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Abstract

We formulate the equations of equilibrium of static neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. We develop the model

fulfilling global and not local charge neutrality. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein-Maxwell-Thomas-Fermi equations along with the constancy of

the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. From the microphysical point of view, the weak interactions are accounted for by requesting the β stability of the

system, and the strong interactions by using the σ-ω-ρ nuclear model, where σ, ω and ρ are the mediator massive vector mesons. The equations are solved numerically in the case of zero temperatures and for

selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness

∼ ~/(mec) ∼ 102
~/(mπc) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼ mπc2/e. The constancy of the Klein potentials in the transition

from the core to the crust, impose the presence of an overcritical electric field ∼ (mπ/me)
2Ec, the critical field being Ec = m2

ec3/(e~). The electron chemical potential and the density decrease, in the boundary interface,

until values µcrust
e < µcore

e and ρcrust < ρcore. For each central density, an entire family of core-crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The

configuration with ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3 separates neutron stars with and without inner crust. The equilibrium configurations of slowly rotating neutron stars are obtained by using the Hartle formalism in the

case of the EMTF equations indicated above. We integrate these equations of equilibrium for different central densities ρc and circular angular velocities Ω and compute the mass M, polar Rp and equatorial Req radii,

angular momentum J, eccentricity ǫ, moment of inertia I, as well as quadrupole moment Q of the configurations. Both the Keplerian mass-shedding limit and the axisymmetric secular instability are used to construct

the new mass-radius relation. We compute the maximum and minimum masses and rotation frequencies of neutron stars. We compare and contrast our globally neutral solutions with the locally neutral obtained from

the traditional Tolman-Oppenheimer-Volkoff treatment.

Thermodynamical Equilibrium, Charge
Neutrality and Boundary Conditions

For a Fermionic self-gravitating system in GR, the thermodynamical
equilibrium is ensured by the constancy both of the temperature
(here T = 0) and the chemical potential (Klein Potential)
◮ gravitational field → µK.P. =

√
g00µ = const 1

◮ gravitational and electric field + strong interactions →
µ
(i)
K.P. =

√
g00(µi + qiAαuα + S. I.) = const 2

It has been shown3 that
◮ a self-gravitating system of degenerate neutrons, protons and

electrons in β-equilibrium fulfill Global Charge Neutrality and NOT
Local Charge Neutrality, the latter violating the thermodynamical
equilibrium conditions

◮ the mass-difference between electrons and protons induces the
presence of an electric field → the core is charged

◮ to solve such a system, the Tolman-Oppheneimer-Volkoff (TOV)
equations must be replaced by the general relativistic
Thomas-Fermi equations, coupled with the Einstein-Maxwell ones
(EMTF equations)

To join the thermodynamical equilibrium we have to replace the
TOV-like solution with a new configuration, where core and crust
are separated by a transition layer, allowing the constancy of the
Klein Potentials:

EMTF System of Equations4

e−λ(r)
(

1
r2 − λ′

r

)

− 1
r2 = −8πGT 0

0

e−λ(r)
(

1
r2 +

1
r

dν
dr

)

− 1
r2 = −8πGT 1

1















TOV − like eqs.

d2V
dr2 +

dV
dr

[

2
r
− 1

2

(

dν
dr

+
dλ
dr

)]

= −eλeJch
0

}

Electric field

d2σ

dr2 +
dσ
dr

[

2
r
+

1
2

(

dν
dr

− dλ
dr

)]

= eλ [∂σU(σ) + gsns]

d2ω

dr2 +
dω
dr

[

2
r
− 1

2

(

dν
dr

+
dλ
dr

)]

= −eλ
[

gωJω
0 − m2

ωω
]

d2ρ

dr2 +
dρ
dr

[

2
r
− 1

2

(

dν
dr

+
dλ
dr

)]

= −eλ
[

gρJ
ρ
0 − m2

ρρ
]



































Strong Ints.

