT Oojiee BHICOKWE T, 9eM B p-
(Ga,Mn)As, B city 0O0JIBIIOI IJIOTHOCTH COCTOSTHHIA

Teopust MO3BOJISIET aTh KOJIMYECTBEHHOE ONMCaHME 3aBUCUMOCTH ¢ (z), Ha-
OomaeMoil B 9kcmepuMeHTe (cM., Hamp. [10]), ¥ yKasblBaeT Ha CYHICCTBEHHBIC
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pasiu4ns MEXIy MarHUTHBIMA MOJIYIIPOBOTHMKAMH p- M n-tuna. Kpome Toro, oHa
MOXKET OBITh 0600IIeHa Ha CITy9an MOHIKEHHON pasMepHOCTH (Te€TepPOCTPYKTYPHL,
KBAHTOBBIE SIMbI), CYIIECTBEHHBIC /IS MHOTOYHCIICHHBIX MPAKTHICCKUX MPIJIONKE-
HUM.
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hall effect regime: experiments
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A concise review of temperature scaling experiments in the plateau-to-plateau
transitions on the integral quantum Hall effect is presented. Some new results
on temperature scaling in the plateau-to-plateau transitions as well as on the
1 = 1 plateau-to-insulating phase transitions in two-dimensional electron gas in
Ing s3Gag 47As/InP heterostructures are also presented.
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1. Introduction

The transport properties of two-dimensional electron gas (2DEG) continue to
attract much interest both experimentally and theoretically. Recently there has
been an upsurge of interest in the scaling behaviour of transport coefficients in the
quantum Hall effect in connection with the question of universality of the scaling
exponent.

The steps connecting the quantum Hall plateaus in p,, as well as the peaks of
the longitudinal resistivity p,, become sharper with decreasing temperature. The
scaling theory of the integer quantum Hall effect (IQHE) predicts [1] that a uni-
versal critical exponent » describes the temperature dependence of the linewidth
of the p,, peaks and the maximum slope of p,, between the plateaus

AB ~ T* and (dpay/dB)ma ~ T .

These relationships follow from the scaling theory result that p,, and p,, both
depend on the temperature and magnetic field only through the single variable
(B—B.)T~* [2, 3]. The exponent x is given by the ratio » = p/2ca, where p is the
inelastic scattering length exponent and « is the localization length exponent. The
localization length ¢ of the levels near the Fermi energy diverges like a universal
power law

¢=&|B-B,|™

here B, is the critical magnetic field corresponding to the singular point in the free
electron spectrum of the Landau level at 7' = 0 [1]. At finite but low temperature
the characterisitc length is the unelastic scattering length given by

Lin(T) ~T7P/2,

In a number of experiments, [4-12] (for reviews see [13-15]) it was found
that the width of the peaks in p,, shrinks as a power law 7%, as stipulated by the
relevant theory. Early experiments on InGaAs/InP heterostructures [4, 6], and later
on other material systems resulted in » = 0.42 £ 0.04, subsequently considered
as a universal value, while other experiments [5, 7-9] mainly on GaAlAs/GaAs
heterostructures show that the scaling exponent » depends on both density and
type of doping and is also different for transitions between different Landau levels,
yielding 0.2 < x < 1.0. The main difference between these two material systems
is in the type and character of the dominant electron scattering mechanism. In
the GaAs based system longer range potential fluctuations prevail, while in the
InGaAs/InP heterojunction the electron scattering is dominated by alloy disorder,
which approximately can be described by uncorrelated J-function potentials also
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used in deriving the predictions of the scaling theory. Further on there are also
some experiments which even claim the absence of scaling in the transitions
between the IQHE plateaus [16]. Thus the apparent power law with a possible
non-universal exponent x is still a controversial issue.

In the past years the experiments extended the reach of scaling studies to the
transition from the quantum Hall (QH) state to the insulating phase (IP) below
the ¢+ = 1 quantum Hall plateau in the range of fractional filling of the lowest
Landau level, the IP being supposed to be a Hall insulator [17-24]. Striking
similarities in the scaling behaviour in the transitions between the different QH
states were observed [18, 19], hinting the same universality class for both types of
transitions [19-23]. However, also for the ¢ = 1 quantum Hall liquid (QHL)-to IP
transition various values of the temperature scaling exponent ranging from 0.4 to
0.7 have been reported [19-23].

Here I present some results of a new study of the temperature scaling expo-
nents for the low Landau index integer quantum Hall effect (IQHE) plateau-to-
plateau as well as for the ¢« = 1 plateau-to-insulating phase transitions in 2DEG
in Ing 53Gag 47As/InP modulation-doped heterostructures. Preliminary results have
already been published in [25], and a more detailed account is in preparation [26].

2. Samples and experiments

The samples used in this study were liquid phase epitaxially grown modulation-
doped Ing 53Gag 47As/InP heterostructures [27-30]. The 2DEG density and mobility
were (0.3—4) x 10'" cm™2 and (2—6) x 10* cm?/Vs respectively. The strength
of the disorder potential in our samples was assessed from the broadening of the
Landau levels and from the ratio of the transport scatterig time to the quantum
scattering time, 7+ /7,, deduced from the decay of the amplitude of the Shubnikov-
de Haas oscillations in low magnetic fields [29, 31, 32]. The values of 7,/7,
increased with increasing 2DEG concentration. Typical values were ~ 1.5, 2 to
3, and 6 to 8 respectively for concentrations of (4—5) x 10'°, (1-2) x 10!,
and (3—4) x 10'! cm~2 respectively, reflecting the dominant nature of small-angle
scattering, i.e. of alloy disorder scattering and of scattering on interface irregularities
at low 2DEG concentrations [31, 32].

Magnetotransport measurements were carried out on photolithographically de-
fined double cross Hall bars in the temperature range from 40 mK to 42 K in
a superconducting magnet up to about 6 T, and also in a resistive magnet up to
20 T. Persistent photoconductivity was used to control the 2DEG density. Both
conventional dc and low-frequency lock-in techniques were used. For the plateau-
to-plateau transitions in the IQHE the scaling exponents were extracted from the
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temperature dependence of the linewidth of the p,, peaks and from the maximum
slope of p,, between plateaus, ie. (AB)~! ~ T=* and (dpyy/dB)max ~ T~*. For
the QHL (¢ = 1) plateau-to-IP transition the scaling exponent was determined
using the appropriate scaling relationships.

3. Results

In Fig. 1 the Hall resistivity p,, and its derivative with respect to the magnetic
field dp,,/dB are shown for a sample with ny = 1.20 x 10'! cm~2 and p =
3 x 10* cm?/Vs as a function of the magnetic field at several temperatures. The
spin splitting of the first Landau level (IV = 1) is not resolved in this particular
sample due to the relatively large broadening of the Landau levels as indicated also
by the low mobility. The maxima of dp,,/dB clearly increase with decreasing
temperature.

3x10* ‘ ‘ ‘ ‘

2x10*

1x10*

Pry (Q), dpy/dB (a.u.)

B (Tesla)

Figure 1. Hall resistivity p., and its derivative with respect to the magnetic field dp.,/dB
at temperatures 0.75, 0.81, 1.53, and 4.2 K for a sample with ns = 1.20 x 10" em™2 and
pw=3x10* cm?/Vs.

Fig. 2 shows (dpgy/dB)max for Landau levels N = 0 (i = 1 to 2 transition)
and N =1 (i = 2 to 4 transition), and the reciprocal halfwidth (AB)~! of the p,.
peak N = 0 in function of the temperature. The temperature scaling behaviour
is convincingly demonstrated. In this sample for the ¢ = 1 to 2 transition the
temperature dependence of the maximum slope of p;, resulted in » = 0.75+0.12
while the width of the p,, peak gave » = 0.63 £ 0.08. According to [6] for spin
degenerate levels the scaling exponent is half of that of the non-degenerate levels,
ie. /2. In this sample the experimental value for the N = 1 level was found to
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Figure 2. Maxima of dp.y/dB for N = 0 (squares) and 1 (circles), and reciprocal
halfwidth of p,, for N = 0 (filled squares) as function of the temperature.

be x/2 = 0.29 + 0.03, which is close to but somewhat less than the half of the
value derived for the N = 0 level.

In the analysis of data taken in other similar samples transitions corresponding
to i =1to 2 (N = 0 spin-down Landau level), to i = 2 to 4 (N = 1, no spin
splitting) and ¢ = 2 to 3 and 3 to 4 (N = 1 spin-splitted levels), and in a few
cases also to ¢ =4 to 6 (N = 2, no spin splitting) were evaluated.

The values of the » scaling exponent for the plateau-to-plateau transitions in-
volving the N = 0 and the spin degenerate N = 1 Landau levels were found to
lie consistently in the range of 0.6 to 0.8, however the estimated error was rather
large, usually £ (0.1 to 0.2). In some samples the ¢ = 2 to 3 and 3 to 4 transitions
in the NV = 1 level were partially resolved. In these cases the scaling exponent
x for the separate spin-up and spin-down levels were in the range from 0.45 to
0.55, i.e. smaller than the values obtained for the N = 0 level, but still greater than
the presumed universal value [1, 4]. Finally the ¢ = 4 to 6 transition in the spin
degenerate N = 2 Landau level yielded values for x/2 in the range from 0.22 to
0.33.

Beyond the N = 0 Landau level with increasing magnetic field an insulating
phase emerges [17, 19, 30], the onset of which is shifted toward higher fractional
filling factors v = en,/hB, i.e. lower magnetic field with increasing disorder in the
2DEG. For a sample with high disorder (and very low 2DEG concentration) Fig. 3
shows the QHL (i = 1)-to-IP transition. The transition from the quantum Hall
liquid to the insulating phase occurring at B = B, is determined by the crossing
points of the p,,(B) curves measured at different temperatures. At this point
the direction of the temperature dependence of the resistivity changes sign. For
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Figure 3. QHL (¢ = 1)-to-IP transition with increasing magnetic field in a sample with
strong disorder (ns = 2.7 x 10! ¢cm™2). Down triangles — 800 mK, up triangles —
400 mK, circles — 200 mK, squares — 100 mK.

B < B, the longitudinal resistivity decreases with decreasing temperature (metallic
behaviour in the QHL), for B > B, the longitudinal resistivity increases with
decreasing temperature (insulating behaviour in the IP). Supposing the validity of
the scaling law, p,.(B) = f(| B—B. | T~*), the scaling exponent is obtained from
(dpgz/dB)|g=p. ~ T~*. For the correct value of x the p,, curves measured at
different temperatures, when plotted in function of | B — B. | T~* collapse into

10°
5 ﬁ
g 7 0
=] o v O by LY
104
0.0001 0.001 0.01 0.1

(B—B)T¥

Figure 4. Longitudinal resistivity pa. versus | B — B. | T* with the scaling exponent
determined as » = 0.77 4+ 0.08 to collapse the data points at different temperatures to a
single curve.
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one single curve with two branches, one branch for B < B,, the other one for
B > B., as shown in Fig. 4, with » = 0.77 £ 0.08 for this particular sample.

In other samples too the values of the x exponent for the QHL (i = 1)-to-IP
transition were also found in the range of 0.6 to 0.8, with an estimated error of
about £0.1. The critical filling factor v. = ens/hB, for this transition was in the
range from about 0.5 to 1, and the critical value of p,, at the transition amounted
to p. = (0.8—1.3)h /e

4. Discussion

The experimentally determined scaling exponent for the ¢ = 1 to 2 plateau-to-
plateau transition and for the ¢+ = 1 Hall plateau-to-insulating phase transition is
the same within experimentally error. This indicates that both transitions belong
to the same universality class, in accordance with the literature. However the
value of the » exponent found in our liquid phase epitaxially grown InGaAs/InP
samples for these two transitions is significantly greater than the value of ~ 0.42
hitherto considered to be universal. However the value of » = 0.6—0.8 for the
QHL (i = 1)-to-IP transition found here agrees with the values found recently for
the same transition in vapour phase epitaxial InGaAs/InP heterostructures [21, 23]
and also in Si/SiGe heterostructures [20].

The larger values of the scaling exponent for the plateau-to-plateau transition
in the low index (N = 0, 1 and 2) Landau levels found in this work, especially
their deviation from the presumed universal value are similar to that found in
several other works [5, 8, 33]. As already mentioned above the scaling exponent
can be expressed as x = p/2a [1, 4, 5, 13]. The numerically calculated value
of the localization length exponent (which is predicted to be universal [1]) is
a = 2.35 + 0.03 in the lowest Landau level for a potential with short-range
correlations [13, 34]. For zero magnetic field p = 1 in the “dirty metal limit” and
p = 2 for “clean samples” in the Fermi liquid theory [33]. The value of x = 0.42,
considered universal in the literature, is in accordance with p = 2. On the other
hand the experimental values of x found in this work would indicate larger values
of the inelastic scattering rate p in the range from 2.8 to 3.7, at least for the
InGaAs/InP system with relatively large disorder studied here. Our conclusions
concerning the larger values of the p exponent are in accordance among others
with the results obtained in the AlGaAs/GaAs heterostructures [5, 33], where
on the basis of similar p values it was stated that the actual value of p can
be substantially larger in high magnetic fields compared to the theoretical zero-
magnetic-field results.
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5. Conclusions

We have studied the scaling behaviour of the quantum Hall plateau (i = 1)-to-
insulating phase transition and of the transitions between the low index quantum
Hall plateaus in 2DEG in InGaAs/InP heterostructures.

The scaling exponent for the transition from the first quantum Hall plateau
to the insulating phase (supposed Hall insulator) was found equal to that for
the quantum Hall plateau-to-plateau transition in the same material system, i.e.
x ~ 0.6—0.8. This value of the scaling exponent is significantly greater than
the value of x ~ 0.42, considered up to now universal in the literature. The
experimental results have been interpreted by considering the enhanced values of
the inelastic scattering rate exponent.
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Ocnwignuy HeIMHeHoro
MAarHHTOCONPOTHB/ICHHSI BbICOKOMOABHKHBIX
JIBYMEPHbIX CHCTEM B HEKBAHTYIOLIUX

MATrHUTHBIX HNOJIAX
B. A. Bosikos

WnctntyT pamnorexnukn u snekrpornku PAH, Mocksa, Poccust

HenaBHo Havayiich THIATeJIbHBIE MCCIICNOBaHUA MarHUTOTPAHCIIOPTa B BBHICO-
KOKa4eCTBEHHBIX IBYMEpHBIX (2D) MOyNMpOBOTHHMKOBBIX 3JIEKTPOHHBIX CHCTEMax
¢ nomsmwkHOCTAME £ ~ (10°—107) cM?/Bc B HeMHEHHOM peKMME MO BHEIIHe-
My 3JIEKTPUYECKOMY IOJIIO, IOCTOSHHOMY WMJIM IepeMeHHoMy. B obsactu oTHOCH-
TEJIbHO CJIa0bIX MarHUTHBIX NOJIeH I3, KOTOpHE CUJIBHBL B KJIACCHYECKOM CMBICTIE
(uB > 1), HO ciabee TeX, B KOTOPBIX HAYMHAIOTCS IIYOHHKOBCKHME OCLIUJUISILIHH,
npu Temnepatrype 1 ~ 1 K oOHapyxkeH psa 3amMeydaTesIbHBIX SIBJICHHH, BKJIIO-
Yasi OCLMJUIALIMY AUAroHaJIbHOTO CONMPOTUBIICHUS IPY U3MEHEHUH BEIMYMHBI TOKA,
MarHuTHOIO IOJI WM 4acTOTHI Mafaromieil Ha oopaser; CBY BosHBL

B [1] o6HapyKeHb! OCLMIIIALNA MATHUTOCOIPOTHUBIICHHUSI IPU MPOITYCKaHHUH Ye-
pe3 mByMmepHyIo cucteMy B cTpykType GaAs-AliGa;_xAs TOCTaTOYHO CHIIBHOTO
MOCTOSIHHOTO ToKa [, cM. puc. 1. Ociyuisiuuy ObUTH TEPUOIUYHBL IO BEJIMYHHE
1/B u cBA3BIBAICH C 3MHEPOBCKUM TYHHEIUPOBAHHEM MEKIY «HAKJIOHCHHBIMID»

ne=2.15x101 cm2_fac T=033K

w =50 um
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0.3

ypoBHAMH JlaHnay Ipu paccessHUU 3JI€KTPOHOB Ha Ae(eKTaX CIHelnaIbHOro BHA.

