
Modeling of cyclotron lines in the spectra of isolated

neutron stars

M. Garasyov, E. Derishev and Vl. Kocharovsky

Institute of Applied Physics, Nizhny Novgorod, Russia

Physics of Neutron Stars � 2014



Transfer of radiation in atmospheres of compact stars

Strong cyclotron lines, scattering is dominant
over absorption

Qualitatively di�erent behavior of resonant
photons in the cyclotron lines and in the
atomic lines

Vacuum polarization could be important

Strong radiation pressure could create stellar
wind
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Radiation driven winds in the atmospheres of compact stars

The opacity of magnetized plasma is very high near the frequencies

ω = nωB , where ωB = eB/(mc):

σcyc
σT
∼ 1

αβT

mc2

~ωB
≈ 4 · 105 1√

T100 eVB12

Strong radiation force in the cyclotron line could accelerate plasma

and form an out�ow from the atmosphere, i.e., a cyclotron wind.

Mitrofanov, Pavlov, 1981

Sturner, Dermer, 1994

Zheleznyakov, Koryagin, Serber, 2001
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Approximations

Rari�ed plasma: |nO,X − 1| � 1.

All electrons on the ground Landau level.

Isothermal atmosphere with constant temperature T , which

corresponds to the Maxwellian distribution of electrons over

longitudinal (with respect to the magnetic �eld) velocities

f (β) =

(
c2

2πmT

)1/2

exp

(
− β2

2β2T

)
, (1)

where β = v/c is the dimensionless longitudinal velocity,

βT = (T/(mc2))1/2 the thermal velocity.

Plane-parallel atmosphere:

H =
2kT

mpg
� R.
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Trapping of resonant photons in the line core
Resonance condition. Nonrelativistic

approximation. Quasicoherent scattering

(Zheleznykov, Litvinchuk, 1987)

ω(1− β cos θ) = ωB .

β∗ = (ω − ωB)/(ω cos θ)

(ω, θ)⇐⇒ (
ω − ωB
ω cos θ

, θ).

Mildly relativistic approximation

ω(1− β cos θ +
β2

2
) = ωB .

Two resonance velocities:

β1,2 = cos θ ±
√

cos2 θ − 2

(
1− ωB

ω

)
.



Semiin�nite atmosphere with absorption

Relative fraction η of photons emitted at

optical depth τ in the emergent spectra. Solid

line � with redistirbution e�ects; dashed ��

without (quasicoherent scattering).

Atmospheric parameters: T = 50 eV,

γ/ωB = 10
−6, Pabs/Psc(τ = 1) = 10

−6.
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Semiin�nite atmosphere with absorption

Quasicoherent approximation works well only to the left from the solid line.

Redistribution e�ects become important in the right zone. Dots represent

some known white dwarfs and neutron stars.
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Conclusions related to the spectral redistribution

Statistically, the redistribution of photons out of the cyclotron line results

in a boosted probability of their escape from a large optical depth. As our

simulations show, the emerging radiation is gathered over a large interval of

optical depths, spanning one or two orders of magnitude. Potentially, this

causes all sorts of inhomogeneities to show up in the resulting spectrum in

a more pronounced way, and the radiation transfer equation in these

situations should be solved over a range of optical depths su�ciently large

to capture the origin of the major part of outgoing photons.
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Impact of di�erent physical e�ects on radiation transfer
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Transfer equations. General view

The intensity vector J:

J =
1

2


I + Q

I − Q

2U

2V

 . (2)

The evolution of intensity vector is described by transfer equations:

dJ

ds
= −M · J+ Sem + Ssc, (3)

where s is the coordinate along the ray. Source functions Sem and Ssc
describe emission of plasma and rescattering respectively. M is the transfer

matrix, which describes absorption, scattering and evolution of polarization.
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Example spectra of emergent radiation

Neutron star, fully ionized hydrogen atmosphere, top - B = 10
11 G , T = 1000 eV

bottom - B = 10
12 G, T = 5000 eV



Radiation diskons

The model of radiation diskon
[Zheleznyakov, Bespalov 1990]

Hot magnetic white dwarf or
neutron star

Cyclotron wind from the
photosphere due to cyclotron
radiation pressure

Extended plasma envelope

Polar jets along the magnetic axis

Observational appearence:

Wide and deep depression band in spectra

Bipolar plasma outfow

Quasiperiodic oscillations of radiation �ux
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Cyclotron wind in the atmospheres of white dwarfs

Pure hydrogen atmosphere.

M = 0.8M�, R ≈ 109 cm.

Vacuum polarization and

redistiribution of radiation

Ṁ = 4πR2Nscs

Points represent parameters of known white dwarfs (Kulebi et al., 2009;

Kawka et al., 2004). Candidates: EUVE J0317-855, SDSS

J100356.32+053825.6, HE 1043-0502, SDSS J234605.44+385337.7, GD

229
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Cyclotron wind in the atmospheres of neutron stars

Pure hydrogen atmosphere.

M = 1.4M�,
R = 1.2 · 106ñì.

Vacuum polarization and
redistiribution of radiation

Ṁ = 4πR2Nscs

Points represent parameters of known neutron stars. Candidates: RX

J0821-43, 1E 1207.4-5209, CXOU J185238.6+004020 and other ÑÑÎs
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