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Giant radio pulses of pulsars [1] have a circular polarization and characteristic (typical) bands 
(strips) in the inter pulse frequency spectrum (T.H. Hankins and J.A. Eilek, Ap.J., 670, 693, 

2007; [2]), an adequate explanation of which at present there is absent. 
 

 
Fig. 1. Example of an inter pulse radiation spectrum of the Crab pulsar (Hankins and Eylek [2]). 
Alternating bands of frequency correspond to the "permitted" and "forbidden" zones. 
 
To date, made assumptions about the nature of bands use the analogy with the solar plasma 

effects, but in this case the magnetic field must be sufficiently weak. By now several 

assumptions have been suggested about the nature of strips. One of them is to interpret them as 

fuzzy levels (anomalous) cyclotron resonance [3] or of an analogue of the solar zebra structure 

(or Bernstein modes) [4]. That is, the formation of bands have to associate with a specially intro-

duced dense region far away from the star (near the light cylinder at the periphery of the mag-

netosphere). Another idea is to use effects associated with superluminal rotation, and also locates 

the source of radiation away from the surface of the star at the region of the light cylinder [5]. 

 



Explanation, which we discuss below, uses the quantization of the electromagnetic 

whirlwinds (tornadoes) introduced to explain the circular polarization of giant pulses from 

pulsars. The tornadoes can occur at breakdown in the inner gap of pulsars – the particle 

acceleration region, located near the pulsar magnetic poles. They are rotating around its axis 

cylindrical flow of electrons (or positrons) in crossed beam space charge field and super strong 

magnetic field of the pulsar and can be responsible for the generation of giant pulses 

(V.M. Kontorovich, JETP, 110, 966, 2010). 
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Fig. 2. There are two branches in the tornado spectrum: 

the high energetic modified Landau branch and low 

energetic drift one. The great value of the magnetic field 

B ~ 10^12 G leads to quantization of electron motion in 

the tornado. The result is the quantization of current in 

the gap, and the quantum of current is determined only 

by the magnetic field. 



In the context of pulsars in such strong electric and magnetic fields at the relativistic motion 

of particles is necessary to consider the possible influence of the electron spin on the 

quantization of electron motion as done in this report. 

. In the quantization rule the electron spin enters through the topological Berry phase. Just as 

in the absence of an electric field by virtue of compensation orbital and spin summands there is 

no gap of zero vibrations in the spectrum. Due to this fact the semiclassical quantization is 

possible. 
The expression for the energy of a relativistic electron in an external constant magnetic field 

(in the absence of an electric field) is [8]: 
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e is the charge of the electron (positron), zp  is its longitudinal momentum directed along the 

magnetic field, the integer n numbers the Landau levels,   is determined by the spin projection 

on the axis z. In the approximation linear in Planck's constant this expression takes the form: 
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( 0s     , 2 3
crit  = /B B m c e  = 4.4 1013 Гс).  

In the crossed fields of the external magnetic field and an inhomogeneous space-charge field, 

forming a tornado in the pulsar, there are two classical branches corresponding differential 

rotation of the particles around the magnetic field: a high-energy cyclotron and low-energy drift: 
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Slow rotation in the case of pulsars corresponds to drift velocity orthogonal to the electric field 

[6]. Rotational energy due to this orthogonality is served. This makes possible the existence of 

stationary quantum states. To implement such a rotation is needed (like having a place in the 

absence of an electric field), the exact compensation of zero oscillations of the cyclotron branch 

by the spin term in the energy. 

The quantization allows to offer a natural explanation for the observed bands in the 

frequency spectrum of inter pulse radiation of pulsar PSR J0534 +22 in the Crab Nebula and to 

determine the tornado physical parameters. 
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The resulting compensation allows us to consider the usual rule of semiclassical quantization 
2d n  R p  ,       (6) 

that leads to the condition that coincides with obtained in [6]: 
mrV n   ,     (7) 

where orbital electron velocity must be expressed in terms of non-relativistic rotation rate of drift 
in the crossed fields 
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Circular motion is achieved by virtue of the Lorentz force exact compensation of the Coulomb 
repulsion between the electrons in the bunch. For the angular rotation drift frequency in the 
laboratory system that gives 
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where ( )r  is the quantum of rotational speed in the rest frame: 
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By duration t  we can reconstruct  - factor of the radiating electrons using the connection 
1,
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where the azimuthal angle   is defined aberration 

 
Fig. 3. The difference in the main pulse and inter pulse spectra of GP [2]. 



That gives 
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To estimate the level height use the obvious relation 

/( )n      .     (16) 

that gives 
20n .      (17) 

and                               /2      ,   
7/2 10n   Hz. 

Expression for angular speed is true for 0r r  where 0r  is the classically rotating tornado core. 
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Fig. 4. The distribution of the charge 

density on the radius (the bottom) and 

the corresponding rotational angular 

velocity of the tornado (above) at the 

different quantum states (a scheme). 