B monoGHo#l cucteMe OOGHApY:KEHBI [2] IMraHTCKHe Iepuogumdeckue no 1/B
OCIMJLIALMA CTATUYECKOTO MarHUTOCONPOTHBIIEHUA B mosie cuiibHoi CBY BoOJI-
HbI, HO B JIMHEHHOM pEKHMe I10 NOCTOSAHHOMY TAHYIIEMY 3JIEKTPUYECKOMY IIOJIIO.
Ilepuon ocumyuIALMI ONMpenesascs eJIoH 4acThlo OTHOIIEHMS YaCTOTHI BOJIHBI K
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53 GHz
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LUKJIOTPOHHOH 4YactoTre. Ilpu yBesuueHHM NOABIXKHOCTU OCUMWJLIALUM YCHUJIMBA-
JIICh C POCTOM MOIIHOCTH IaJialollel BOJHEL, U IIPH HU3KUX TeMIepaTypax COIpo-
THBJICHHE (U1 XOJUTOBCKHX OOpAsLOB) WM IPOBOAMMOCTD (/I KOPOHMHOBCKHX
06pasioB) ucuesanu [3, 4] B KOHCYHBIX MHTEpPBaTaX MarHUTHOTO IMOJIS, PUC. 2.
Peanusanus Takux «Oe3qUCCHIIATHBHBIX COCTOSIHHUI» BBI3BaJIa JIABUHY TEOpETHYE-
ckux pabort. IlpensoxeHHbIe B JIATEpaType CLEHAPHU IO3BOJIAIOT Ka4EeCTBEHHO
MOHATh DAl Ba)KHBIX OCOOEHHOCTEH oOCy:kaaeMbX 3((eKToB, HO YHOBJIETBOPU-
TeJIbHOE OOBSCHEHHE B HACTOAIIEE BpeMs OTCYTCTBYET.

B korne 2003 r. B aHAIOrMYHON cHCTeMe OOHApy)KeH [5] emie OMH THI OC-
IJUIAIUNA MarHUTOCONIPOTUBIIEHUs, HHAyLupoBaHHbX CBY-usayuenuem, puc. 3,
U NEepUOANYECcKUX 1o B, puc. 4, KOTOPbIl 00BACHEH BO30YXKIEHIEM KPaeBbIX Mar-
HHUTOIJIA3MOHOB.

JloKJtaj, IOCBAIIEH 0030py MOJIyYEHHBIX B 3TOH 00JIACTU 3KCIIE€PUMEHTAJIbHBIX
pe3yJIbTaTOB U IOIBITOK MX TEOPETHYECKOro OcMbICieHus. Pabora mopaep:kana
rpaatamu POOUN n OPH PAH.
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Puzzles of low-temperature electron dephasing

V.1. Kozub
Ioffe Physico-Technical Institute of RAS, St. Petersburg, Russia

As early as in 1984, studying weak localization correction to the conductiv-
ity of InyO3_,, films Ovadyahu [1] has found a puzzling behavior of the electron
dephasing time 7, as a function of the static disorder. Namely, for a given tem-
perature 7 ! was scaled with a sample conductivity. This result contradicts the
naive considerations that the disorder should lead to an increase of any scattering
rate. While the similar behavior was predicted by Schmid [2] for electron-phonon
scattering in dirty metals, in the experiments of [1] such a mechanism was ruled

out by the observed temperature dependence of 7, (~ 1/7" at temperatures about
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10 K). To the best of our knowledge, the behavior has not obtained a relevant
explanation until now.

Recently the question seems to arise again in relation to the problem of appar-
ent low temperature saturation of the weak localization dephasing rate which has
been extensively discussed during last years, for a review e. g Ref [3] Namely, the
correlation [3, 4] between the “saturated” dephasing rate, 7!, and the diffusion
constant D was reported.

This report aims to show that the correlation mentioned above can be explained
within a framework of the model of tunneling states (TS) proposed in Ref [5] and
considered in detail in Ref. [6]. According to this model, the dephasing is produced
by dynamical structural defects with two (or more) configurations with very close
energies. Due to interaction with a thermal bath these defects switch between the
above states producing time-dependent fields acting upon the electrons.

There exist two mechanisms of electron dephasing due to dynamic defects. The
first one is induced by direct inelastic transitions between the levels of the TS lead-
ing to a possibility of determining the actual path of the electron, and consequently
to loss of interference. The second one is due to relaxation dynamics of dynamic
of TSs, which fluctuate due to interaction with the thermal bath. Time dependence
of the electron scattering crossection due to the defects fluctuations leads to vio-
lation of the time-reversal symmetry and, as a consequence, to decoherence. The
effective Hamiltonian of a TS,

Hy= (Ao —ANor)/2, (1)

is characterized by the asymmetry, A, and the tunneling matrix element, A. Since
these parameters are random, their distribution, °(A, A), is crucially important.
In crystalline materials, it is naturally to assume that the TSs keep intrinsic crystal
symmetry. As a result, the A-distribution is limited from above by some value A,.
To keep the model simple it is sufficient to assume that 2P(A, A) < §(A — Ay).

To evaluate the distribution over A let us assume [5] that the distribution is due
to some mesoscopic disorder around a generically symmetric defect and consider
adiabatic renormalization of the site energy ¢; of one of TS component due to
conduction electrons scattered by some defect i, [5]

sz“(l cos 0)
= ViR Z
14 1 R]»L 1+€Ek er)/ksT

Here 6 = Z{k,Ry;}, f; is the scattering amplitude by the ith defect, Ry, is the
vector connecting the sites 1 and 4, while V] is the potential of the defect 1. This
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correction is due to Friedel oscillations of the electron density induced by the
defect 7. Assuming that the scattering potentials for the defects 1 and ¢ are the
same we get an order-of-magnitude estimate for this quantity as

[V|* cos(2krR1s)
er  (kpRy)?

€1~ —

Now let us consider a TS formed by the site 1 and some state 2, such as Ry <
Rii, Ry;. Then the effective two-level system acquires the diagonal splitting A; =
(e1; — €2) given by the expression

N 2|V|2 sin(kFRlz,u) . Sln(szRz)

A(Rla ﬂ) e (kFRz)?’

(2)
Here R; = Ry; = Ry;, u = cos Z{Ry2,R;} . The probability to find a TS with the
splitting A is then

1
W(A) :27md/R2dR/1du6[A—A(R,u)] . (3)

Here ng is the density of defects, while A(R, p1) is given by Eq. (2). The density
of TSs is given as PP(A) = NpsW(A) where Npg is the density of TSs. Note
that the integral in Eq. (3) is determined by R < NBI/ 3 since the contributions of
different defects have quasi-random signs, the main contribution being due to the
nearest defect.

A straightforward analysis shows that there is a characteristic energy

E*:\VPnd%LiN% @)
erk, 2T Top D

where 7, is the elastic mean free time. At A >> E* the probability W (A) decays
o E*/A?, while at A < E* the function W (A) is smooth. As a result, we arrive
to the model for the density of TSs adopted in Ref. [6],

P(AN) ~ (Nrs/E) (A - A). (5)

As shown in Ref. [6], the two of the contributions to the dephasing rate 7 !
can be estimated in the relevant temperature region as

Toin ~Th ' = vrs(Ao/E) (6)
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for “inelastic” channel and

Toe ~Tx (Ta /1) ()

Thus the resulting rate can be written as an interpolation

7;1 :7'/\_1 [a(TTA/h)1/3+C]. (8)
Here vrg is the effective collision frequency with the tunneling defects, o and ¢
are constants of the order 1. Since 7, ' o« D we conclude that for a fixed number
of tunneling defects the “saturated” dephasing rate increases with the diffusion
constant D, the corresponding dependence of 7 ! tends to direct proportionality
when the two items in Eq. (8) are comparable.

To make estimated we rewrite the expression for vrg in the form

vrs = JS’UF’I”Ld (9)
where JS is the cross-section of elastic electron scattering by a dynamic defect.
Correspondingly, the key parameter of our theory, 75, is given as

T = AgPaojyvr (10)

where P; = ngy/E* is the density of states of the dynamic defects.

The density of states P; can be, in principle, estimated for a given material on
the base of point contact measurements. Namely, metallic point contacts are known
to exhibit, first, telegraph resistance noise[7] and, second, zero-bias anomalies [8];
both effects are expected to be associated with the dynamic defects [7, 8, 5].

Although we appreciate that the material preparation procedure can signifi-
cantly affect the defect system, we believe that such experiments can provide
more or less reasonable estimates for P;. The telegraph noise studies [7] for
Cu nanoconstriction with a size of ~ 10 nm revealed a presence of about sev-
eral dynamic defects at energies less than 10 mV. This would give us the value
Py ~ (3—5) x 1032 erg~'em~!. However, the telegraph noise is related to TLS
with rather slow relaxation rates (< 103 s~!) while we are interested in the defects
with switching times of the order of 10~ s. Consequently, these estimates most
probably significantly underestimate P;. What is more instructive, the magnitude
of the resistance noise revealed rather large defect asymmetry corresponding to
the estimate o3, ~ 09 ~ 1015 cm?.

We believe that the zero bias anomalies can give more reliable information
concerning P;. The magnitude of these anomalies for Cu nanoconstrictions|8]
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of the same type as mentioned above corresponds to a presence of several tens
of TLS at the energy region about 1 meV [8, 5]. Correspondingly, one obtains
Py~ (3—5)x10* erg~lem 3.

Basing on these estimates and taking Py ~ 103 erg~'em 3, o5, ~ 10715 cm?,
vp ~ 108 cm/s, and Ag ~ 10 mK we obtain 75 ~ 1077 s. Equatlons (9) and (10)
yield T) ~ Ap. Thus at temperatures larger than 75 ~ Ag ~ 10 mK one expects,
according to Eq. (8), temperature-independent contribution of resonant processes.

For the relaxation channel, one obtains T,, ~ T3 ~ 10 mK. Consequently, at
T 2 T, = Tp = 10 mK one expects that dephasing rate obeys Eq. (8) with
TA 1079

Now let us check if our assumption Ayg ~ 10 mK realistic. We will exploit a

crude estimate - ) qa
Ao~ —2 exp (——/ dr 2MU(r)> (11)
T h 0

where U(r) is a potential relief between the two stable defect positions sepa-
rated by a distance a, and M is the defect mass. Taking as an example U(r) =
(Uv/2) [1 — cos(2nr/a)] one obtains for the exponent (2a/mh)\/2UgM. Taking
for a light defect wyp ~ 10'% s~! and assuming a ~ 10~% c¢m, Uy ~ 0.2 eV one
estimates that the value A = 10 mK is achievable for M ~ 2 x 102 g which
corresponds to atomic weight ~ 10.

Summarizing our estimates, we can conclude that for realistic parameters of
the dynamic defects one can indeed expect a slow temperature dependence of
the dephasing rate given by Eq. (8) crossing over to a rapid decrease at low tem-
peratures. The crossover temperature, as well as the behavior below than that
temperature, depends on the distribution of A. For a delta-like distribution of A
the TLS spectrum has a gap of Ag. Thus the TLS contribution to dephasing rate
is exponentially frozen out at for T < Ay, and we are left with the “standard”
mechanisms like electron-electron scattering. However for the Gaussian distribu-
tion of A with the variance A > 1 the situation is different. In this case the
cut-off temperature is given by the renormalized tunneling coupling, Age® while
for lower temperatures one deals with rather flat distribution of A within the region
A < X + A Correspondingly, at these temperatures one deals with a glass-like
TLS distribution for which 7, oc 7.

One notes that the correlation between the dephasing rate and diffusion co-
efficient does not depend on the fact of “saturation” of dephasing. It depends
only on the two assumptions: (1) the density of dynamic defects is given, (2) the
density of states is proportional to 1/E* where the scatter of the defect energies
E* is controlled by the disorder. Consequently, if the two factors mentioned above
are at the stage, the correlation between 7 ! and the diffusion constant D should
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exist not only in the region of “saturated” dephasing. Here we return to the re-
sults obtained for three-dimensional low-resistivity In,03_, films [1] where the
observed temperature behavior of 7, corresponded to 7 I > T. We would like to
note that the systems in question, first, exhibited rather strong disorder (the elastic
mean free times as small as (2—5)-10713 s), second, some particular disorder was
expected to be related to oxygen non-stoheometry distribution. These systems are
expected to be some different from the ones where the saturation of dephasing
was typically studied (see e.g. [3, 4]) and which we mostly had in mind in our
paper [6]. First, in the case of In;O;_,, there is a probable candidate to the role
of the mobile defects — oxygen atoms, the number of relevant ones is expected
to be fixed for a given x. Then, the large degree of disorder makes it possible to
expect that the barriers for the “mobile” defects are also affected. In particular, the
expected magnitude of the Friedel oscillations is also expected to be much larger
than for typical metallic crystals and their effect on the barriers can be significant.
As a result, the potential for the “mobile” atoms can be equivalent to the “glassy”
one allowing in particular “soft” configurations with weak barriers. If so, the
relaxation rates for the TLS are expected to have a temperature behavior typical
for glasses — 7! oc T — although at the same time the density of states is still
scaled with a degree of disorder. These considerations explains the experimental
results by Ovadyahu [1].

To conclude, we have demonstrated that the model of tunneling states formed
by light defects in crystalline conductors and affected by electronic mesoscopic
disorder can explain both of the puzzles mentioned above — that is low temper-
ature saturation-like behavior of the dephasing and the correlation between the
dephasing rate and the static disorder.
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1. Introduction

The aim of this lecture series is to give an introduction to the field of so-called
vortex matter in superconductors. This concept is crucial for understanding the
physics of type-II superconductors (materials mostly important for practical ap-
plications), as well as many micro- and nanostructured systems including super-
conductors. Virtually all new superconducting compounds discovered after early
60-ies up to the present time are type-II superconductors. They include organic
superconductors, A-15, Chevrel phases, heavy-fermionic materials, fullerenes and
high-T;, superconductors. One could say, that now type-1 superconductors have
become exotic. Type-II superconductivity and physics of vortex matter, as well
as physics of anisotropic Fermi liquids, were the subject of Nobel Prize 2003
awarded to V.L. Ginzburg, A. A. Abrikosov, and A.J. Leggett.

The lectures are organized as follows. In the first lecture (Yu. Galperin), a
historical introduction based partly on the paper [1] and partly on the press release
of the Nobel Committee will be given. Basic properties of type-1I superconductors
will also be discussed. The second and the third lectures (V. Vinokur) will be
devoted to the influence of disorder on the vortex motion. Here the concepts of
pinning of the vortices, vortex glassy states, etc, will be considered.

2. Brief history

Superconductivity, one of the most interesting and unusual phenomena in solid-
state physics, first became known on April 28, 1911, at the meeting of the Royal
Academy of Sciences in Amsterdam, when the Dutch physicist Heike Kamerlingh
Onnes reported a recently discovered effect: the complete disappearance of elec-
trical resistance of mercury cooled by liquid helium to 4.15 K. Though no one
expected this discovery, and it contradicted the existing classical electron theory of
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metals, the fact that it was Kamerlingh Onnes who discovered superconductivity
was not accidental. Actually, he was the first scientist who managed to solve the
most complicated scientific and technical problem of the time: obtaining liquid
helium (which boils at 4.16 K). This allowed scientists to peek into the unknown
world of temperatures close to the absolute zero. Kamerlingh Onnes immediately
tried to apply the new experimental means and to investigate the low-temperature
behavior of pure metals. This was the time of hot theoretical debate whether
resistance of pure metals disappears or remains finite at absolute zero. Being the
advocate of the first side Kamerlingh Onnes was clearly satisfied by the result that
he had obtained for mercury. But soon he realized that the vanishing of resistance
at finite temperature is an effect quite different from the expected one.

It is worth emphasizing that the resistance of a sample in the superconducting
state is equal to zero not approximately but exactly. That’s why electric current in
a closed circuit can circulate as long as you like without damping. The maximal
duration of a non-damped superconducting current recorded in England was about
two years. (The current in the ring would have circulated up till now but for a
strike of transport workers which caused a break in the supply of liquid helium
to the laboratory.) Even after the two years, no damping of the current was
detected. Very soon superconductivity was discovered not only in mercury but
in other metals as well. The prospects for practical applications of the discovered
phenomenon seemed unlimited: power transmission lines without waste, powerful
magnets, electric motors, new types of transformers, etc. But there were two
obstacles.

The first were the extremely low temperatures at which superconductivity
was observed in all materials known by the time. To cool conductors to these
temperatures, the scarce helium is used (its stocks are limited, and even now
producing a liter of liquid helium costs some dollars). This makes many projects
to apply superconductivity simply unprofitable.

The second obstacle discovered by Kamerlingh Onnes was that superconduc-
tivity had turned out to be rather sensitive to magnetic fields and to the value of
current. In fact, it was destroyed by strong fields.