Ee = eν/2µe − eV = constant

Ep = eν/2µp + Vp = constant

En = eν/2µn + Vn = constant
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Klein Potentials
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Figure: Total mass-radius relation for four nuclear models. In the crust we have
used the Baym-Pethick-Sutherland (BPS) equation of state.
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Figure: Left: upper panel: electric field in the transition layer in units of the
critical field for vacuum polarization Ec=m2

ec3/(e~) ∼ 1.32 × 1016V/cm; lower panel:
particle density profiles in the boundary interface in units of cm−3. We use the NL3
equation of state for the nuclear interactions. λσ=~/(mσc)∼ 0.4 fm denotes the
sigma-meson Compton wavelength. The density at the edge of the crust in this
example is ρcrust=ρdrip and gρ 6= 0. Right: the same for gρ=0.

◮ Left region: mean-field-like region → all the fields vary slowly with
length scale ∼ λe (bump due to Coulomb repulsion)

◮ Central region: strongly interacting region → ∼ λπ (nn and np

decreasing due to surface tension plus skin effect).
◮ Right region: Thomas-Fermi-like region → ∼ λe (total screening

of the core due to the electronic layer).

Hartle5,6 Slow Rotation Approximation and
Thermodynamical Equilibrium

◮ Solution obtained thorough a perturbative method, expanding the
metric functions up to the second order in the angular velocity Ω.

◮ The structure of compact objects can be approximately described
by M, J and Q.

◮ Slow rotation regime → perturbations owing to the rotation < the
known non-rotating geometry.

◮ Interior solution derived by solving numerically a system of
ordinary differential equations for the perturbation functions.

◮ The exterior solution for the vacuum surrounding the star, can be
written analytically in terms of M, J, and Q.

As in the static case, the Klein Potentials have the form
1
ut [µi + (qiAα + gωωα + gρτ3,iρα)uα] = constant

but:
◮ Static Case: only the time components of the vector fields, A0, ω0,
ρ0 are present.

◮ Rotating Case: the fluid inside the star moves with a four-velocity
of a rigid rotating body, uα = (ut , 0, 0, uφ), with

ut = (gtt + 2Ωgtφ + Ω2 gφφ)
−1/2, uφ = Ωut

where φ is the azimuthal angular coordinate with respect to which
the metric is symmetric, namely the metric is independent of φ
(axial symmetry)7.

Instabilities

◮ Secular Axisymmetric Instability → Turning Point Method
[

∂M (ρc, J)
∂ρc

]

J=constant

= 0

◮ Keplerian Mass-Shedding Instability

ΩJ 6=0
K (r ) =

√

M
r3

[

1 − jF1(r ) + j2F2(r ) + qF3(r )
]

where j = J/M2 and q = Q/M3 are the dimensionless angular
momentum and quadrupole moment.

◮ Gravitational Binding Energy → WJ 6=0 < 0

WJ 6=0 = WJ=0 + δW , δW =
J2

R3 −
∫ R

0
4πr2B(r )dr

where WJ=0 = M0 − M0
rest and M0

rest = mbAJ=0, being M0
rest is the

rest-mass of the star, mb is the rest-mass per baryon, and AJ=0 is
the total number of baryons inside the star.

Secular Instability Boundary
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Figure: Left: Global Charge Neutrality. Right: Local Charge Neutrality.

Max and Min Mass and Rotation Frequency
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max (km) 12.66 13.06
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NS Structure8 and Obs. Constraints
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◮ Global Charge Neutrality. Local Charge Neutrality. Dashed lines:Static configurations. Solid
lines: Keplerian sequences.

◮ solid line → upper limit of the surface gravity of XTE J1814-338.
◮ dotted-dashed curve → lower limit to the radius of RX J1856-3754.
◮ dotted curves → 90% confidence level contours of constant R∞ of the neutron star in the

low-mass X-ray binary X7.
◮ any mass-radius relation must have a maximum mass larger than the mass of PSR

J1614-2230, M = 2.01 ± 0.04M⊙.
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