

Thermal emission of neutron stars with internal heaters

A.D. Kaminker

Ioffe Physical-Technical Institute, St. Petersburg, Russia

Coauthors: **D.G. Yakovlev**¹, **A.Y. Potekhin**^{1, 2},

¹ Ioffe Physical-Technical Institute, St. Petersburg ² Central Astronomical Observatory at Pulkovo, St. Petersburg and

A.A. Kaurov

The University of Chicago, USA "Physics of Neutron Stars – 2014", July 31, 2014

Specific features

- Kaminker et al. (2006, 2009) -- what's the news?
- Comparison the results of 2D and 1D codes.
- Consideration NSs with typical field B~10¹² G in outer layers including a heat blaketing envelope.
- Detailed consideration of heat fux and neutrino emissivities
- Dependence on EOS of NS matter

Heating and cooling of neutron stars

<u>Oversimplified</u> equation of thermal diffusion with account of neutrino emissivity Q_v and heating power per unit volume H: $c_v \frac{\partial T}{\partial t} = \operatorname{div}(\kappa \nabla T) - Q_v + H$ (a) The thermal balance equation (GR) (b) The heat transport equation (GR)

Surface photon luminosity: $L_{\gamma} = 4\pi\sigma R^2 T_s^4$ Heat blanketing envelope Including Q_{V} : $T_s = T_s(T_p)$ $\rho_b = 10^{10} \text{ g cm}^3$; thickness $_{\widetilde{6}}$ 100 m; mass of the envelope < $10^6 M_{Sun}$ Heat content of NS: $U_T \sim 10^{48} T_9^2$ ergs

D code:
$$L_r(r) = 4 \pi r^2 F_r(r, t), T(r, t)$$

2D code: $F_{r,\theta}(r, \theta, t), T(r, \theta, t)$

Phenomenological heater and calculations

Two equations of state and model parameters

(1) Toy-model equation of state (EOS): parametrization -- Heiselberg & Hjorth-Jensen (1999) \longrightarrow (HHJ) $\mathcal{E} = \mathcal{E}_0 u \frac{u-2-s}{1+su} + S_0 u^{\gamma} (1-2x_p)^2$. - energy per baryon; HHJ (s, γ) $u = n/n_0$, $n_0 = 0.16$ fm , $\mathcal{E}_0 = 15.8$ MeV, $S_0 = 32$ MeV, s & γ - parameters. To fit the EOS by Akmal, Pandharipand & Ravenhall (1998) - (APR) s = 0.2, $\gamma = 0.6$ - HHJ (0.2, 0.6) This work: s = 0.1, $\gamma = 0.7$ - HHJ (0.1, 0.7) in the NS core - $M_{max} = 2.16 M_{max}$ in combination with

smooth composition SC in the NS crust : SC + HHJ (0.1, 0.7)

(2) Analytical parametrizations of the family BSk EOSs: Potekhin et al. (2013)
 We use one representative of the BSk – family: BSk 21
 by Goriely et al. (2010), Chamel et al. (2010), Pearson et al. (2011, 2012)

with maximum NS mass: $M_{\text{max}} = 2.28 M_{Sun}$

Equations of state and NS models

Star m_Odel	M/M_{\odot}	$R \ (\mathrm{km})$	$ ho_{c14}$
	HHJ BSk	HHJ BSk	HHJ BSk
Maximum mass	2.16 2.28	10 .84 11. 0 7	24.5 22.9
Fast cooler	1.85	12.32 12.46	11.34 9.98
Durca o nset	1.77 1.57	12.46 12.58	10.5 8.0 9
Standard cooler	1.4	12.74 12.57	7.78 7.3

Results of 2D code

Excess heat flux density: $\Delta F_L = F_L - F_{L_0}$; F_{L_0} heat flux without heater

Results of 2D code as series of snapshots

Heater: ~ 400 m under surface ~ 80 m width

$$\rho_1 = 3.2 \times 10^{11} \text{ g cm}^{-3}$$

 $\rho_2 = 1.6 \times 10^{12} \text{ g cm}^{-3}$
 $H_0 = 10^{19.5} \text{ erg cm}^{-3} \text{ s}^{-1}$

Weak heat spreading along the surface

Weak heat spreading along the surface

Heat does not spread along the surface: heater's area is projected on the surface 1D and 2D codes give similar results Pons and Rea (2012) <u>but see:</u> Pons, Miralles, Geppert (2009) Vigano et al. (2013)

Neutrino emissivity and heat density profiles

Total heat flux vs. surface photon luminosity and heat flux towards NS core

Heating regimes

Non-economical heater

What is observed as quasi-persistent emission is basically a small fraction of input energy

Most economical heater

Position: Heat power: Efficiency to heat surface: Angular distribution: Outer crust H₀< 10²⁰ erg cm⁻³ s⁻¹ <3% Hot spot

Thermal relaxation of the neutron star crust

Energy storage in the crust of young NS is analogous to the hot layer heater: the neutrino outflow regime $T \ge 10^9$ K.

Thermal decoupling of NS crust and core at t < 10 – 100 years

The energy can be stored in the entire star or in inner crust but released in the outer crust

Energy release

Energy storage

CONCLUSIONS

- **Two** <u>regimes</u> of heating:
 - (a) The conduction outflow regime: $H < 10^{20} \text{ erg cm}^{-3} \text{ s}^{-1}$, $T < 10^{9} \text{ K}$; The thermal emission is regulated by the heater's power and the neutrino emission in the NS core; Strong thermal coupling : the outer crust \iff the core;
 - (b) The neutrino outflow <u>regime</u>: $H > 10^{20}$ erg cm⁻³ s⁻¹, $T > 10^{9}$ K; Thermal decoupling : the outer crust \iff the core.
 - The most economical heater is intermediate: $H \sim 10^{20}$ erg cm⁻³ s⁻¹, it's placed in the outer crust . Efficiency of surface T – radiation $L_s^{\infty} / W^{\infty}$ does not exceed a few %.
- Efficiency of the heater in more massive stars (with fast cooling) is higher
- Weak dependence results on EOS of NS matter

Neutrino emission from NS core

Total heat power vs. surface photon luminosity and heat flux towards NS core

"Eddington" limit: Kaminker et al. 2006 Pons and Rea 2012

Hot spot

Hot spot under the surface is heated, e.g., by Ohmic dissipation

Light elements in the outer envelopes increase efficiency of the thermal radiation Kaminker et al. (2009)

Nature of heating: Ohmic dissipation

High temperature is needed:

- Low electric conduction
- Low thermal conduction Similar matters:

Aguilera, Pons, Miralles 2008 Pons, Miralles, Geppert 2009

$$H \sim \frac{j^2}{\sigma} \sim \frac{c^2 B^2}{\sigma h^2 (4\pi)^2}$$

Ohmic dissipation heat rate

For $B \sim 10^{15}$ G, $\sigma \sim 10^{22}$ s⁻¹, $h \sim 30$ m $\Rightarrow H \sim 6 \times 10^{19}$ erg cm⁻³ s⁻¹ For $(R_{BB}/R)^2 \sim 0.1 \Rightarrow W_{OHMIC} \sim 10^{36}$ erg s⁻¹, $L_S \sim 3 \times 10^{34}$ erg s⁻¹

HEAT EFFICIENCY: $L_s / W_{OHMIC} \sim 1/30$

TOTAL ENERGY NEEDED: $W_{\text{OHMIC}} \tau \sim 10^{44} - 10^{45} \text{ erg}$ $(\tau \sim 5 \times 10^4 \text{ yr})$