The next fundamental property of the superconducting state discovered in 1933
was the MeiBner-Ochsenfeld effect: the complete expulsion of magnetic field
from the volume of superconductor. But again experimental investigations were
complicated by the need to work with scarce liquid helium — before the World
War 11 it was produced in about 10 laboratories throughout the world (the two of
those were in the Soviet Union).

The fundamentals of superconductivity stayed absolutely out of reach of clas-
sical theory of metals whereas the quantum one was in embryo yet. The so-called
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two-liquid model suggested a coexistence of two types of electrons in supercon-
ducting metals: the normal electrons interact with lattice but superconducting ones
for some reason don’t. This assumption let brothers London to write down the
equations of electrodynamics of superconductors that described the Meifiner ef-
fect and some other features. Still the microscopic mechanism of superconductivity
remained a mystery.

In 1938 P.L. Kapitsa discovered the superfluidity. It turned out that at tem-
peratures below 2.18 K liquid helium can flow through whatever thin capillary
tubes without any viscosity. The theoretical explanation of this phenomenon by
L.D. Landau gave rise to hopes that the theory of superconductivity was in the
offing. It turns out that helium atoms at low temperature behave like quantum
particles with whole spin and get accumulated at the lowest energy level (the
Bose-condensation). Landau has shown that a gap that appears as the result in the
spectrum of excitations makes possible the existence of the superfluid state. Dis-
cussing this macroscopic revelation of the entirely quantum effect Landau called
helium “a window to the quantum world”.

A straightforward extension of these ideas to superconductivity failed. The
reason was that electrons are particles with spin one-half (so-called fermions) and
behave absolutely unlike helium atoms which possess a whole spin being bosons.
In quantum system of electrons excitations with zero energy may appear even at
zero temperature and the Landau criterion of superfluidity does not hold.

The natural desire to reduce the problem to that already solved inspired the
idea to prepare of two fermions a composite boson with a whole total spin and
after that to effect the Landau superfluidity scenario. However this was opposed
by Coulomb repulsion of electrons that was too strong in spite of screening that
occurs in electro-neutral metal.

A little later Frolich and Bardeen have independently demonstrated that inter-
action of electrons with lattice oscillations (phonons) may lead to attraction. This
could in principle overcome the electrostatic repulsion but one had to keep in
mind the huge kinetic energies of electrons. At the first sight those should break
the just found weak coupling. Composite bosons did not work out.

In the same 1950 with the help of experimental data and theoretical achieve-
ments of solid-state physics, based on quantum mechanics and statistical physics,
V. L. Ginzburg and L. D. Landau (USSR) developed a phenomenological theory
of superconductivity, known as the Ginzburg-Landau (GL) theory. It proved so
successful and predictive that even now it remains a powerful research tool despite
that the 50 elapsed years were marked by the creation of the microscopic theory
of superconductivity. We will discuss the GL theory in more detail in Sec. 4.

In 1957 the American scientists John Bardeen, Leon Cooper and Robert Schri-
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effer put together the mentioned above ideas and hints and created a consistent
microscopic theory of superconductivity. It was found that superconductivity is
indeed linked with the appearance of a peculiar attraction of electrons in metals.
This is an utterly quantum phenomenon.

We have already mentioned that the ground state of fermionic system is char-
acterized by big kinetic energies of electrons. Luckily those do not prevent binding
of low-energy excitations of the system that behave like quasiparticles. They have
the same electric charge e as the electron and some effective mass but their energy
may be whatever small. The attraction brings on a rearrangement of quasiparticle
spectrum and the long-awaited gap that was so crucial for the Landau superfluidity
criterion opens at last.

The origin of the attraction may be understood with the help of a far analogy
with two balls lying on a rubber rug. If the balls are far from each other, each
of them deforms the rug, making a little depression. But if we put a ball on
the rug and place another one near the first, their holes will join, the balls will
roll down to the bottom of the combined valley and lie together. In metals the
mechanism is realized by deformations of crystal lattice. At low temperatures
some quasiparticles (usually they are called, just the same, electrons) form a
sort of bound pairs. These are called the “Cooper pairs” after the man who
discovered the binding. The size of the pairs on the atomic scale is really quite
large, reaching hundreds and thousands of interatomic distances. According to
the graphic comparison suggested by Schrieffer, they should be envisaged not
as a double star composed of electrons but rather like a couple of friends in a
discotheque who either come together or dance in different corners of the hall,
separated by dozens of other dancers.

It took almost half a century since the discovery to gain cardinal progress in
understanding the nature of superconductivity and to develop the consistent theory.
This period may be considered to be the first stage of superconductivity studies.

3. Superconductivity and magnetism

Superconductivity is characterized by electron pairs (or holes) that have condensed
into a ground state, where they all move coherently. This means not only that the
resistance disappears but also that a magnetic field is expelled from the super-
conductor (the charged superfluid). This is known as the MeiRner effect. Many
superconductors show a complete Meiiner effect, which means that a transition
from the superconducting to the normal state occurs discontinuously at a certain
critical external magnetic field H.. Other superconductors, in particular alloys,
only show a partial Meissner effect or none at all. Work done in Kharkov by
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L. Shubnikov and by others elsewhere showed that the magnetization may change
continuously as the external field is increased, starting at a lower critical field, H,,
while the superconductor continues to show no resistance up to a much higher
upper critical field, H.,. This effect is illustrated in Fig. 1. Between the lower and

Meissner
phase

Shubnikov
(mixed) phase

Figure 1. Magnetization M and induced field B as a function of external magnetic field
H for superconductors with complete (dashed lines) and partial (full lines) MeiBner effect
(see text).

the upper critical fields the superconducting state coexists with a magnetic field.

The theoretical framework for understanding the behavior of superconduc-
tors in the presence of such strong magnetic fields was developed in the 1950s
by a group of Soviet physicists. In a groundbreaking paper [2], published in
1957, Abrikosov discovered the vortices in the order parameter of a supercon-
ductor and described their crucial role for the coexistence of a magnetic field
and superconductivity in superconductors “of the second group”, or in “type-II
superconductors” as we would say today. In the same paper, Abrikosov provided
an amazingly detailed prediction — later to be borne out by experiments — of
the way in which a stronger magnetic field suppresses superconductivity: vor-
tices, which form a lattice, come closer to each other, and at some field the vortex
cores overlap, suppressing the order parameter everywhere in the superconducting
material — hence driving it into the normal state.

Abrikosov’s results came from an insightful analysis of the Ginzburg-Landau
equations [3], a phenomenological description of superconductivity published in
1950 by Vitaly Ginzburg and Lev Landau. One of the motivations behind their
work was the need to develop a theory that would make it possible to describe
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correctly the destruction of superconductivity by a magnetic field or an electric
current. The Ginzburg-Landau equations have proved to be of great importance
in physics, not only for describing superconductivity in the presence of a magnetic
field. In their 1950 paper Ginzburg and Landau were the first to realize that
superconductors can be divided into two classes with regard to their behavior in a
magnetic field. They introduced a quantity >, now known as the Ginzburg-Landau
parameter, which enabled them to make a distinction between the two classes.
Superconductors with x < 1/v/2 do not allow the coexistence of a magnetic
field and superconductivity in the same volume. Superconducting materials with
% > 1/4/2 do allow for such a coexistence. In modern language x = \/¢ is the
ratio of the magnetic field penetration length A and the coherence length &.

The superconductors known at the time had » < 1, e.g.,, for Hg »x ~ 0.16,
beyond showing that if a material with »x > 1/ V2 is placed in a magnetic field
somewhat larger than the thermodynamic critical value, the normal phase is unsta-
ble with respect to formation of a superconducting state. However, they introduced
the crucial notions of a superconducting order parameter, of negative surface en-
ergy of the boundary separating the superconducting from the normal phase in
type-1I superconductors, and (in modern terminology) of the upper critical mag-
netic field, where superconductivity vanishes in type-II materials. Even so, it was
left to Abrikosov to describe in 1952 the result of this instability and to formulate
the complete phenomenological theory of type-II superconductors. At the same
time it is clear that the Ginzburg-Landau equation and the partial understanding
achieved by Ginzburg and Landau was a necessary basis for his work.

4. Ginzburg-Landau theory

The GL theory [3] is based on Landau’s theory of second order phase transitions
from 1937. This was a natural starting point, since in the absence of a magnetic
field the transition into the superconducting state at a critical temperature 7 is
a second-order phase transition. Landau’s theory describes the transition from a
disordered to an ordered state in terms of an “order parameter”, which is zero
in the disordered phase and nonzero in the ordered phase. In the theory of fer-
romagnetism, for example, the order parameter is the spontaneous magnetization.
In order to describe the transition to a superconducting state, GL took the order
parameter to be a certain complex function W(r) which they interpreted as the
“effective” wave function of the “superconducting electrons”, whose density n is
given by |W(r)|?; today we would say that W(r) is the macroscopic wave function
of the superconducting condensate.

In accordance with Landau’s general theory of second-order phase transitions,
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the free energy of the superconductor depends only on |[¥(r)> and may be
expanded in a power series close to ;. Assuming first that W(r) does not vary in

space, the free energy density becomes
fo=fu+ o+ B0+ (1)

where the subscripts n and s refer to the contributions from the normal and the
superconducting state respectively. A stable superconducting state is obtained if 3
is a positive constant and o = (T — T¢).

Since the purpose of Ginzburg and Landau was to describe the superconductor
in the presence of a magnetic field, H, when the order parameter may vary in
space, gradient terms had to be added to the expansion. The lowest order gradient
term looks like a kinetic energy term in quantum mechanics, which is why GL
wrote it — adding a term for the magnetic field energy — as

(—mv - e—A)
C

Here the magnetic field H = p, Ycurl A is described by its vector potential, A(r),
which enters the kinetic energy term as required by gauge-invariance. The total
free energy Fj is obtained by integrating the free energy density f; over volume.

By minimizing the free energy Fs with respect to W, W* and A, the GL
equations are obtained. They are

2

4L (curl A)* . (2)

2m* 20

N 2
(—ihV— e—A) W+ W + BlWPY =0, (3)
2m* c
* *2
j=—cul H = < www - wvw) + < jwpa 4)
2m*c m*c?

plus a boundary condition.

The second equation has the same form as the usual expression for the current
density in quantum mechanics, while the first — except for a term nonlinear in W,
which acts like a repulsive potential — resembles the Schrodinger equation for a
particle of mass m™, charge e* with energy eigenvalue —c. In their paper Ginzburg
and Landau wrote that “e* is the charge, which there is no reason to consider as
different from the electronic charge”. As soon as they learned about the BCS
theory and Cooper pairs, however, they realized that e* = 2e and m* = 2m.

The GL equations are capable of describing many phenomena. An analy-
sis shows, for example, that a magnetic field penetrating into a superconductor
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decays with its distance from the border to a normal phase region over a charac-
teristic length \(T") where \>(T)) = 3m*/|a|e*?. This is the London penetration
length. Furthermore, it is found that a disturbance W from an equilibrium value of
the order parameter, decays over a characteristic length &, where £2 = h?/4m*|al.
Therefore, the penetration length A and the coherence length & are two character-
istic lengths in the GL theory. (Although the physics was clear to them, Ginzburg
and Landau used neither this notation nor this terminology; the concept of a coher-
ence length was only introduced three years later by B. Pippard). The two lengths
have the same temperature dependence close to Tt,, where A, & o« (T, — T)*l.

At this point a short digression about the surface energy between supercon-
ducting and normal phases of the same material is called for. It follows from the
GL equations that this quantity depends on the two characteristic lengths A and &
in a way that can be understood from Fig. 2.

A
Hey =H,

Distance from n-s boundary

Figure 2. Sketch of the border region between a normal and a superconducting phase,
illustrating the concepts of penetration length A and coherence length £. If the magnetic
field is H. in the normal phase, it decays to zero in the superconducting phase over a length
A. At the same time the superconducting order increases from zero at the interface to its
full value inside the superconducting phase over a distance &.

5. Theory of type-ll superconductors

One of the physicists who soon began to test the predictions of the GL theory was
the young N.V. Zavaritzkii. Working at the Kapitsa Institute for Physical Problems
in Moscow, he was able to verify the theoretical predictions about the dependence
on film thickness and temperature of the critical magnetic field of superconducting
films. However, when he tried to make better samples by a new technique (vapor
deposition on glass substrates at low temperatures) he discovered that the critical
fields no longer agreed with the GL theory. He brought this to the attention of his
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room mate at the university, Alexei Abrikosov. Abrikosov looked for a solution to
this mystery within the GL theory and started to think about the true nature of the
superconducting state for » = A/¢ > 1/+/2. In contrast to the superconductors
that were the focus of Ginzburg’s and Landau’s interest in 1950, the new materials
had values in this parameter regime. In 1952 Abrikosov [2] was able to calculate
the critical magnetic fields for this parameter regime and found agreement with
Zavaritzkii’s measurements.

Abrikosov continued to think about strongly “type-II superconductors” with
large values of ». It was clear that superconductivity could not exist in magnetic
fields of a certain strength. But Abrikosov was able to show that when the field
is diminished again, small superconducting regions start to nucleate at a magnetic
field He, = ch\/i, which for x > /2 is larger than the thermodynamic critical
field H.. The latter is the critical field that is relevant for normal, or “type-I”
superconductors. We now call H¢, the upper critical magnetic field. However, the
material is not completely superconducting in the sense that the magnetic field
vanishes everywhere in the material. Abrikosov found that a periodic distribution
of the magnetic field, as a lattice, minimized the total energy. The flux of the mag-
netic field through an elementary cell of the vortex lattice is a universal constant,
®) = mhe/2e =~ 2.05-1077 G- cm?. An experimentally observed Abrikosov lattice
of this type is shown in Fig. 3.

Figure 3. Abrikosov lattice of magnetic flux lines (vortices) in NbSe, — a type-II super-
conductor — visualized by magneto-optical imaging at the Oslo University. This picture
was used for the Nobel Prize 2000 press release. The first pictures of such a vortex lattice
were taken in 1967 by U. Essmann and H. Tréduble, who sprinkled their sample surfaces
with a ferromagnetic powder that arranges itself in a pattern reflecting the magnetic flux
line structure.

The approach that worked for magnetic fields just below the upper critical field,
where the order parameter is small and the nonlinear term in the first GL equation
can be neglected, does not work for much weaker fields. However, by studying
the nature of the solutions for fields just below H,, Abrikosov realized that they
correspond to vortices in the order parameter and that this type of solution must
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be valid for weaker fields as well.

The point is that because we require the theory to be gauge invariant, the vector
potential A and the phase ¢ of the order parameter W = |W|e’# appear in the
combination A — (fic/2e¢)Vp in the first GL equation. Now, for the magnetic field
to be constant inside the superconductor A has to grow. If the free energy is not
to grow without limit, the growth in the vector potential has to be compensated by
jumps in the phase. It turns out that this corresponds to vortex solutions in which
the order parameter vanishes at the points of a regular (triangular or hexagonal)
lattice and the phase of the order parameter changes by 27 on a closed contour
around these lattice points.

Abrikosov discovered these solutions in 1953, but they were unexpected and
he did not publish them until 1957. The suggestion by R.P. Feynman in 1955
that vortex filaments are formed in superfluid “He had then reached the Soviet
Union. The level of scientific contact between East and West was very low
during the Cold War and the work of Soviet scientists did not, in general, get
much attention from researchers in the West. The work of Ginzburg-Landau was
received with scepticism until L. P. Gorkov showed in 1959 that the GL equations
could be derived from the microscopic BCS theory in the appropriate limit. The
work of Abrikosov was not fully appreciated in the West until the 1960s, when
superconductors with very high critical fields had been discovered.

6. Importance

The Ginzburg-Landau (GL) theory has been important in many fields of physics,
including particle physics, where it is used in string theory. Today, the GL theory
is extensively used to describe superconductive properties that are important in
practical applications. This theory is able to describe, for example, spatially varying
superconducting order, superconductivity in strong magnetic fields.

Abrikosov’s theory of superconductors in a magnetic field created a new field
of physics — the study of type-II superconductors. After the discovery in 1986
of the ceramic “high-temperature” superconductors, which are extreme type-II
superconductors, by Gerd Bednorz and Alex Miiller (Nobel Prize 1987) research
to understand and use these new materials has become a very large activity. The
vortex/flux lines discovered by Abrikosov are very important for the properties of
these materials — the term “vortex matter” is used.