Marked the band width of the radiation 

at the level n+1. Because at a 

frequency of 10 GHz the allowed band 

width is 0.4 and the forbidden one is 

0.1 [2] we obtain an estimate (16-17). 

Condition of no overlaping zones: the 

whirlwind border shall be sufficiently 

sharp and should be performed (15) 



Relativistic aberration allows us to understand the difference in the spectra of the main pulse 

and inter pulse at a frequencies of change emission mechanisms near of the high-frequency 

spectrum break (V.M. Kontorovich and A.B. Flanchik: Radio emission with acceleration of 

electrons in a polar gap of a pulsar. Physics of Neutron Stars – 2011, Saint-Petersburg, Russia, 

Abstract book, p.75; http://www.ioffe.ru/astro/NS2011/index.html) of the Crab pulsar, where the 

bands are observed. 

 

 
 
 

 
 

Figs. 5-6. The difference in the diagrams relative to the line of sight by changing the mechanism 
of high-frequency radiation in the range of fracture (The Scheme on Fig. 5) [8] and main-pulse 
and inter-pulse observations in the pulsar PSR B0531 +21 (Fig. 6) Moffett and Hankins [9]. In 
the Scheme the rays are summarized in one quadrant. 

 
Some details of the observed spectral bands (two maximum in the band, frequency trend, 

etc.) is discussed and also received the natural explanation in the frame of the model. 
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Summary 

Thus, the drift velocity of slow rotation is orthogonal to the electric field [6]. 

Rotational energy by virtue of this orthogonality is conserved. This makes possible 

the existence of stationary quantum states. It is implemented (similar taking place 

for Landau levels) the exact compensation of zero oscillations by the spin term.  

Quantization of motion in an electromagnetic tornado may lead to appearance 

of bands in its frequency spectrum. Really, the rotation frequency of the drift 

branch [6, 10] of electrons in the tornado depends on the distance to the axis and 

for a given value level n spans some range of values determined by the geometrical 

dimensions of the tornado. The observed bands in the spectrum of giant pulses [2], 

coming directly from the internal polar gap [7], are connected with quantization of 

electron motion in the electromagnetic tornado [6]. Two maxima in the band 

(Fig. 1, [2]) can correspond radiation in the two aberration beams. One beam 

corresponds to emission of accelerated electrons in the polar gap (with gamma 

factor 310 ) flying from the surface of the pulsar, the second one corresponds to 

the emission of accelerated positrons flying to the stellar surface in the same gap 

(with the same gamma factor in this band). Positron emission is directed to the star 

surface and we see reflected from the surface radiation. The incidence of positron 

radiation occurs orthogonally to the surface, whereby the reflected light is directed 

strongly backword to the incident radiation and accordingly coincides with the 

direction of electron emission. Therefore, it is observed as a continuation of the 

emission band (due to delay, which has the correct order of magnitude for a given 

gamma factor 310  ). Indeed, the delay of the radiation emitted at the elevation 

cz  of order of the gap altitude is /ct z c  . At a height of the gap 410 cmcz   it gives 

for t  the estimate 610 sect  , which coincides with the pulse duration (emission 

band) for (11). Each peak corresponds to the passage of the radiation beam on the 

diagram of the telescope (the input and output of the diagram). Due to the 

reflection losses and deviations from exact orthogonality to the star surface of the 

incident and, respectively, the reflected beam, the intensity of the second peak is 

smaller than intensity of the first one.  
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Appendix 
Semiclassical motion of relativistic electron in external fields 

The movement in the spin and coordinate spaces for relativistic electron is linked [A1]. For 
quasiclassical description it is necessary to separate the electron states with positive energies 
from the positron with negative ones. We will use the approach using the topological (geometric) 
Berry phase [A3] and the spin shift r  of covariant electron coordinate R: 

,   R r r r A , 
2

2
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c
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Singling out in the phase   of the electron wave function exp{i / } exp{i }d  R p   the spin-dependent 

summand  , we obtain /d d   r p A p  where A (Berry connectedness or geometric vector-

potential [A4]) is defined by (A.1). When the drift motion of an electron in a circular orbit is formed by the joint 

action of ortogonal each other electric and magnetic fields, we obtain the phase shift B
C

d   A p  for orbital period 

(Berry phase). This phase increment depends only on the geometrical characteristics of the electron trajectories in 
space and does not depend from the time of its dynamics 
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In our case of cylindrical geometry the condition   that leads to solutions. This corresponds to electron spin states in 
a whirlwind 1 / 2zS    and the spin part of energy equal to 2 2

0/s zS B ec mc     , leading to compensation of 
zero oscillations. The resulting compensation allows us to consider the usual semiclassical quantization rule with the 
spin contribution. Bohr quantization rule, taking into account the contribution of Berry phase leads to 
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where the velocity of the electron in its orbit must be expressed in terms of non-relativistic electron frequency of 
revolution due to the drift in crossed fields. In the nonrelativistic limit the Berry phase tends to zero, which leads to 
condition (9) used in the text. 
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