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Specific  features 

Local energy release 
B << 10   G 
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•     Kaminker et al. (2006, 2009)  --  what’s the news? 

 

•     Comparison the results of  2D  and  1D  codes. 

•     Consideration NSs  with typical  field   B~10    G 

      in  outer  layers  including  a heat   blaketing   envelope.  

•     Detailed  consideration of  heat  fux  and  neutrino  emissivities 

•     Dependence on  EOS of  NS matter   
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Oversimplified    equation of  thermal  diffusion  with  account of 

 neutrino emissivity   Q    and  heating power  per  unit  volume  H :   

Surface photon luminosity: 

Heat blanketing envelope 

Including   Q   : 

ergsTUT
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4810~Heat  content of NS: 

Heating and cooling of neutron stars 
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(a) The thermal balance equation (GR)  

(b)  The heat transport equation (GR) 

 b ν 

ρ  = 10    g cm   ;  thickness  ~  100  m;  

mass of the envelope   <  10   M 
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1D code:  L   ( r )  = 4 π r   F  ( r , t ),  T ( r , t ) 
2 

r r 

2D code:  F     ( r,  θ, t ),     T ( r, θ, t )  
r , θ 



Phenomenological  heater  and  calculations 
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Radial heat power distribution: Angular heat  power  distribution: 

 

 Either hot  “blob”  −  2D code, 

  then additional  parameter  θ 

 

Or  hot  spherical layer   −  1D code 

Run cooling code:   in about  ~ 10000  years                  quasi-stationary  

 temperature distribution determined  by  the heat source.     

Total  redshifted   

 heat power : d 

0 

ρ  ≤   ρ   ≤  ρ   
1 2 



               Two equations of state and model parameters   

(1)   Toy-model  equation of state   (EOS):   

         parametrization -- Heiselberg & Hjorth-Jensen (1999)                (HHJ)     

0 0 
− energy per baryon;  HHJ (s, γ )    

u = n / n  ,   n  = 0.16  fm  ,   = 15.8 MeV,  S  = 32 MeV ,   s  &  γ   −  parameters . 

To fit  the EOS  by  Akmal, Pandharipand & Ravenhall (1998) −  (APR) 

0 0  0 0 

   This  work:    s = 0.1,  γ = 0.7  −   HHJ (0.1, 0.7)   in the  NS  core   −  
max Sun 

in combination with 

smooth composition SC  in the NS crust :         SC + HHJ (0.1, 0.7)      

(2) Analytical parametrizations of the family  BSk  EOSs:    Potekhin et al. (2013)        

We use  one  representative of the   BSk − family:            BSk 21   

by  Goriely et al. (2010),  Chamel et al. (2010),  Pearson et al. (2011, 2012) 
 

with  maximum NS mass:   M       =  2.28  M 
max Sun 

  s = 0.2,   γ = 0.6 − HHJ (0.2, 0.6)  

M     = 2.16 M   



                         Equations of state  and  NS models  
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                                  Results of  2D code  

Δ F  =  F   −   F   ;    F  − heat  flux  without  heater   
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Results of 2D code as series of snapshots  
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Heater: 

~ 400  m  under   

surface 

 ~ 80 m  width   

Heater:  angular distribution   

θ   ≤ 10°    θ 
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Heater:  angular distribution   
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Heater:  angular distribution   
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Heater:  angular distribution   
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Heater:  angular distribution   
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Heater:  angular distribution   
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                   Weak heat spreading along the surface 

Heater:  angular distribution   

θ   ≤ 10°  θ 

θ 
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Weak heat spreading  along the surface  

Pumping 

heat 

Thermal 

conduction 

inwards 

Thermal 

conduction 

to the surface 

(observable) 

Neutrino  

emission 

(losses) 

 Pons and Rea (2012) 

 but  see: 

Pons, Miralles, Geppert (2009) 

Vigano et al. (2013) 

Carrying away pumped heat: 

Heat  does not spread along the surface: 

heater‘s area is projected  on the surface  

1D  and  2D codes  give similar results 

Heater 



    Temperature profiles inside  1.4 M     and  1.85 M      stars 
Sun Sun 
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              Neutrino emissivity and heat density  profiles  
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               Total heat flux vs. surface photon luminosity  