7. Vortex line as an elastic object

Abrikosov vortices in type II superconductors appear as the special nontrivial
solution of Ginzburg-Landau energy functional. However in the case of strongly
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type II materials, A > &, for almost all the practical purposes vortex matter is
very well described within the London theory, which neglects spatial variations of
the modulus of the order parameter |¥|. In the London theory the total system
energy is represented as energy of the currents flowing in the superconductor and
energy of the magnetic field B%/8r. Positions of vortices are defined as points of
singularities of the phase of the order parameter. Considering the case of only one
vortex line, one can integrate the energy in the plane perpendicular to the vortex,
one can calculate the energy per unit vortex length as e, = &,1In(\/€), where
g0 = @, /(47 )\)%. Thus within the London approximation vortex can be viewed as
the elastic line with the linear tension ¢; = eg. Finally, the energy of the system
of the vortex lines assumes the form:

F = Z/dz—<au’> +Z/dzdzvuz ) —w; ()], (5)

where u;(z) is the lateral displacement of the i-th vortex. The second term rep-
resents interactions between the vortex lines. In the most cases however one can
consider only the “equal z” interactions.

8. Collective pinning

The concept of weak collective pinning [4] is illustrated by a single vortex line
subject to weak disorder [5]. Point defects acting on the elastic line compete
with each other. When summing up pinning forces, the individual pins add up
statistically, giving zero on average. Thus vortex line gets pinned only by the
ﬂuctuations in defect density, and the total force exerted on the segment L is
Fpin == (> T n;€2L)'/2, where fyi, is the individual pinning force and the coherence
length¢ lays the role of the spatial scale of the pinning potential; n; is the point
defect density (See Fig. 4).

In the presence of the applied current pinning force has to compete with the
Lorentz force, #1, ~ j®oL/c. Since # ~ L, while Fp ~ V/L, Lorentz force
always wins at large distances. This means that stiff vortex cannot be pinned.
Pinning is achieved by adjusting flexible vortex to pinning relief, the adjustment
scale L. is determined by the balance &e(Le) ~ €062/ Le ~ Epin(Lc). At L > Le,
the vortex splits into the effectively independently pinned segments. Thus the total
pinning force on the length L appears to be proportional to the number L/L. of
the Larkin segments on the length L, i.e. total pinning force now o L. The critical
current j, ie. the current until which vortices remain immobile is given by the
condition Fpin(Le) = F1(Le) and is jo = jo(£7/€3)*3, v ~ mi? 2, jo is the
pairbreaking current. On a more formal level, point defect pinning is described by
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Figure 4. Single vortex line pinned by the collective action of many weak pointlike pinning
centers. Only fluctuations in the pin density are able to pine the vortex. In order to
accommodate optimally to the pinning potential, the vortex line deforms by £ (the minimal
transverse scale for the vortex core is able to resolve equals to the scale of the pinning
potential) on a longitudinal scale L., the collective pinning length.

addition to the free energy density of Eq. (5) the term e, (u;, z) with the statistical
properties (epin(U;, 2)€pin(0,0)) = vd(w)d(2).

At finite temperatures vortices fluctuate near their equilibrium positions and
smoothen pinning potential [6]. The effect of these phonon-like oscillations is very
similar to the suppression of Bragg peaks in the usual lattice due to oscillations
of atoms: peak intensity is reduced by the Debye-Waller factor. Analogously,
pinning potential effectively weakens and critical current decreases exponentially
above some characteristic depinning temperature Tgepin ~ (75052)1/ 3. Below we
show how the temperature dependence of the critical current can be obtained
from the quantum mechanical mapping.

9. Creep

As it was mentioned above, if at zero temperature the applied current j is smaller
than the critical current, j < j., vortices remain pinned. At finite temperatures
however vortices can move due to processes of thermal activation. In the rugged
energy landscape vortices assume positions in the local minima (valleys) of the
potential relief. In the presence of the external force (bias) vortices move via
a sequence of thermally activated jumps of the vortex segments between the
neighboring low-lying metastable states (See Fig. 5).

The discussion of the creep dynamics starts from the fact that the geometry
of the low-lying metastable states for the elastic system in the random potential is
characterized by the following scaling relation for the roughness w(L) = ([u(r +
L)u(r)]>)!/2, L >> L. (on the scales L < L. vortex lines remain within the same
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Figure S. Effective tilted random potential felt by the flux line in the presence of quenched
disorder and of a driving transport current density j. The elastic vortex line relaxes into a
low-lying metastable state. Close to the critical driving force, 7 < jc, the next metastable
state is very near the original state and separated from the latter by only a small barrier
U(j) =~ Uc(1 — j/jc)*. At low driving currents, j < jc, the closest favorable metastable
state is far away from the original state and separated from the latter by a large barrier
U(j) = Uc(1 — j/j:.)*. Hops to the closest valleys are not favorable and represent only an
intermediate step in the diffusion motion of the vortex to its next optimal state.

vy ~¢ (£) ©)

the exponent ( is called roughness exponent. Metastable states are determined by
the competition between pinning and elastic energies. Since characteristic elastic
energy is estimated as e;w?/L, the characteristic fluctuations in the low-lying
metastable states scale as E,(L/L.)X, E, = £&y'/2LP=2, D is the dimensionality
of the space, x = D — 2+ 2(. The basic assumption of the creep theory is that the
random elastic system is governed by the unique energy scale [7]. This implies that
the barriers separating low-lying metastable states also obey the same relation:

metastable state):

L X
By ~ Ep<L—> . (7)

In the presence of the small applied force f = (1/¢)®.j, the energy for the
tilted barrier can be written in a form (See Fig. 6):

() s -a(£) - (£) )

where Ly = Lc(f./f)"/>=%). The physical meaning of the length L is that at
the scales L < Ly the system is pinned and motion is possible due to thermally
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Figure 6. The changes in the coordinate energy dependence for the titled barrier.

activated processes only, while at L > L pinning does not exist. Thus the energy
barriers that control creep motion are Euyar(Lys) ~ Ep(fe/f)*, 1= x/(2 = ().

To close equations describing dynamics one can notice that relaxation processes
in random systems are governed by the barriers that satisfy the basic relation

Foarr ~ T ln(t/to), (9)

where ¢ is the observation time and ¢ is some characteristic microscopic time. This
relation can be understood as follows: the activation barrier E is surmounted in
the time ¢ ~ exp(E/T). This means that all the barriers with energies F < Fhy
from (9) are long behind and thus long forgotten. On the other hand, the barriers
with E > Ep,y are unknown to the system since it did not have enough time
to try to overcome them. Thus the only relevant barriers given the lifetime ¢ are
those from Eq. (9). Now combining (9) with the expression for Euu(Ly), one
arrives at the basic equation for the rate of the thermally activated vortex motion
v in the presence of the small, f < f., constant applied force [7]:

v~t1~exp{—%<@>q. (10)

Notice the fundamental deep character of the relation (10): the activation barrier
diverges (as a power of the applied force f) as f — 0, therefore there is no
linear response in the system; the behavior of the system at infinitesimal forces
is strongly nonlinear, even more, the velocity is the non-analytic function of the
applied force.

10. Quantum mechanical mapping

In 1988 David Nelson noticed the remarkable correspondence between the sta-
tistical mechanics of the array of the vortex lines in n dimensions and quantum
mechanics of Bose-particles in an n — 1-dimensional system [8]. The mapping is
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Figure 7. Schematic of a flux line interacting with a columnar pin. (a) The line is confined
to a tube of radius [, (T"). (b) Cylindrical square well potential which models the binding
of the line to the pin. The binding potential is reduced from Uy to U(T) by thermal
fluctuations.

realized by the vocabulary establishing correspondence between parameters of the
vortex system and those for the quantum mechanical particles: ¢; <> m, T < h,
system size along the magnetic field L < /i/Tg, where Tg is the physical tempera-
ture of the boson system, the electric charge of bosons « ®,, and the electric field
that acts on charged bosons corresponds to the applied current in vortex system,
& « (1/c)j. The power of this mapping can be best illustrated by consideration
of pinning of vortices by the array of columnar defects that can be engineered
in superconductor samples via irradiation of the latter with heavy ions (Pb, Au,
U) [9]. A free energy of the vortex configuration can be written as a functional of
the vortex displacements r;(z) as

L 2
€1 8ri 1
where the interaction between the vortices is

v(r) = e Ko(r/A), (12)

with K being the Bessel function. The disorder potential U(r) is a sum of the
potential wells representing the columnar defects

U(r)=Y_ u(r—mr), (13)

i

with r; being the coordinate of the i-th defect. A columnar defect represents
a strong pinning center for the vortex line due to matching between the linear
geometries of the trap for the vortex line and that of the object to pin (See
Fig. 7). At moderate magnetic fields where defects outnumber vortices the critical
current is determined by the pinning strength of an individual columnar defect.
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In the quantum mapping picture, the columnar pinning track corresponds to a
trap (potential well) for a 2D particle and the critical current corresponds to the
ionization of energy from this trap, ie. to the depth of the bound state. In the
case of the shallow 2D quantum well (high temperatures for vortices) of the finite
radius 7, it is given by |E| ~ exp[—(h*/m) | [;~ drrU(r) |7!]. Transcribing
this back to vortices and estimating [, drrU(r) ~ r2U, (U, is the strength
of the columnar pinning potential), we get j.(7) ~ j.(0)exp[—(T/T*)?] with
characteristic depinning temperature 7% ~ r,1/;U,. More refined calculation
that takes into account that the true pinning potential for the vortex line drops as
1/r? [5, 10] with the distance r from the vortex line, gives

Je(T) ~ 7.(0) exp[—T\/E/ro\/agao , (14)

with U, ~ g (12 /4£?).

It is very instructive to see that this quantum mechanical mapping can be used
for estimating temperature dependence of the critical current due to point defects.
To this end we assume that vortex line pinned by point defects maps onto a 2D
quantum particle trapped by some effective potential well. Then one can write the
estimate for the ionization energy as |E| ~ exp(—h/m&?|Uef), where Uy is to be
determined. Turning back to a vortex line, this estimate implies

o ~ exp(—T?/e18*Uert), (15)

where U,y stands now for an effective pinning potential per unit length. In a
pinned state the energy of thermal fluctuations is balanced by pinning energy; thus

T~ AL, (16)

where L is the characteristic length of the pinned segment. Then by definition
Uett = /¥L/L = \/v/L = 7/T, and plugging this into the Eq. (15), we arrive at

Je(T) ~ 5e(0) exp[ (T Taepin)*] (17)

with Tyepin = (mgz)l/ 3. which is exactly the relation derived in the original
paper [6] by using high vortex velocity perturbation theory with respect to disorder.

11. Creep through columnar defects

The system described by the free energy (11) represents, in a dual quantum
mechanical picture, a 2D interacting Bose-system subject to strong disorder that
shows a wealth of different behaviors. If disorder is sufficiently strong, Bose
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particles get localized to form the so-called Bose glass. This corresponds to
the low-temperature behavior of the related vortex system at low temperatures:
the pristine vortex structure would have formed Abrikosov lattice but columnar
defects cause formation of strongly pinned Bose glass [9, 11]. With the increasing
temperature the Bose glass melts at the melting line B, (T"), into a vortex liquid.
In the related quantum mechanical 2D Bose system the vortex liquid maps to the
superfluid phase. Disorder partially destroys superfluidity: the superfluid density
ns decreases. This depletion of the superfluid density by disorder corresponds to
enhancement of the average tilt modulus of the related vortex system [12, 13].
Moreover, one can expect that this stiffening is accompanied by the change in
transport properties: the part of the vortices remain pinned and does not participate
in transport. This may be interpreted as the intermediate vortex phase where both
vortex liquid and pinned vortices coexist.

We address now the low temperature Bose glass dynamics. As we have already
discussed above the main characteristic of the low temperature glassy phase is its
highly nonlinear response. For brevity and illustration purposes we focus on the
single vortex creep that realizes normally in the case where columnar defects
significantly outnumber vortices. For the usual irradiation doses employed in
experiments this corresponds to moderate fields range up to 0.1 T.

The simplest example of creep is the liberation of a single vortex from a single
columnar defect (see Fig. 8). If (in the notations of Reference [9]) the half-loop

W
= =

Figure 8. Half-loop and double-kink trans- Figure 9. Double-superkink configuration

port process for flux lines. The Lorentz required for variable-range hopping. The

force fi attempts to push the line to the “tongue” of the vortex line seeks out a com-

right. patible low-energy pin so that the line can
spread.

extends for a distance z along the defect, and has a lateral size r than the energy
change due to formation of such a loop in the presence of the applied force
fi=1/c)j oo is
2
OF ~ EZT——FUoz—fer (18)
z
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Optimization with respect to r and z yields the saddle point values 7* ~ Usc/j @,
and z* ~ csll/ 2yl /i ®o, and, correspondingly,

(19)

Identifying this energy change with the activation barrier we arrive at the conclu-
sion that the escape rate for the vortex from a columnar defect is v ~ exp(—3JF*/
T). Each vortex moving with the velocity v generates the electric field E =
(®,/c)[z x V], the voltage measured in the sample where vortex motion is gov-
erned by vortex depinning from columnar defects will be

4v2c s}/2U3/2>

T (20)

Vocexp(—

(numerical factor 41/2/3 is obtained by the exact variational calculation of the
saddle configuration for the vortex escape from the cylindrical cavity). It is most
remarkable that by quantum mechanical mapping ¢, — m, T' — f, and ®, j/c —
|eE|, one immediately recovers from (20) the well known quantum-mechanical
result for the cold ionization from the 2D potential well [14].

At smaller currents the lateral size of the vortex half loop grows and the
dynamic regime where vortex lines hop from one columnar defect to neighboring
ones favored by the applied current (see Fig. 8). Even more interesting dynamics
occurs at yet smaller currents where vortex loop can sample many columnar
defects choosing the optimal one for the jump (Fig. 9). Using quantum-mechanical
mapping and mobilizing the quantum-mechanical intuition, one can guess that the
resulting mechanism of vortex motion becomes the equivalent of the 2D variable
range hopping, i.e. the voltage measured in such a regime becomes:

1/3
V o exp {— E\Z/FRH (JY]RH> ] (21)

Experiments on high temperature superconductors indeed revealed the existence
of both dynamic regimes (see Figs. 10-11) Moreover even the effects that stem
from the interactions of the vortex lines and are equivalent to the Coulomb gap
phenomenon are observed in a full analogy with the behavior of conductivity of
semiconductors in two dimensions.

12. Conclusion: creep dynamics

Reviewing our above considerations and illustrative examples of creep, one can
notice that basically our discussion had a very general character and that the only
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Superfast Vortex Creep in YBa;Cu3z07—5 Crystals with Columnar Defects:
Evidence for Variable-Range Vortex Hopping

J.R. Thompson,' L. Krusin-Elbaum,” L. Civale,’ G. Blatter,* and C. Feild”
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FIG. 4. U(J) for the By = 2.4 T crystal in a 0.5 T magnetic
field. The solid line is the fit to the full glassy expression for
U(J) (see text) with u = 1. The slope u ~ 1/3 (dashed line)
fits the data well between 23 and 40 K. Crossover currents are
indicated by the arrows. Inset: Fit to variable-range hopping
[Eq. (3)] with u = 1/3 (see text) is shown as the solid line.
The decreased rate on the high-7" side of the peak is due to
slower creep in the collective regime.

VARIABLE RANGE FLUX HOPPING: voc exp(-constiJ13)

Figure 10. Experimental data for different types of dynamic regimes.
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Experimental evidence for Bose-glass behavior in Bi,Sr,CaCu,Oy; crystals with columnar defects
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FIG. 4. Energy barrier for flux creep (1/S5) vs stray field H,
recorded at 300 Oe and 60 K on BSCCO:2212 samples irradiat-
ed to various doses.

HALF-LOOP EXCITATIONS: v« exp(-const/J)

Figure 11. Experimental data for different types of dynamic regimes.
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property that we used to derive the nonlinear behavior at small forces was the
elastic nature of the driven object, i.e. the existence of the internal degrees of
freedom. Thus one can draw a conclusion that any elastic object in a random
environment must exhibit creep-like motion at small forces and low temperatures.
Moreover, one can notice next that thermal fluctuations are not the only mecha-
nism that can provide transitions between the low-lying metastable states in the
random potential and that quantum fluctuations will do the job equally well. We
thus arrive at the notion of the quantum creep. Such quantum motion of vortices
was indeed discovered in high temperature superconductors at very low temper-
atures where quantum tunnelling of vortices through the barriers separating the
energy valleys appeared to be more effective than activation over these barriers.

