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Heating and cooling of   
accreting neutron stars

• A lot of energy is dumped on the neutron star
− Release of gravitational energy (200 MeV/nucleon)
− Thermonuclear reactions (1-5 MeV/nucleon)
− Pycnonuclear reactions (1-2 MeV/nucleon)

• Will that heat up the neutron star?
• Can we observe that?

− Cooling neutron stars in X-ray transients



Do we detect cooling neutron star?

Thermal

Non-thermal

A
sa

i e
t a

l. 
19

98

For low statistic data, the thermal component, the power-law component and the column 
density are interfering with each other!



Yakovlev et al. 2004, Heinke et al. 2010; Wijnands et al. 2013
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D × 2

Distance uncertainties



SAX J1808.4-3658
IGR J00291+5934

<M> uncertainties.



Lot of uncertainties for individual 
sources but general trend should 

be fine. 
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Crust cooling



Heating of the crust
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Quasi-persistent sources



KS 1731-260
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MXB 1659-298
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Unclear what 
happened



Calculations of cooling curves
• Larger heat conductivity in the crust than anticipated
• Need of additional shallow heating source
• Rutledge et al. 2001; Shternin et al. 2008; Brown & Cumming 2009; Page & Reddy 2012, 2013; 

Turlione et al. 2014; Medin & Cumming 2014

MXB 1659-29

Brown & Cumming 2009

Page & Reddy 2012



Three additional sources
• EXO 0748-676

− In outburst from July 1984 to September 2008
− Low outburst luminosity  ~ 1% LEddington  
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Pre-outburst level: kT~90 eV  further cooling or sign of 
variable atmosphere composition?
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Also a jump  further 

cooling?

Shallow cooling + 
hot neutron star



XTE J1701-462

For 1.5 years active in 2006-2007 at near Eddington luminosities



• Accretion flares
• Initial cooling faster than 

for the other sources 

Page & Reddy 2012

XTE J1701-462
Fridriksson et al. 2010, 2011
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XTE J1701-462

Again a jump



MAXI J0556-332

Active since Jan 2011 
  - Near Eddington rate?
  - Large distance (>30-40 kpc)

Turned off in the summer of 2012 after 
1.5 yrs of accreting

Swift, Chandra, XMM monitoring 
  - Accretion flares 
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Very hot surface!

MAXI J0556-332
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Very similar 
outbursts but 
quite different 

initial 
temperatures



11 Hz pulsar in Terzan 5

Degenaar & Wijnands 2011

Provided by Diego Altamirano

Ordinary transient
   - Discovered in 2010
   - Outburst lasted ~2 months
Near Eddington accretion rate

Terzan 5 X-2

X-3



Degenaar & Wijnands 2011
Degenaar, et al. 2011, 2013
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Extra heating in outer crust

 At < 150 meters in the crust

Pre-outburst base level

Terzan 5 X-2



Terzan 5 X-3
• Active in summer 2012 for 2 months

−  Bahramian et al. 2014
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Terzan 5 X-3



Conclusions
• Crust cooling seems particular promising to 

probe ultra-dense matter
− High crustal heat conductivity/shallow heat production

• Unknowns
− What causes the differences in decay times and base levels?
− Is the “jump” a common feature?
− What causes the shallow heating?
− Schatz et al. 2014  Strong neutrino cooling in the crust? 
 Shallow layers decoupled from deeper layers and the 
core?

• We need more sources!
− Also high magnetic field neutron star systems

• Also compare with magnetar outburst physics



Comparing with a magnetar outburst

Swift J1822.3-1606
Scholz et al. 2014
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Reheating of accreting neutron stars

Heating mostly due to pycnonuclear reactions
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Variability
Aql X-1

Rutledge et al. 2002

Also in thermal component
  - Accretion on NS surface

Cen X-4

Campana et al. 2004

Always use lowest 
kT or Lq value!

Rutledge et al. 2002