                          and heat flux  towards  NS core   

Efficiency:    L   / W  
∞ ∞ 
s 

a  few  % ~ 

W    −  total redshift  heat power, 
∞ 

L 
∞ 
νcore 

−  neutrino luminosity of the core 

L ∞ 
s 

−   surface thermal luminosity  



Heating regimes 

1 
9 20 3 1

010  K,  10  erg cm  sT H   

Conduction outflow regime: 

2 
9 20 3 1

010  K,  10  erg cm  sT H   

Neutrino outflow regime: 

Position:                                              Outer  crust 

Heat power:                                         H0<  1020 erg cm-3 s-1  

Efficiency  to  heat  surface:             <3%  

 Angular  distribution:                       Hot  spot 

Heat  

transfer 

inside Heat  transfer 

outside 

Neutrinos 

Most economical heater 

Non-economical heater 

 What is observed as quasi-persistent  emission  is basically  

a small  fraction  of  input  energy  



Thermal relaxation of the neutron star                       

crust 

Energy storage in the crust of  young  NS  is  

analogous to  the  hot  layer  heater:   

the neutrino outflow regime     T  ≥  10   K . 
 9 

Thermal  decoupling  of  NS  

crust  and   core  at  t < 10 – 100  years  



Features  of  internal  heating  

      The energy can be stored  in the entire star or 

       in  inner crust but released in the outer crust   

Energy release 

Energy storage 



                               CONCLUSIONS 

•   Comparison of  2D and 1D calculations :  the heat  mainly  diffuses     

     radially  inwards                neutrinos   from  the NS core.   

     Small fraction of the heat            outwards             thermal  surface  radiation. 

     Heater  is located  in a  blob             a hot  spot  radiates. 

     Heater  is distributed  in a  layer              the whole surface  radiates.               

      

                                              

                          

                                                      

    

Weak  dependence  results  on  EOS  of   NS  matter 

• 

• 

• 

 Two regimes  of  heating:  

(a)  The  conduction  outflow  regime:    H   <  10    erg cm   s  ,  T  <  10  K; 

       The  thermal  emission  is  regulated  by  the  heater’s  power     

       and  the  neutrino  emission  in  the  NS  core;  

       Strong  thermal  coupling :    the  outer crust                  the  core; 

     

(b)   The  neutrino  outflow  regime:   H  > 10    erg cm   s  ,  T  > 10  K; 

        Thermal  decoupling :   the  outer crust                  the  core.  

         
The  most  economical  heater  is  intermediate:    H ~10     erg cm    s  ,  

 it’s  placed  in the outer crust . 

 Efficiency  of  surface T – radiation  L   / W  does  not  exceed  a few  %. 
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 Efficiency  of  the heater  in  more  massive   stars  (with  fast  cooling)   

 is  higher 

∞  ∞ 
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Direct Urca                  

 

 Neutrino emission from NS core  

  Outer core                              Inner core 

  Standard cooling                   Fast cooling      

} 

} 
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     e en p e p e n      

Modified Urca                 

       nN pNe pNe nN  

NN bremsstrahlung                 

 N N N N      

Amlified neutrino emission in the internal 

core of  NS: 

 Neutrino emision from the entier stellar body: 
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 Nucleon composition: 

 N=n, p 

n n

n p

p p









Total heat power  vs. surface photon luminosity   

               and  heat  flux towards  NS core  

“Eddington”   limit: 

Kaminker et al. 2006 

Pons and Rea 2012 
Hot spot 



Toy-model:    thermal radiation of magnetars  

Hot spot under the surface 

is heated ,  e.g.,  by Ohmic 

dissipation   

Light elements in the 

outer envelopes   

increase  efficiency 

of the thermal radiation 

Kaminker et al. (2009) 



Nature of heating: Ohmic dissipation 

Ohmic dissipation 

 heat rate 

2 2 2

2 2
~ ~

(4 )

j c B
H

h  

15 22 1 19 3 1For  ~10  G,   ~10  s ,    ~ 30 m     ~ 6 10  erg cm  s  B h H    

2 36 1 34 1

OHMICFor  ( / ) ~0.1     ~10  erg s ,     ~ 3 10  erg sBB SR R W L  

OHMICHEAT EFFICIENCY:  / ~1/30SL W

44 45

OHMIC
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TOTAL ENERGY NEEDED:  ~ 10 10  erg

                                                   ( ~5 10  yr)

W 







Numerical example 

High temperature is needed: 

• Low electric conduction 

• Low thermal conduction 

 Similar matters: 

Aguilera, Pons, Miralles 2008 

Pons, Miralles, Geppert 2009 