In a more refined language one can say that for any system that can be de-
scribed by the general energy functional

710 [ar[S(%) +viom) )

where C is the general elastic matrix and ¢ is a general field describing the
dynamics in question, and V[...] is the appropriate random potential functional.
There is a wealth of the physical systems that fall in the category described by
the definition (22) including vortices in superconductors, domain walls, charge
density waves in crystals, dislocations in solids, polymers, interacting electrons in
metals and semiconductors — and many, many others — for which we expect the
nonlinear small force response as

v ~ exp(— const/ ). (23)

Indeed, recently creep motion of exactly this form was experimentally observed
for the moving domain walls in magnetic films and dislocations. We thus arrive at
the final conclusion that the expression (23) is the generic law of the small force
dynamics for all the real (since almost all the real systems contain disorder in one
or another form) condensed matter systems.
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Peculiarities of the impurity states in the
narrow-gap lead telluride-based

semiconductors
D. Khokhlov

Physics Department, Moscow State University, Moscow, Russia

Abstract. Starting from mid-70’, a great deal of both experimental and theoretical
efforts has been attracted to the unexplained puzzle of impurity states arising in the IV-VI
narrow-gap cubic semiconductors doped with some of the group III elements, and to the
unusual effects observed in these materials. We review the experimental results obtained
in the field: mixed valence phenomena, electrical activity of impurity centers, persistent
photoconductivity and related effects. Some of the features of these semiconductors have
provided the possibility of construction of the far-infrared photodetector with extremely
high characteristics. The theoretical models proposed so far to account for the physical
picture of the processes involved are discussed.

1. Introduction

Investigation of impurity states in the group III-doped narrow-gap IV-VI semicon-
ductors based on the lead telluride has a long tradition in the former Soviet Union.
It has started in early 70’s [1] and has been extensively developed since that time.
The unusual effects observed in these materials, such as persistent photoconduc-
tivity and photomemory — are quite analogous to the features of III-V and I1I-VI
semiconductors with the DX-centers. The microscopic structure of the DX-centers
in IITI-V is well established now both experimentally and theoretically [2, 3].

The origin of impurity states in the group III-doped IV-VI is still under dis-
cussion. There is a considerable difference from the effects due to the “classic”
DX-centers in the relatively wide-gap III-V’s and II-VI’s. First of all, in the IV—
VI’s the same impurity can be either donor or acceptor depending on the specific
composition of the semiconductor. The variable electrical activity of the III group
impurities leads to the pinning of chemical potential. Beside that, the impurity
centers in the [IV-VI reveal the negative-U behavior independently on the impurity
level position in the energy spectrum, in contrast to the DX-centers in III-V and
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II-VL Finally, the one-electron local states are hydrogen-like in III-V and II-VI,
whereas they are mostly deep in IV-VIL. These metastable local states play an
important role in a range of strong and unusual non-equilibrium effects.

2. Mixed valence and electrical activity

Indium initially acts as a donor in PbTe providing the increase of a free electron
concentration n [1], but then the value of n saturates. The saturation on the
n(Np,) dependence corresponds to the Fermi level pinning. Additional doping
with other impurities does not affect the Fermi level position Er. Besides, Ef is
not linked to the actual band edges [4-6].

The position of a pinned Fermi level in the energy spectrum can be changed
by variation of the group III dopant. In PbTe(Ga) the Fermi level is pinned within
the gap, and in PbTe(Tl) — rather deep in the valence band [4], and the group
IIT element acts already as an acceptor. Moreover, even for the same dopant
the position of Er can be changed by variation of the lead telluride-based alloy
composition. In the range of Pb;_,Sn,Te(In) solid solutions the pinned Fermi
level shifts to the bottom of the conduction band with increasing x, crosses the
gap and enters the valence band, acting therefore as an acceptor [7].

3. Theoretical models of impurity states

Indium is expected to reveal an acceptor behavior in IV-VI since it substitutes
metal. However it can obviously act both as a donor and as an acceptor. According
to the idea proposed in [8], indium reveals a negative-U behavior, i.e. the neutral
with respect to the lattice state In>* is unstable and dissolves to the donor and
acceptor states: 2In** — In* + In*. Polarization of the impurity environment is
a reason for this reaction.

The clear microscopic picture of the processes involved has been proposed
in [9-12]. Due to high values of a diclectric constant (¢ ~ 10%) and to small
effective masses (m ~ 1072m,) the Coulomb potential of an impurity is effectively
screened, and the short-range potential gives the main contribution to the formation
of an impurity energy spectrum. The short-range character on a potential allows
to use in the calculations the averaged over the Brillouin zone characteristics
of the energy bands, which may be most easily calculated using the tight-bind
approximation. The theory is based on the idea of a “pra-phase”, where the IV-VI
lattice is considered as a cubic lattice with a superimposed doubling potential due
to the chemical difference of the group IV and group VI atoms that form the
valence bonds constructed from the atomic p-orbitals. Three filled by half bands
originating from the overlapping atomic p-orbitals arise in the “pra-phase”. The
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doubling potential provides appearance of the gap in the IV-VI spectrum just
at the Fermi energy. The real electronic spectrum may be calculated by taking
into account the spin-orbital interaction and the overlapping of the p-orbitals of a
non-neighboring atoms.

Understanding of the origin of the actual bands in IV-VI gives a key for the
solution of the problem of mixed valence of the group III elements. This element
replacing the metal atom can exist in three atomic configurations — one-valent
s%p!, two-valent s'p? and three-valent s°p3 [12]. p-electrons participate in the
formation of the actual bands, so therefore the element is acceptor in the first
case, neutral impurity in the second one, and donor in the third case. Realization
of the particular valence of an impurity atom depends on the Fermi level position
FEr. When the total energy of the sp° and the s%p! configurations becomes equal,
the Fermi level is pinned. The total energy of the neutral with respect to the
lattice s'p? configuration is higher than Ef, thus the impurity effectively reveals
the negative-U behavior. The valence switching corresponds to the transfer of
electrons from- and to the deep s-shell, therefore the group III element can reveal
electrical activity of both donor and acceptor type.

4. Long-term relaxation processes

Most of attention to the group IlI-doped IV-VI has been attracted due to the
long-term relaxation processes observed in these semiconductors at the low tem-
peratures 7" < T, under the action of different external factors — infrared illumi-
nation [13], magnetic field [14], electric field [15]. The value of T is about 25 K
in the case of indium doping and about 80 K for the gallium impurity. For the
In-doped alloys a strong persistent photoresponse is observed at 7' < 25 K inde-
pendently on whether the Fermi level is pinned in the allowed band or in the gap.
This point makes a substantial difference from the case of the DX-centers in III-
V’s, where the persistent photoconductivity is observed only when the DX-level
lies in the gap [2].

Kinetics of the persistent photoconductivity decay is also unusual. Two parts
of the photoconductivity relaxation are observed: the fast part is followed by
the slow one [4-6]. The characteristic time 7 of the fast process is (1 ms—1 s)
whereas for the slow part 7 may exceed 10° s at the low temperatures. The
value of 7 for both processes only slightly depends on the temperature when
T < T; indicating a non-activation mechanism of relaxation. One more argument
in support of this statement is the non-exponential character of both fast and slow
relaxation. The rate of the slow relaxation process depends on the history of
preceding photoexcitation [5].
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5. Local metastable states

The experimental data clearly show that the processes involved cannot be ex-
plained if one takes into account only one local state providing the Fermi level
pinning. Indeed, observation of two parts of the relaxation curve give a direct indi-
cation for the existence of at least two different local states in the energy spectrum
of the semiconductor.

In the case of the group III-doped IV-VT’s the excited local states are separated
by a potential barriers from both ground impurity states and the extended electron
states, in contrast to the situation with the DX-centers in III-V’s where the excited
local states there are shallow. Metastability of the excited local electron states
results in an appearance of a range of unusual effects not observed in materials
with the “classic” DX-centers.

The giant negative magnetoresistance with an amplitude exceeding 10° in some
cases has been observed in Pbg 75Sng »5Te(In) where the Fermi level is pinned in
the gap [16]. The explanation proposed in [16] assumes trapping of the injected
electrons on the metastable one-electron impurity states Ej(s'p?). Application of
a magnetic field pushes the FE; states above the conduction band bottom thus
providing electron delocalization.

The idea developed in [12] allows to propose the alternative origin of impurity
states responsible for the giant negative magnetoresistance effect. The empty
impurity centers (sp?) give rise to a short-range attractive potential that in turn
provides splitting of an impurity (p-like) state from the conduction band bottom.
Electron localized in this state can have a somewhat different g-factor compared
to the conduction band electrons. Therefore application of the magnetic field may
push the electrons trapped on this level into the conduction band.

This idea has been further developed in [17] to account for appearance of the
long-term non-equilibrium effects at low temperatures. According to this idea, the
metastable one-electron impurity states ) (s!'p?) lie rather high in the conduction
band. The two-electron excitation is forbidden in the first approximation, therefore
the transfer of excited electrons from the extended to the ground two-electron local
state can proceed only through the one-electron metastable local state. So trapping
of excited electrons to the ground state goes in two steps: first one electron must
localize on an impurity center, and only after that this center can trap a second
electron and transfer to the ground state. The first step implies increase in the
center energy, therefore an effective barrier is formed between the ground state
and the extended electron state. One can see that no considerable lattice relaxation
is needed in this mechanism.

Application of a strong and short (< 10us) microwave pulses to the
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Pb;_,Sn,Te(In) samples results in a complete quenching of the persistent pho-
toresponse [18]. Moreover, if the persistent photoconductivity is quenched by the
microwave pulses of a minimal necessary power, the quantum efficiency 7 of a
material increases up to ~ 102, whereas out of this regime 1 ~ 1. Application of
the short microwave pulse leads to the localization of electrons to the metastable
local state. Some of the metastable centers may form a cluster with strong internal
interaction. Excitation of one electron from this cluster leads to the avalanche
excitation of other centers providing the increase of a quantum efficiency.

6. New type of the far-infrared photodetectors

Unusual features of the group III-doped lead telluride-based alloys have provided
the possibility of construction of the sensitive far-infrared radiometer. The persis-
tent photoresponse in combination with the possibility of fast resetting of an accu-
mulated signal together with the quantum efficiency stimulation provides a giant
increment in the signal-to-noise ratio and in a current responsivity of a photodetec-
tor. This approach has been realized in [19]. Despite the measurement technique
was far from being sensitive (the lowest detectable current only 10~7 A) the pho-
ton flux of 10° ph/s and the power of 10716 W at A\ = 18um have been detected
for the operating rate of 3 Hz, the current responsivity was no less than 10° A/W.
Application of a more advanced measurement technique would definitely improve
the NEP value.

Direct comparison of performance of the state of the art Si(Sb) and Ge(Ga)
far-infrared photodetectors with a photodetector based on Pb;_,Sn,Te(In) has
been performed in [20, 21]. In these experiments, the same cryogenics and
readout electronics has been used for both doped group-IV photodetectors and
the Pb;_,Sn,Te(In) sample. It has been shown that the responsivity of the
Pb;_,Sn, Te(In) photodetector is by 37 orders of magnitude higher than for its
doped group-1V counterparts, depending on the operating wavelength. Strong per-
sistent photoresponse has been observed in Pbg 75Sng 2s5Te(In) at the wavelengths
of 90, 116 pm [20] and 176, 241 pum [21]. These wavelengths correspond to
the radiation quantum energy, that is considerably lower than the ground impurity
state activation energy. It means that the metastable impurity states are responsible
for this photoresponse. The cut-off wavelength of this photoresponse is at least
higher than 241 pm that is the highest red cut-off wavelength observed so far for
the quantum detectors of radiation. It is likely that the operating range of the
Pb;_,Sn, Te(In)-based photodetectors covers the whole submillimeter region.

The group III-doped lead telluride-based photodetectors have extremely high
radiation hardness ~ 10'7 cm~2 [22]. This value is by 10* times higher than for
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the other far-infrared photodetectors.

Specifics of impurity states makes very easy the construction of a focal-plane
array on Pb;_,Sn,Te(In). The local infrared illumination leads to the local gen-
eration of the nonequilibrium free electrons [23]. So one may construct the focal
plane array in which the signal is internally integrated by every effective element.
There exists an idea of a simple information readout [19].

Summary

Doping of the lead telluride-based alloys with some of the group III impurities,
such as indium or gallium, results in an appearance of the unusual impurity states
in these narrow-gap IV-VI semiconductors. In contrary to the DX-centers in
III-V’s and I1I-VTI’s the impurity centers in IV-VI exhibit the negative-U behavior
independently on the position of a DX-level in the semiconductor energy spectrum.
Another circumstance of a crucial importance is existence of a barrier between
excited one-electron local impurity state and both ground two-electron local state
and state of an electron in the conduction band. Presence of these barriers results
in an appearance of a range of unusual non-equilibrium effects that are absent in
the case of “classical” DX-centers, where the one-electron local states are shallow.
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«MeTtaninueckas» IIPOBOAUMOCTDb, IEPEXOI
META/LUI—AUICKTPUK H CONMMYCTBYHOIIME ABJICHUA
B I[ByMepHOﬁ 3JI€KTp0HHOﬁ KHIAKOCTH

B. M. [lynanos

Ousnueckuii nHCcTUTYT MM. 1. H. JIe6eneBa PAH, Mocksa, Poccus

I[Be JICKIIMMA Ha Ha3BaHHYIO TEMY ABJIAIOTCS BBEIECHHUEM B CPABHUTEJIbBHO MOJIO-

AyI0 00J1acTh MCCIIENOBAHNSI CBOMCTB CHJIPHO-KOPPEJIMPOBAHHBIX U Pa3yIopsiI0YcH-
HBIX IBYMEPHBIX CHCTEM 3apsHKCHHBIX (PepMHOHOB. BynyT paccMOTpeHsI pe3ysibTa-
Thl 9KCHEPUMEHTAJIBHBIX MCCIIEJOBAaHUI IMPOBONMMOCTH, MAarHATOCOIPOTHUBJICHUS,
CIHMHOBOW BOCIIPUUMYMBOCTH, CIIMHOBO} HaMarHW4EHHOCTU U 3(Q(EKTUBHON Mac-
CBl, IEPEHOPMHUPOBAHHBIX MEXK3JIEKTPOHHBIM B3aHMOZICHICTBUEM U OECHIOPAIKOM.

MnaH nekuwmi

1. MoTtToBCKast TIIOJIYKJIACCUYECKasA KapTUHA I€pexoga METaJlJT-TUIJICKTPHUK.

67



2. KBaHTOBHI TPAaHCIIOPT 3apsiia B OTCYCTBHMH MarHUTHOTO ITOJIS.

2.1. TpaHCcmopT 1O IEJTOKAJIM30BAaHHBIM COCTOSTHUAM: I dy3noHHBIA 1 OarumcTu-
YECKUN PEXHUMBIL.

2.2. TpaHcnopT 1O JIOKaJIU30BaHHBIM COCTOSTHUSIM.

2.3. ®a3oBas KOTepPEeHTHOCTh U TPAHCIIOPT.

2.4. IlomasnieHue cy1aboil JIOKAJIN33aLUK B NIEPHIEHANKY/IIPHOM MarHUTHOM IIOJIE.
2.5. OgHOvYacTHYHAS CKEIUIMHIOBasI TEOPHS JIOKAIN3aIHN.

3. [lepexon MeTayUT-TUAJICKTPUK B 2D.

3.1. TloBTOpSIIOIIIECS IEPEXOObl MEXIY COCTOSHUAMHU: (JKUIKAM) C KBAHTOBAaHHBIM
XOJUIIOBCKMM COIPOTHBIICHUECM H U30JIATOpPA (TBEPABIM) B MEPHCHINKY/ISIPHOM I10-
Je.

3.2. «BcnpiBaHNE» MPOTSKEHHBIX COCTOSIHUIA U WX CJIMSTHHAE APYT C IPYTOM.

3.3. Tlepexon MeTayUT-U3JIEKTPHK B HYJICBOM MOJIE (IJIEKTPOHHAS YKUIKOCTb—BHI-
HEPOBCKHUI KpUCTasui?)

3.4. KonjleKTUBHBIN XapakTep TPAaHCIOPTa B TBEPOOM COCTOSIHHU.

4. Kon4uecTBeHHOE U3yUYeHHE JICKTPOH-3JIEKTPOHHOTO B3anMoyneicTBus B 2D.
4.1. DOxcriepuMeHTaNbHBI Metom: MHTepdepeHIs KBaHTOBBIX OCHWJUIANMIA B
«CKPEUICHHBIX» MAarHUTHBIX IMOJISX.

4.2. TepmonmHAMHAYIECKOE U3MEPEHUE CIIMHOBON HAMarHMYCHHOCTL

4.3. ®epMU-KUIKOCTHAS MEPEHOPMHUPOBKA MapaMeTpoB B 2D 371eKTPOHHON KUI-
KOCTH:

— 3¢ dexTrBHAsT Macca

— CIHMHOBAsl BOCIIPAIMYHUBOCTD

— CKIMaeMOCTb JICKTPOHHOM KUIKOCTH.

4.4. Onucanue MeTaIJIMYECKU-TIONOOHOr0 TPaHCIOPTa ¢ MOMOLIBIO M3MEPEHHBIX
(epMU-KUIKOCTHBIX NTapaMeTpPOB.

4.5. ConocTaBJieHHE pe3yJIbTaTOB U3MEPEHUH Ha pa3inyHbix 2D cuctemax.

5. CpaBHeHHE KCIIEPHMEHTa C TEOPHEH BIAIH OT KPUTHYECKOrO pexnMa (IpH
BBICOKOI MPOBOIMMOCTH, 0 > €2 /h).

6. CorlocTapJieHue SKCIEPUMEHTA C TeOpUel B KpuTHieckoM pexume (o < e?/h).
7. TpaHcopT B MPHUCYTCTBUM MarHUTHOTO MOJis B 2D MIIOCKOCTH.

8. Emie He pemeHHBIC TPOOIEMBL
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JNeKTpocTaTH4eckne mMoaean ¢pa3oBbix
nepexo0B MeTALUI—HM30JATOP B KPUCTa/LIax
Ge u Si ¢ BODOpoaONOI00HBIMH NPUMECIMH

H. A.TloknoHcknit
Benopycckuit rocynapcTBeHHblil yHIBepcuTeT, MuHck, Pecydmka benapych

B nexnuu usnaraloTcd pe3ysbTaThl pacueTa IapaMeTpoB KOHLIEHTPAI[MOHHBIX
(a30BbIX HEPEXONOB U3OJIATOP-METaI U METaJUT-U30JIATOP B Ipefesie HyJeBOH
temmeparypsl (T — 0).

1. Ha m3omATOpHOU CTOpOHE Mepexoma H30JATOP-MEeTa/Ul NPH YBEIUYCHUH
KOHIIeHTpauuu [N JIerupymomeil IpUMecH BIUIOTb IO KPUTHUYECKOH KOHLEHTpa-
iy N, MPOUCXOOUT HEOTPAaHWYEHHOE BO3PACTaHHE CTATHYECKOH OTHOCHTESIbHOU
[MAJICKTPUYECKOi poHHIaeMocTH &;(N) Kpucraumaeckoro obpasna [1-3]. Hist
OIIpefeJIeHHOCT! PacCMOTPUM KPUCTAJUIMYECKUI MOIYyNPOBOAHUK A-THUIA C KOH-
ueHrpanueii fonopoB N = Ny + N, B 3apsinoBeix cocrosiHusx (0) u (+1) u ax-
LETITOPOB B 3apsinoBoM coctosiHun (—1) ¢ konnenrpammen N_; = KN, rne K —
CTENeHb KOMIICHCALMK JOHOPOB. YCJIOBHE 3JIeKTpoHedTpapHoCTH: Ny = K N.

ITo momenu [4, 5] ¢ y4eToM MOJSIPU3YyeMOCTH KaK aTOMOB KPUCTAJINYECKON
MaTpUIIbl, TaK ¥ JIEKTPUICCKH HEHTPAIBbHBIX JOHOPOB, KPUTHUYECKas KOHIICHTpA-
st N UTs iepexofia U30JIATOP—MeTalll ¥ 3aBUCUMOCTD &;(N) OT KOHLEHTpALN
HoHOpOoB N Ha M30JIATOPHOI CTOPOHE MMEIOT BUL;

0.542 _ & +2N/N,

NP = (1= K)(e +2)]1/3 W) =N /N

(1)

e ay = e?/8meregly(a) — pammyc OpOUTHI IEKTPOHA (IBIPKH) ONUHOYHOIO BOLO-
POIONOIOGHOTO TOHOpPA (aKIENTOpa) C SHEpruell HOHU3aMH Iy(,) B KpUCTAILTIYe-
CKOIl pelIeTke ¢ AUIJIEKTPUYECKON IPOHNULAEMOCTBIO Er£(; € — 3apsll JIEKTPOHa;
K < 1;6(N —0)=c¢.

Pacuer 3aBucumocty € (IN) o dopmyste 1 ist KpUCTAIUTOB KPEMHHSI TOKa3aH B
CPaBHEHHH C 3KCIICPUMEHTAIbHBIMU JaHHBIMU Ha puc. 1. ITpu ob6paboTke sxcnepu-
MEHTaJIbHBIX JaHHBIX [1, 3, 6, 7] HCIOIB30BAIICH CPEIHUE 3HAUYCHHST KPUTHYECKHX
KOHIleHTpanmit mpumeceit a1 K — 0 (cm. a6 1): Ne(Si:As) = 7.8 - 1018 em—3,
Ne(Si:P) = 3.8 - 108 cm—3, N(SiB) = 4.1.10"¥ em—3.
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Puc. 1. 3aBECHMOCTD MaKpPOCKOIIMYECKOI OTHOCHTEIIBHOI NMAJICKTPHYICCKON MPOHUIACMO-
ctit &r(NN) cabo KOMIICHCHPOBAHHOTO KPEMHHSI OT KOHICHTpAarmu N OCHOBHBIX JICTHPYIO-
mwx mpuMeceil. Toukn — sKkcrepuMeHTasbHble faHHbIe: @ — n-Si:As [1], b — n-SiP [6],
¢ — n-Si:P [7], d — p-Si:B [3]. KpuBasg — pacuer &;(N) mo 1 mpu K =0 u e = 11.5

Taémuma 1. DKcneprMEHTAIbHBIC 3HAYCHHUS KPUTHYECKOH KOHIEHTparmu N, TIpuMecH B
KpHUcTajutax Si MpH pa3HBIX CTEMEeHAX KomreHcarmu X

ITapameTpst Jlerupo- I
KpucraLia, BarHbi M:(a%, Ne, em™3 K Hcrounnk
JIEKTPOHOB (n) TOJTYTIPOBOJI- 18, 9]
u eipok (p) [8, 9] HUK ’
1 2 3 4 5 6
Si n-Si:As 53.8 781018 < 0.01 [10]
e =115 n-Si:P 456 348107 < 0.01 [11]
ma = 0.322mg 3.7-10™8 < 0.01 [12]
Vn =6 (415+0.2)-10% | < 0.01 [13]
mp = 0.591myg (4.7440.5)-10'8 | 0.15+0.05
vp =1 (6.77 £ 0.8)-10'8 | 0.37 £0.05
(1.240.2)-10"° | 0.54 £ 0.05
n-Si:Sb 427 29-10™8 < 0.01 [14]
p-SiB 44.4 4.1.107 < 0.01 [15]

2. C MeTaJUTHIEeCKOI CTOPOHBI MEPEXO METAJIT-AUIJICKTPUK IKCICPUMCHTAJIb-
HO Ha6n10z[aeTc;{ KakK HeOFpaHI/I‘-ICHHHﬁ POCT SJICKTPUYCCKOI'O COMPOTUBJICHUA HaA
NOCTOSTHHOM TOKE€ IPU YMCHBIICHUN KOHLUEHTpALNN N InpuMecH BIUIOTH [0 NC
WJIA TIpU YBEJIMYCHUU €€ CTCIICHU KOMIICHCAIIUU.
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Puc. 2. 3aBHCHMOCTD KPHTHYECKOU KOHIEHTparwu N, qoHopoB (akientopos) B Ge u Si or
creneHn ux komreHcarmu K. Toukn — skcriepuMeHTabHbe nannbie: a — p-Ge:Ga [27-29],
b — p-Ge:Ga [21], ¢ — p- Ge:Ga [30], d — n-Ge:As [23, 27, 31], e — n- Ge:As [22], f —
n-Ge:As [24], g — n-Ge:Sb [24], h — n- Ge:Sb [23], i — n-Ge:Sb [32], j — n-Ge:P [23, 27],
k — n-SiP [13]. CwiomHas JMHAST — pac¥eT N0 3; INTPHUXOBAsl JIMHHS — pacyeT Mo
monenm [17]. (Ilyakrupom npu K = 0.01 mokasaH [quana3soH SKCIECPHMCHTAJIbHBIX TaHHBIX
mo N, u3 pabor [10-15, 18-26], mpencrasieHHbX B Tabl 1 1 2, cO CpeqHUM 3HAYCHHEM
N Pag/¥? =0.1)

IIpennonaraercs, 4ro (UIyKTyalud 3J€KTPOCTATUYECKON 3HEPIUH, CO3[aBae-
MBI€ B KpUCTaJIJIe HOHAMH [IPUMeceil U 3JISKTPOHAMH [TPOBOAUMOCTH, UMEIOT rayc-
coBo (HopMasIbHOE) pacripenenienue ¢ aucrepcuein W2, U3 ycrioBusi paBeHCTBa
YPOBHS NIPOTEKaHKs (Iopora NoABIKHOCTH) F,, ypoBHI0 Pepmu £y, 3aBHCUMOCTD
KPUTHYECKOH IJIS TIepexofia MeTaJUI-M30JIATOpP KOHIEHTparmu [N, IPAMECH OT CTe-
neHu ee KomreHcauuu K mpu temneparype 7 — 0 MOxHO mosy4uts (4, 5, 16] B
Buze (cp. [17]):

W 1/2 v E,/W E 3/2 ) 1/3
/3, — A o 7
st —oms (LY T [ (B ) e ()0 o

e ap = 4neeoh?/me?, Eg = e*/8mecoap — Goposckue paauyc! u sHeprus;
Y — 9HCIIO JOJMH B Pa3pelIcHHOM IS OCHOBHBIX HOCHTENel 3apsafa SHepreTude-

s xpucramtos Ge u Si kak n-, Tak ¥ p-Tuna ay # ag. SlcHO, 4TO IS aTOMa BOXOPOZA B BaKyyMe
er=1,m=mgyu ayg = ap.
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Tab6mnna 2. Kputnaeckast koHmeHTparmst N mpuMecH B Kpuctawiax Ge IpH pasHBEIX CTe-
IeHsIX KommeHcaimu K (HoMepa B Ha3BaHHUSIX CTOJIOLOB COOTBETCTBYIOT TalL. 1)

| ! [ 2 | 3 | 4 | s [ o
Ge n-GeAs | 142m3B | 3.107 cm—3 K <0.01 [18]
e =154 3.5.107 < 0.01 (19, 20]
mn = 0.22my (3.5+0.18)-10" < 0.01 [22]
vy =4 (4£0.2)-107 | K =0.12
myp = 0.38my (8.8 +0.2)-10"7 0.38
vp =1 (1.87 £0.9)-10'8 0.54

3.83-10"7 < 0.01 23
(5£1)-10T 0.21 £0.07 27
5.64-1077 0.3 [31]
1.86-1018 0.58 [24]
3.3-10'8 0.73
5.1-10'8 0.78
n-GeP | 12.88 2.5.107 < 0.01 (19, 20]
2.56-10"7 < 0.01 23]
(5+1)-107 0.73 27
n-Ge:Sb | 1045 1.5-10" < 0.01 18
1.53-1077 < 0.01 23]
1.68-1017 < 0.01 [25]
210" < 0.01 [24]
8.9-10"7 0.46
45107 03 [32]
p-Ge:Ga | 1132 1077 < 0.01 [21]
2107 0.4
1.13-107 < 0.01 [23]
1.86-10"7 < 0.01 26
2.5-10" 0.3 28
1.85-1077 0.35 [29]
(1.8 £0.3)-10T 0.4 [30]
(2.140.3)-10"7 0.6
(1.240.3)-10% 0.9
(7£1) 10T 0.59 4+ 0.02 [27]
(1£0.2)-10"® | 0.6+0.02
(6£1)-10"% | 0.7740.02

ckoit 30He (v = 4 a n-Ge, v, = 6 nna n-Si; v, = 1 qna p-Ge u p-Si); m —
sdbekTrBHAS Macca 3JICKTPOHA (IBIPKU) B OMHOM JOJIHHE.

B monemn [4, 16] Bemmamna W = Wi, ~ 1.64(e?/4mee) (87N, /3)!/3? 0by-
CJIOBJICHA KYJIOHOBCKHMM B3aMMOMICHCTBHEM TOJBKO OJIMKAMIIMX 3apsioB (HOHOB
npumMeceit ¢ koruentparumei (1 + K)N; U 3JeKTPOHOB MPOBOAUMOCTH C KOHIICH-
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tpamueit ne = (1 — K)N,). 3navenue E,, /Wy, = —1.15 HaXomuTCsl COIVIaCOBAHH-
eM 2 ¢ 9KCIepUMEHTa IbHBIMU JaHHBIME [10-15, 18-26] 111 HeKOMIICHCUPOBAHHbIX
kpuctamios: [No(K — 0)]'3ap/v?/3 = 0.1 (cw. tabm. 1, 2). Ecom mpusATS, 9TO
otHomenue E,, /Wy, paBro —1.15 n1a 0 < K < 1, To u3 2 crefyeT 3aBUCUMOCTD
N.(K) nns mepexoia METaJI-A30JIATOP B BUIE (CIUIOIIHASK JIMHUS Ha PHC. 2):

Nag 01 3
2B T (1= K)2h 3)

B monteru [17] Bemmuuna W = Wy = (e2/4v/2ne,0) (1+ K)*/3[N./ (1 - K)]/3
00yc/IOB/IeHa 9KPaHUPOBAHUEM 3JICKTPOHAMH (WM IBIPKaMH) (UIYKTyarmid KOH-
LEHTpPaluy HOHOB mpumeceit. ITosarasi, 4To KpUTHUECKas: HOJIsi 00beMa IOYIpo-
BOJHHKA, COfICpIKallasi SJICKTPOHB M COOTBETCTBYIOLIAs YPOBHIO HX IPOTEKAaHHS,
pasna 0.17, umeem E,, /W, = —0.675v/2. Pacuer N.(K) no monemn [17] ¢ ydaeTom
¢dopmyser 2 mpu W = W mokasas Ha puc. 2 ITPUXOBON JIMHUCH.
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Many-body effects in hopping conduction

M. Pollak
Dept. of Physics UC Riverside, USA

The talk will overview the current understanding of hopping conduction in
the presence of Coulomb interaction. It has been known for three decades that
Coulomb interaction have a profound effect on hopping transport in strongly dis-
ordered semiconductors. The important reason for it is the drastic modification
of the density of states by the interactions. A large number of experiments bear
out a single particle transport theory by Efros and Shklovskii, at least as far as
the functional dependence of the conductivity on temperature is concerning. On
the other hand, it has been somewhat of a mystery why many-body effects (to
be discussed) should be negligible in a strongly interaction system. Relatively re-
cently, carefully done experiments detected substantial quantitative deviation from
the Efros—Shklovskii theory and they were attributed to many-body effects. Differ-
ent types of recent sophisticated computer simulations gave incompatible results.
I shall discuss these theories how experiments relate to them and possible reasons
for disagreements.

Hanoanma3sbl. Hepemennnie npo0iembl
A.f. Bymb

Pusuxo-rexandecknii mHCTUTYT M. A. @. Noddpe PAH, C-Ilerepbypr, Poccust

HanoasmMasamy Ha3BIBaIOT yIJIEpOTHBIC KJIACTEPHI C XapaKTEePHBIMU pa3MepaMu
00J1acTH KOTEPEHTHOTO pacCesiHUsl PEHTIeHOBCKMX Jiydeir meHee 10 HM. Hano-
aJMasbl IPUPOIHOTO NPOUCXOXKACHUS OblIM OOHapyKeHbl B KOCMHUYECKUX OOBEK-
Tax [1, 2], KPUCTA/UATH C TAKMMH XapaKTCPHBIMH pa3Mepamd 00pasyloTcsi Ipu
ompefesieHHbX Mapamerpax cuaresa CVD anMasHbIX 1ieHOK [3, 4], ogHako 6osib-
[IMHCTBO MCCJICAOBAHMI HAlPaBJICHO HA N3y4YCHNE CBONCTB, TAK HA3BIBAEMBIX JICTO-
HaIMOHHBIX HAaHOAJIMAa30B, ITOJTy9aeMbIX HETIOCPEICTBEHHO W3 YIJIEpPOda B3pbIBYa-
THIX BELIECTB MPH JCTOHALMK B 3aMKHYTOM oGbeme [5, 6]. JleTOHaHOHHbIIH MeTOx
611 paspadoran B CCCP, u B HacTosmee BpeMs: IPOU3BOICTBO HAHOATIMA30B 3TUM
MeTonoM B Poccun, Ykpaune u benopyccun ocymecTBiisieTcs B MIPOMBIIUICHHBIX

75



Macmrabax. HecMoTpst Ha OCBOGHHE B TPOW3BOICTBE, PSI MPUHIUIAAIIBHBIX BO-
MPOCOB (PM3NICCKUX W (PU3UKO-XIMIAICCKAX CBOMCTB HAHOAIIMA30B OCTACTCS HESIC-
HBIMI.

B nexkmim OymyT paccMOTPEHBI CIICAYIONIE BOIPOCHL:
— arperaiys aJIMa3HbIX HaHOKJIACTEPOB,
— cTaOWIbHOCTh HAHOAIMA30B,
— WHTEPKAUTMPOBAHUE HAHOATIMA30B METaJLIAMH,
— CTPYKTypHBIE (pa3oBBIC MEPEXOBl HaHOAIMa3—JIyKOBHYHAs (opMa yriepoma—
HaHOTpauT.
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MaruutHblii yriaepon
T.JI. MakapoBa

dusuko-Texunuecknit ”HCTUTYT uM. A. @. Nodpde PAH, C.-Iletepbypr, Poccus

Pombosnprueckas dasa monmmvepnzoBanHoro ¢yiuiepeHa Cgo BemeT ceds Kak
TUIWYHBI (eppOMArHeTHK: MMEETCsI THCTePE3HC B METIISIX HaMArHMYABAHWS: Ha-
ceimenne HamaramdeHHoctH, Touka Kiopu mpm 500 K. ITocne Toro, xak mepBo-
HavyaJlbHbIC pe3y/IbTaThl ObUIM TOBTOPEHBI B HECKOJIbKHX TpYINax, a TaKXke Obl-
JI0 BU3yaJIM3MPOBAHO [BIKEHHME TOMEHHBIX CTCHOK B OECHPUMECHOM 00pasiie Mo-
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JIMMEPU30BAaHHOTO (pyJlepeHa, CTalo OYEBHIHO, YTO (eppOMArHETH3M SIBJISICTCS
CBOICTBOM, MPUCYIIUM CaMOMY YTJICPOIY.

B nmoksane paccMaTpUBAaIOTCSl SKCIIEPUMEHTAIbHBIC (DaKTh, OJyYCHHBIC B Te-
YeHHE TpPeX IMOCJICHHHX JIET, a TaKkKe TeOpeTHIecKoe OOOCHOBAaHHE MarHeTH3Ma
yriepona.

Jlazep Ha cBOOOJHBIX I/IEKTPOHAX H
MEeTPOJIOTHS TMIOBATHBIX MMIYJIbCHBIX IOTOKOB
BY® uznyuenus

C.B.bob6ames

dusuko-Texunuecknit ”HCTUTYT uM. A. @. Nodpde PAH, C.-Iletepbypr, Poccus

IIpuBonATcs omucaHue W HapamMeTpbl HOBOTO HCTOYHMKA WHTCHCHBHBIX HM-
ITyJIbCHBIX TIOTOKOB BaKyyMHOTO YJIbTpadnosieToBoro u3iydeHus. VcTouHMKOM
CITy)KUT J1a3ep Ha CBOOOIHBIX 3JIEKTpoHax, co3manubiii B epmannu (VUV-FEL at
the TESLA facility in Hamburg), mepsasi ogepeib KOTOPOro IPOIeMOHCTPHPOBAIa
ycremnyio paboty B 2002 roay.

PaccmaTpuBaroTcs MeTombl M yCTPOUCTBA 1J1 0OecleueHUs] BHICOKOTOYHBIX U3-
MEpEeHHU apaMeTpoB POTOHHOTO IyuKa. [{J11 aOCOTIOTHEIX U3MEPEHUI NHTEHCHB-
HBIX TTOTOKOB (JOTOHOB B BaKyyMHOH YJIbTPa(prOJICTOBON M MATKOH PEHTTEHOBCKOM
obacTsix criektpa paspaboran B OTU opurnHaIbHBIA ra30BHIi IETEKTOP-MOHHUTOP.
Pabora nmpubopa OasupyeTcs Ha TaHHBIX 1O ()OTOMOHU3ANWH MHEPTHBIX T'a30B IPH
JaBJICHUSIX, KoIja HaOJmofiaeTcs JIMHEHHas 3aBUCHMOCTb BBIXOHA (POTOMHOB IPH
B3aMMOJICHICTBUM MHTECHCUBHBIX IIOTOKaX M3JTy4eHHUs C ra3oM. AOCONIOTHBIE cede-
HUsL (POTOMOHM3ALMU MHEPTHBIX Ta30B (C TOYHOCTHIO +3%) MOJIydYeHbl pH TINA-
TEJIPHOM aHAJIN3€ HAJICKHBIX DKCIICPUMEHTAIBHBIX N3MEPEHUA aOCOMOTHHIX cede-
HHUIA C y4eTOM Hpesiayux pekoMeHnanuy. CyIecTBEHHbIC YTOYHCHHUS BEJIMINH
CEUCHMH B HEKOTOPBIX CIIEKTPAJIbHEIX 00JIACTSX OBbLIIM MOTyYEHBI ITyTEM CPaBHEHHUS
CeueHMI MOHM3AlMK MHEPTHBIX ra30B (oToHaMu U 3s1eKTpoHamu. [1pubop asiser-
csl IEPBUYHBIM CTaHAAPTOM, NPAKTUIECKH IPO3PAYHBIM JJIsl U3JIy4YeHUs U HE TOf-
BEPraionmMcsi CO BpEMEHEM IETPajialliil IIPH BBICOKUX paJWalliOHHBIX Harpyskax
B OTJIMYHEC OT BTOPUYHBIX CTaHIAPTOB, MCIOIb3YEMBIM B METPOJIOTHH paqraIfioH-
HBIX NMTOTOKOB. C MOMOIIBIO JETEKTOPa-MOHUTOPA IPOBEICHBI IIEPBBHIC N3MEPEHHUS
MHTEHCUBHOCTH M BPEMEHHOH CTPYKTYpBl UMITYJIbCHOTO U3iIydeHHs BY® maszepa
Ha CBOOOIHBIX 2JIEKTPOHAX C MHUKOBON MoIHOCThIO bosiee 100 MBT u nymresnpHO-
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cTbio uMmysbea 0.1 mc.

OO6cy>xaloTesl HOBBIE HAIPAaBJICHHS UCCIICOBAaHUI B 001acTH (U3UKU B3aUMO-
JeCTBHSI MHTEHCUBHBIX ITOTOKOB BaKYyMHOTO Y/JBTPa(UOJIETOBOTO M PEHTICHOB-
CKOT'O M3JTy9eHUs C BemecTBOM. [IepCIIeKTHBEI TaKMX MCCIICMOBAHMUI CBSI3BIBAIOT C
IIPOTPECCOM B YCKOPUTEIJIBHOIN TEXHHUKE M CO3TAHMUEM JIa3epOB HA CBOOOTHBIX JJICK-
TPOHAX, CIIOCOOHEIX T'€HECPHPOBATh MOTOKH (POTOHOB B PEHTTCHOBCKOI OOJIacTH
CIIEKTPa BBICOKO} MHTEHCUBHOCTH.

IIym 1/f B momynpoBoaHuKax
M MOJYNPOBOJIHUKOBBIX MPHOOpax

M. E. JleBunmreitn
Pusuxo-rexandecknii mHCTUTYT M. A. @. Noddpe PAH, C-Ilerepbypr, Poccust

3HaveHne 000 M3MepsieMOil BEMIUHB (BIYKTYyUpyeT («ImymuT») Jbo B
ciiTy (pU3UYECKON TPUPOIBI STOM BEJIMYMHEL, JTHOO B CHJIy HEHM3OCKHBIX MOTrpell-
HOCTEH N3MEpEeHUS.

B MexaHmdYecknx cucTeMaxX aMIUTUTYa M3y4aeMbIX IIYMOB JICKUT B Mpeeliax
or 1078 cM (dusnonoru yBepsioT, YTO TakoBa aMILTMTYIA KoJleGaHUil MeMOpaHbI
BHYTPEHHETO yXa, COOTBETCTBYIONIAs MOPOTry cibimuMocTH) 10 ~ 101 em (poryk-
Tyally JuaMeTpa COJIHIIA, pa3Mep mpoTybepanies). YacTtora KojaeOaHMil JICKAT B
npenenax ot 1074 go ~ 107 I',

B «anexTpudeckux» cucTeMax OTHOCHUTEJIbHAA aMIUIMTYHA CJIyYaiHbIX Koseba-
Huit Toka (Hanpsokenust) 01/ xonebiercs B npenenax ot 107! (aromubie cran-
mapThl 9acToTH) 10 1 («IuHAMUYecKumit Xaocy ). OOBMHO WU3yYaeMblil 4aCTOTHBIN
IMana30H JeKUT B mpefenax oT 1074 o ~ 10! I'n,

OpHoil M3 CaMbIX Ba)XKHBIX XapaKTEPUCTUK LIyMa SBIACTCA CHEKMPAAbHAA
naomnocmy wiyma. Ecnm, HanpuMep, U3MepsioTcss (GIIyKTyaruy HanpsbKECHHST Ha
obpastie 0V, crieKTpasbHast IIOTHOCTH (GuIyKTyanuit Hanpsoxenust S, (f) (usmeps-
emcsa B V?/T1) moka3biBaeT, Kakasi IyMOBasi MOIIHOCTb COCPENOTOYEHa B TI0JI0Ce
1 I'n Ha maHHO# YacToTe f.

Puc. 1 nokasplBaeT YaCTOTHYIO 3aBUCHMOCTD CIICKTPAIbHON TUTIOTHOCTH LIyMa
OJIs ABYX IPEIesIbHBIX CIIy4YaeB: My3bIKQJIIBHOTO 3BYKa («IIYyM» COCPEIOTOYCH Ha
9YacTOTe 3ByKa M HECKOJIBKUX FapMOHMKAxX) U «Oesoro» myma — S, HE 3aBHCUT
OT YacTOTHl B OYEHb LIMPOKUX IIpefesiax.

B coTHAX OOBEKTOB CaMOro pasjIMYHOrO MPOUCXOKACHUS M NPHUPONBI CIIEK-
TpasibHasi IJIOTHOCTb IIyMa B O6JACTH HU3KUX ¥acToT (o6bMHO oT 1074 < f <
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Puc. 1. [Tpumep 9acTOTHOI 3aBICHMOCTH CIEKTPAIBHOMN TUIOTHOCTH Inyma Tuma 1/ f. (lym
B GaN/AlGaN HFETs, BblpamieHHbIX Ha CanpupOBbIX M KapOWI-KPEMHHEBHIX ITOJIOXKKAX.)
ITyHKTHpOM MOKa3aHa 3aBUCHMOCTD 1/ f.

10*—10° ') umeer Bua 1/f: S, o< 1/f (Puc. 1).

Jlajiexo He MOJIHBIA CIIMCOK TaKMX 00BEKTOB BKJIIOYAET, HAIIPHMED,
® TIOJTyIIPOBOIHUKOBBIC CONPOTHBJICHHSA BCEX THIIOB: - U P-THUIIOB, BHIPO)KIACHHBIC
U He BBIPOXKICHHBIE, COOCTBEHHbIC M NPUMECHbIC, KPUCTAIIMYECKHE, aMOp(QHbIe,
MIOJIMKPUCTAJUTMYECKAE, U T.I.;
® «COIIPOTHBJICHUSI» HA OCHOBE JIIOOBIX METAJUIOB U CIUIABOB;
® YaCTOTHBIE, (pa30BbIC U aMIUIUTYIHBIC IIYMBI BCEX IOJYIPOBOIHHUKOBBIX U IpaK-
THUYECKH BCEX APYTHX 3JICKTPOHHBIX I'€HEpaToOpOB, BKJIIOYAas aTOMHBIE CTaHIAPTHI
YacToTel, quoabl I'anHa, JITTJI, Bce THUITBI MOJIEBBIX U OUIONSPHBIX TPaH3UCTOPOB,
J1a3ephl, CBETOOVONBL, U T.1.;
® HaMarHW9IEHHOCTb BCEX TUMOB (heppo- M aHTU(PEPPOMArHETHKOB;
® IIOTCHIMAJIBl OMOJIOTMYECKHUX KIICTOK;
e KOHLICHTpAIWs MHCYJIMHA B KPOBH IpHU HecTabmibHOM nuabete (Puc. 2);
e KOJIMYCCTBO aBTOMAIIMH Ha aBTOCTPaJe B CAMHHIYY BpeMeHH (Tpaduk);
© MaJIOaMIUTUTYIHBIC OCLHIULISAIAN 3EMHOM KOPBI;
® IIPO3PavHOCTh aTMOC(EPH;
® YPOBEHb [aBOAKOBOrO MogbeMa Bombl B peke Huit (mo manabM 32 ~ 2800 jet);
e My3bIKa (B OCOOCHHOCTH, KJIaCCHYECKasi), U T.A., U T.O., U T.0., © T.O., ¥ T.I.

fIBieHMe TakoW OOMTHOCTH IMPHUBJICKACT K ceOe MOBHIIICHHOC BHIMAHWE CO CTO-
POHBI TaTOJIOTOB, JIIOOUTEJICH PEIIaTh «MAPOBBIE TIPOOJIEMBI» U TIPOCTO CyMacIIe/-
mux. [ToaTroMy «KOHLIEHTpanus» MaTOJOTMYECKHX TEOPHH, IMOAXONOB, MIIOTE3 B
3TON 00JIaCTH, XOTA U YMEHBIIAETCS CO BPEMEHEM, BCE K€ JIOCTaTOYHA BEJIMKa U
noceuyac.

79



Period (days)
51000 100 10

T T

300+

”n
T =

200

0 " ' v
0 50 100 150
Units per day

Least squares fitted 1/f

NI N | P | PR

1073 1072 1071
Frequency, f (cycle/day)

Variance, V (units per day)2 per cycle per day

Puc. 2. Ha BcraBke mokasaHa rEcTorpamMma pacrpeesieHIst KOJIMYeCTBa HHCYIIMHA, BBOIIMO-
IO ©KEITHEBHO MAIMEHTY, CTPAalomeMy HecTaOWIbHBIM nrabetom. (Bpems Habmonennss —
8 ner, Bcero 3072 mo3). Ha rpaduke mokasaHO pasJiodKeHHE 9TOM CIIyvaitHOi (yHKINK B
psix @ypwe. CrutonHas JMHUS — 3aBUCHMOCTD 1/ f.

ITpaBna cocToWT B TOM, YTO MBI HE 3HaeM MPHUPOIH Imyma 1/f B momasiis-
fomeM OOJIBIMMHCTBE OOBEKTOB, Iie OH HaOmomaeTcs. OOHAKO, B T€X HEMHOTIHMX
CJTyYasiX, Koraa MpUpofa 3TOro OIyMa YCTaHOBJICHA, HAaIpHMep, B (eppoMarHeTu-
KaX, MHOTHX METaJUIMYECKUX U MOJYIPOBOTHUKOBBIX O0BEKTaX M MpHOOpax, STOT
THII IIyMa BO3HHKACT BCJICACTBUE CYICPIO3UIMH (CYMMHIPOBAHHMS) IIyMa OT OT-
HEJIBHBIX «(ITyKTYyaTOPOB» IPHPOAa KOTOPBIX, KaK MPaBHJIO, sICHA.

WHTerpupoBanue ceKTpasIbHOM IVIOTHOCTH LIyMa B IIOJIOCE YacTOT, I7ie IpeBa-
ympyet 1/f 1mym, qaer MOIIHOCTB, COCPENOTOYEHHYIO B 3TOM THIe myma. OreH-
KM TIOKa3bIBAIOT, YTO 3Ta MOIIHOCTb JIGKMT B mpeneiax ot 10~'* (mms mambo-
Jiee CTabUIIbHBIX OOBEKTOB, HANPUMEpP, ATOMHBIX CTAHIAPTOB 4acToThl) 10 1077
(m7IsT OYeHBb «IIYMHBIX» OOBEKTOB) OT MOLIHOCTH, IOTPEOJISIEMOil OT MCTOYHHKA.
HecMoTpst Ha KaxyIylocsi HIYTOXHOCTD 3¢derra, mym 1/f usydaercs BOT yxe
mouty 80 JIET, ¥ YHCIIO UCCIICIOBATENICH, BOBJICYCHHBIX B COOTBETCTBYIOIHE Pado-
TBI, MOHOTOHHO BO3PaCTaeT.

C TOYKHM 3peHHsT TEeMaTHUKU HACTOSIIIEH MKOMEl myM 1/ f Hambosee uHTEpEeceH
TEM, YTO OH OYCHDb YaCTO XapaKTEPHU3yeT YPOBEHb Pa3syHopsIOYCHHOCTH MOTYIIPO-
BOIHMKA WM MeTasuta. [Ipn 3ToM mymoBble H3MepeHus OaloT BO3MOKHOCTb OOHa-
py’kuBaTh Ae(peKTHOCTb MaTepHuajla C TaKOi 4yBCTBUTEIBLHOCTBIO, KOTOpas OKa3bl-
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BaeTCH HEIOCTYITHOM HU IJISL DJICKTPUUYECKUX, HA IUI ONITHYECKUX MeTonoB. B Si,
HampuMep, YPOBeHb mryma 1/ f MOKeT U3MEHAThCsT Ha 5—6 HOPSIIKOB MPH MIPAKTH-
YeCKM HEM3MCHHBIX 3HAUCHUSX TOOBIKHOCTH M KOHIICHTPAIHN.

®usuveckast npupona 1/f myma uMeeT MHOTO OOMIEr0 ¢ TaKMMH SIBJICHUSIME
KaK 2JIEKTPOMMIpallvsl, BHyTPEHHEE TPEHHUE, Aerpajialys.

Yposens mryma 1/ f onpenensier mpenebHyI0 0OHAPYKUTESIBHYIO CIIOCOOHOCTD
MIPAKTUYECKH BCEX THUIOB ONTO3JIEKTPOHHBIX MPHOOPOB U TNPEAEIbHYIO YyBCTBU-
TEJIbHOCTH IIMPOKOIOJIOCHBIX HAJIOTOBBIX CXeM. BEICOKasi 1yBCTBHUTEIBHOCTh MHO-
[la IaeT BO3MOXKHOCTH 110 YPOBHIO Imyma 1/f Ha ymo6oil cTammu W3rOTOBJICHHUS
prOOPOB CYANUTh O X Oymymiell HaleKHOCTH W JOJTOBEYHOCTH.

OnHako, ¢ MPaKTUYECKON TOYKU 3peHus, yM 1/ f BaxKeH, Pexk/e BCEro, moTo-
My, YTO IMEHHO OH OIIpEMe/IACT B MOAABJIAIONIEM OOJIBIIMHCTBE CJIy4aeB YPOBEHb
(a30oBeIX U YacTOTHBHIX mIyMoB Bcex CBY u ontuyeckux reneparopos. Huskoya-
CTOTHBIE (IYKTyallii aKTHBHOTO 3JIEMEHTa reHepaTopa (I0JIeBOro Wt OUITOIIsIp-
Horo Tpausucropa, JIIJI, nuona Ilortky, nuona 'anHa, u T.J.) mpeoOpasyoTcst
B IIyM BOJIM3W HECYIle# 4acToTH reHeparopa (convert up). Yem Bbime ypoBEHbD
myma 1/f, Tem GoJsiee MUPOKYIO MOJNOCY YaCTOT NMPUXOAUTCS OTBONUTH HA OIUH
CBA3HOI KaHaJlL

Kak ymomuHasocs Bbllie, B TeX CJTy4asx, KOraa mpupoja myma 1/ f ycranosie-
Ha, 9TOT THII IIyMa BO3HHUKAET BCJICACTBHE CYMEPIIO3UIUK (CYMMHUPOBAHUsI) [IyMa
OT OTHEJIBHBIX «(IyKTYaTOpOBY.

B ciydae, ecom cimydaiiHEI Tporiecc XapaKTepru3yeTcsl OMHOM IMOCTOSTHHOI Bpe-
MEHH, T, (3JIEMEHTApHBIA (IIYKTyaTop), CIEKTpasibHast IIOTHOCTh ITyMa S HMeeT
BUJ Tak HasbiBaeMoro «JlopeHumana»: S o - Ha uacrorax, cy-

T _ T
I+(wT)? = 1+Q2nfT
[IECTBEHHO MEHbINMX, 4eM fo = 1/7, S He 3aBucur ot wacrotsl [pu fo > 1/7,
S ~1/£2.

Hawnbonee mpocToil mpuMmep Takoro pofa LIyMa B MOJIYNPOBOOHUKAX — TIeHe-
parmoHHO-peKoMOnHanoHHb (['P) Imym OT JIoOKaIbHOTO YPOBHSI B 3aIlpeIICHHOI
3oHe mouynpoBonHuka (Puc. 3a). Cpeonsisi KOHIEHTpaIMs CBOOOIHBIX HOCHUTEINEH
(9JIEKTPOHOB), «IIOCTaBJISIeMasi» B 30HY IPOBOIUMOCTH YPOBHEM, OIPEIEIISIeTCSI
KOHIICHTpALMell YPOBHS, MOJIOKeHNeM ypoBHSI Pepmu u Temmeparypoit. OnHako,
B IEHCTBUTEILHOCTH, 3Ta KOHIIEHTpaLys (GPIyKTyHpyeT, U KaK CJIeICTBUE, KOHLIEH-
Tpalusi HOCUTENICH B 30HE MOXKET OBITh M MEHbIIE, YeM CPeIHss ([IPOBOIMMOCTb
o0pa3ia MOHWKEHa), U OOoJIbIlle, YeM CpenHsis (IIPOBOAMMOCTD MOoBHIIIeHa). [TocTo-
SIHHasi BPEMCHM OOMEHa HOCHTEJISIMH MEXKIY YPOBHEM U 30HOM, T, ONpPENessieTcs
KOHIICHTPALMell HOCUTEJICH B 30HE IPOBOAMMOCTH, CEUCHHEM 3aXBaTa ypPOBHS H
Temmepatypoil. Hccrenyst TemmeparypHyio 3aBucumocts Imyma (Puc. 36), Mox-
HO ONpPENeIUTb SHEPIuio aKTHBALMKM YPOBHS, CEUCHUE 3aXBaTa U KOHLIEHTPALIO
LEHTPOB (LIyMOBasi CIEKTPOCKOIIHS ).
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Puc. 3. a) Konrenrpanust cBOGOIHBIX HOCHTEIEH (IJIEKTPOHOB ), TIOCTABJIsIEMasi B 30HY IIpO-
BOIMMOCTU yYPOBHEM B 3allpeIleHHOH 30HE, QUIyKTyHpyeT ¢ IOCTOSHHOH BpemeHH 7. Kak
CIIefCTBHUE, (PIIyKTYHpyeT COIpPOTHUBJICHHE 00pasIa.

6) CrekTpsl TOKOBBIX HIyMOB oOpasua n-GaAs mpu temmepatype 1I' = 241 K (kpuBas 1)
n 293 K (xpuBas 2). IIITpuXOBbIC JIMHAM COOTBETCTBYIOT KiaccuyeckuM JIopeHImaHaM:
IMocrosiHHas BpeMenu T = 1/27 fo magaeT ¢ pocTOM TeMIepaTyphl.

Cyneprnosuiysi TECHO PacroyioKeHHbIX JIOpeHIMaHoB (paclpeIe/icHHbIX ¢ Hafl-
JICKAIMM CTATUCTHIECKAM BECOM) MOXKeT o0ycioButh ImyMm tuma 1/f (Puc. 4).
JleiicTBUTEIPHO, MHTETPUPOBAHKE B IIMPOKOU IOJI0OCE 3HAYCHUH T C (yHKIUEH

pacnpeneseHus p(7):
dr
/1+ ZM)
0

npu p(7) ~ 1/7 naer 1/f nrym Bo BceM IMamnasoHe 4acTOT.

Pasymeercs, misi m000i peasbHON CHCTEMBI HET HYXIBl B MHTETPUPOBAHUHI
OT Hyns 10 OeCKOHEYHOCTH. J|0CTaTOYHO MHTErpUpOBaTh OT YaCTOT MHOT'O HIKE,
4eM HIDKHHUH mpefest Habumonaemoro myma 1/ f (06BMHO 3TOT MpesiesT COCTABIISIET
10110 I'n, B penxux ciyuasx ~ 1073 I'n, B ynukambuex — 1072 '), 1o va-
CTOT, MPEBHIIANINX BepXHIOW rpanuiy 1/ f nryma (Puc. 4). O6bI4HO 3Ta rpaHuna
cocrasysier 10°—10° T, Opnaxo, HaiiTH B peaJIbHOM OOBEKTE HUCTOYHHK (IIyKTya-
A, 00eCTIeunBAIOIINI TOCTATOYHO «IUIOTHOE» pacIpeniesicHue (IIyKTyaToOpoB CO
3HAUYCHHUSIMH T, MCHSIIOIINMUCS B mpeneiax 5—10 mopsimkoB, Kak MpaBWIlo, 3ajiada
HeTpuBHajibHas. COOCTBEHHO, B 9TOM U COCTOUT, Kak NpaBIJIO, peajibHasd, a He
MapaHoMIabHas 3arafaka 1/ f myma.
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Puc. 4. CyHepHOSI/II_[I/Iﬂ TECHO PACIIOJIOKCHHBIX .HOpeHL[I/IaHOB, pacrpee/ICHHbIX C HaAJICKa-
M CTaTUCTUYCCKHUM BCCOM, MOXKET 06yCJIOBI/ITI) oIym Tula 1/f

Hexotopast «monckaska» cogepxurcs B Buie (yHKIMH pactpenesieHAs p(7).
ITycTb, Hampumep, peub UACT O (GUIYKTyaIUsaX MPOBOIMMOCTH B MOJIYIPOBOIHHKE
mwm Metajute. [IoHATHO, 9YTO HCTOYHMKOM IyMa MOTYT CITYKUTb (UIyKTYaIllH I10-
ABIDKHOCTH W/WM (IIyKTyalmu dicia Hocureseil. IIpenmomoxum, 9To s Toro,
9TOOBl HOCHTEJIb HA BpeMsl «BHIOBUT» M3 IPOBOAMMOCTH: 3aXBaTHJICSl Ha ICHTP B
obbeMe, Ha IOBEPXHOCTH, B IIPUJICTAIONIEM CJIOE OKUCIIA, U T.A., OH JIOIKEH IPEosIo-
JIeTb SHEPreTUIeCKuil Oaprep ¢ 3Hepruel € > k7. Hocurens aTakyeT 3TOT 6apbep
¢ vactotoil fy = 1/7p. XapakTepHas NOCTOSIHHast BpeMeHH IPEOJOJIEHHs] TaKOTo
Gaprepa 7 = 719 exp(e/kT). Xapakreprast BeposiTHOCTh p(7) ~ exp(—e/kT). Kak
BHJIHO, B 9TOM ciydae p(7) ~ 1/7. Ecin B MaTepuane numeercs «Habop» Oapbe-
POB C OJIM3KO PacIOJIONKEHHBIMI SHEPTHAMH €, BOSHUKHET IyM Tuma 1/ f (Momerns
P. Dutta and P. M. Horn, Rev. Modern Phys. 53, 497-516, (1981)). T.0., monckaska
COCTOHUT B TOM , YTOOBI HCKAaTh SKCHOHEHIMAJIBHO IMHPOKOE pacHpefiesiecHHe BO3-
MOKHBIX TTOCTOSIHHBIX BpeMeHH 7. 11 huIyKTyamuili IpOBOIMMOCTH CO CIEKTPOM
1/f B moMynpoBONHMKAX W METAa/UIaX W3BECTHBI TpH (r3uuecKknx mexanmsma 1/ f
ryma.

Bo muOrmx MOII npubopax, BKJIIOYasi U CaMBIil BAXKHBIN IIPAOOP COBPEMEHHOM
anextponuku — MOSFET, npoBonuMocTb QIyKTyupyeT 3a cdeT TYHHEJIMPOBaHUS
U TIOCJICAYIONIEro 3axBaTa HOCHUTEJICH Ha JIOBYIIKH, PACIOJIOKCHHBIC B OKHCIe. B
3TOM CJTy4ae 3KCIOHEHIUAIBHO IIMPOKOE paclpefceHUue MOCTOSHHBIX BPEMEHH T
BO3HHKACT 33 CUET SKCHOHCHIMAIBHOTO YMCHBIICHNS BEPOSTHOCTH TYHHEIIMPOBA-
HHS C YBEJIMUYCHIEM PACCTOSHUS OT T'PaHUIIBl pasfera MOTyHpPOBOJHIK-OKICEI 0
soBymkn (Monens A.L.Mc Whorter, in: Semiconductor Surface Physics (ed. by
R.H. Kingston, Univ. Pennsylvania Press, Philadelphia) p. 207 (1957)).

B MeTayutax ¥ CIUTBHO JICTHPOBAHHBIX ITOJIYTIPOBOIHUKAX JOBOJIBHO 9acTO ITyM
1/f Bo3HHKaeT 3a cueT (IyKTyaluil HONBIXHOCTH, 00YCJIOBJICHHBIX M3MEHCHHEM
3a CYeT TeMIepaTypHbIX (QUIyKTyaluil MpOCTPAHCTBEHHOTIO W/WIIH 3apsioBOroO CO-
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cTostHUA Ae(PeKToB. DKCIIOHCHINAIPHO IMHUPOKOE PacIpeiesIcHIE MOCTOSIHHBIX Bpe-
MEHH T 00YCJIOBJINBACTCS] HAJIIYMEM CIIEKTPa TS(EKTOB C Pa3IMIHBIMH SHEPTUSIMHA
axtmBamn (Monenb 111 M. Koran u K. Haraes, ®TT, 24, 33813388 (1982)).

B psime momynpoBomuukoB (GaAs, Si Ipu MOHWKCHHBIX TEMIICpaTypax, BO3-
MoxkHO, GaN) mym 1/ 00ycioBiieH QUIyKTyarmsiMi 3aceJIEHHOCTH YpPOBHEH, 00-
Pas3yoIUX XBOCT IJIOTHOCTH COCTOSIHMI BOJIN3HM I'PaHULl 30HbI IPOBOIMMOCTH 1 Ba-
JICHTHOY 30HBL. DKCIIOHECHIIMAILHO IIPOKOE PACHPEesICHAE TIOCTOSTHHBIX BPEMEHH
T 00yCJIOBJICHO MHOTO()OHOHHBIM MEXaHM3MOM 3aXBaTa HOCHTEJICH Ha ypOBHH B
xBocTax wiotHocTH coctosimii (H. B. [IpsikonoBa u M. E. Jlesunmureitn, ®TII, 23,
283-291, (1989)).

Jaxe B TaKUX OTHOCUTEIBHO IPOCTHIX OOBEKTaX Kak 3JIEKTPOHHBIC MPUOOPHI
HAWTH MCTOYHHK miyMa 1/ f, ompenenuTs ero mpupomy u MpOCIEAUTDb CBSI3b 3TOrO
SIBJICHHS C OIPYyruMH d(deKTamu, Kak IMpaBuiIo, OBIBACT OYCHb HETPOCTO.

B mpuponHBIX 1, B OCOOCHHOCTH, OMOJIOTMYECKUX OOBEKTaX, MPUpOAa IIymMa
1/ f, Kax mpaBIJIO, COBEPIICHHO HEMOCTMkKIMA. [1e «crpsiTaHbl» HAGOPBI MOCTOSIH-
HBIX BPEMEHH T, 03BOJIoIIe peke Husm «moMHUTB», KakoB OBUT yPOBEHb [TABOMIKA
2800 ner Hasan? YUrto vesmoBedecKuii OpraHn3M MOKET IOMHATB O TOM, Kakast 032
uHCYy/IMHA ObUTa BBenieHa 8 jiet Hasan (puc. 2)? IlodeMy CHeKTpasibHOE Pa3jioKEHUe
«bpannenbypreroro Konmepra» Baxa maer crexrp 1/ f?

Mexny Tem, ceifuac Kaxkuas TPeThbs CTaThbsi 0 IIyme 1/ f MOCBAIIEHA MCCIIENo-
BaHUAM 3TOro (peHOMEHa B Omosoruu M Memuuuee. Jlaxke He NMOHMMAs TIPUPOMIBI
SIBJICHUSI, M3 SMITMPUYCCKOTO aHayn3a myMa 1/f okasplBaeTCs BOSMOXKHBIM yCTa-
HOBUTH MHTEPECHBIC W TTOJIC3HBIC 3aKOHOMEPHOCTHL.

OTnevataHo ¢ roTOBOro opuruHajg-mMakera B Tunorpaduu [TUAP PAH
188350, I'atunna Jlennnrpanckoit 061, OpiioBa pora
3ak. 65, Tup. 170, ya.-u3n. . 5,25, 20.02.2004 r.



