The equation of state (EOS) and Rosseland opacities of hydrogen are tabulated along isotherms. The input parameters are R, T, B; R=rho/T6**3, where rho is the density in g/cm**3, and T6=T/10**6, T is temperature in K, B is magnetic field strength in G. The lowest value of the magnetic field is lg(B)=10.5, the highest is lg(B)=15.0. For lg(B) from 10.5 to 12.0: the lowest value of the temperature is lg(T)=4.9, and it increases in steps of 0.1 to lg(T)=7.0; For lg(B) from 11.9 to 13.5: the lowest value of the temperature is lg(T)=5.3, and it increases in steps of 0.05 to lg(T)=7.0; For lg(B) from 13.5 to 15.0: the lowest value of the temperature is lg(T)=5.7, and it increases in steps of 0.1 to lg(T)=7.6 Lg(R) increases in steps of 0.2 from -7.4 to 3.6 (but only to 3.4 for Lg(B) > 13.5). The tables for different values of T and B have identical structure They are concatenated one after another for all values of T at every fixed value of B. (Note that these files have 2 header lines for lg(B) < 11.9 but 5 header lines for other B values). The file name reflects lg(B) value: for instance, the file hmag12_5.dat contains the data for lg(B)=12.5 Two files with names hmm10a8.dat and hmm11a8.dat correspond to lg(B)=10.845 and 11.845, respectively. Every table consists of 14 columns, which give different physical quantities as shown in this example: thermodynamic functions | number fractions lg(opacities) lg(R) lg(P) PV/(NkT) U/(NkT) S/(Nk) Cv/(Nk) chit chir x(H) x(H0) x(H2) x(pert.) long. transv. lg(T) lg(B) 6.000 13.000 -7.40 0.8173 1.999 1.256 59.737 2.378 1.001 1.000 3.77E-04 7.15E-05 0.00E+00 7.81E-03 -4.896 -4.896 -7.20 1.0173 1.999 1.256 58.818 2.378 1.001 1.000 4.15E-04 8.30E-05 0.00E+00 8.85E-03 -4.872 -4.873 -7.00 1.2172 1.998 1.256 57.898 2.378 1.002 1.000 4.55E-04 9.62E-05 0.00E+00 9.99E-03 -4.847 -4.848 ... ... ... ... ... ... ... ... ... ... ... ... ... ... -1.00 7.2090 1.961 1.155 30.364 2.402 1.028 0.993 6.07E-03 5.03E-03 4.79E-13 8.32E-02 -1.933 -2.145 -0.80 7.4059 1.947 1.133 29.423 2.417 1.036 0.991 7.26E-03 5.72E-03 1.76E-12 8.11E-02 -1.748 -1.958 -0.60 7.6039 1.938 1.105 28.504 2.431 1.043 0.989 8.55E-03 6.40E-03 6.13E-12 8.71E-02 -1.573 -1.781 -0.40 7.8015 1.927 1.071 27.583 2.449 1.051 0.987 1.02E-02 7.19E-03 2.03E-11 9.33E-02 -1.403 -1.610 -0.20 7.9984 1.914 1.028 26.662 2.473 1.062 0.984 1.19E-02 8.10E-03 6.31E-11 9.91E-02 -1.242 -1.447 0.00 8.1949 1.898 0.977 25.736 2.501 1.074 0.980 1.33E-02 9.09E-03 1.77E-10 1.06E-01 -1.091 -1.295 0.20 8.3905 1.879 0.915 24.807 2.536 1.088 0.976 1.45E-02 1.01E-02 4.26E-10 1.13E-01 -0.954 -1.158 0.40 8.5853 1.857 0.841 23.873 2.575 1.105 0.971 1.51E-02 1.08E-02 8.15E-10 1.21E-01 -0.835 -1.039 0.60 8.7793 1.831 0.755 22.935 2.616 1.123 0.966 1.45E-02 1.09E-02 1.09E-09 1.32E-01 -0.738 -0.941 0.80 8.9721 1.801 0.654 22.000 2.658 1.142 0.963 1.23E-02 9.97E-03 8.36E-10 1.44E-01 -0.662 -0.866 1.00 9.1646 1.770 0.538 21.063 2.699 1.161 0.961 8.92E-03 7.75E-03 2.76E-10 1.55E-01 -0.597 -0.802 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3.00 10.9665 1.122 -1.917 11.401 2.765 1.936 0.691 0.00E+00 0.00E+00 0.00E+00 1.50E-02 2.207 2.039 3.20 11.1018 0.967 -2.457 10.364 2.837 2.277 0.670 0.00E+00 0.00E+00 0.00E+00 3.76E-03 3.083 2.904 3.40 11.2406 0.839 -3.068 9.333 2.901 2.652 0.734 0.00E+00 0.00E+00 0.00E+00 4.11E-04 4.248 4.055 3.60 11.4056 0.775 -3.736 8.301 2.946 2.906 0.975 0.00E+00 0.00E+00 0.00E+00 1.40E-05 5.782 5.574 The first line contains decimal logarithms (log_{10}=lg) of T and B. Each row then provides: (1) lg(R) astrophysical density parameter: density rho [g/cm**3] is given by R*T6**3 (2) lg(P) P is the pressure in bar = 10**6 dyn/cm**2 (3) PV/(NkT) dimensionless pressure parameter: N is the constant total number of protons (free and bound) in the volume V, k is the Boltzmann constant; P = PV/(NkT)*rho*T6*8.250E+13 dyn/cm**2 (4) U/(NkT) dimensionless energy parameter: U is the internal energy, the zero point of energy is the quantum-mechanical continuum; energy per gram [erg/g] is given by U/(NkT)*T6*8.250E+13 (5) S/(Nk) dimensionless entropy parameter: S is the entropy; entropy per gram [erg/g/K] is given by S/(Nk)*8.250E+07 (6) Cv/(Nk) reduced heat capacity: Cv is the heat capacity at constant volume; Cv in [erg/g/K] is given by Cv/(Nk)*8.250E+07 (7) chit = (d log P/d log T)_V is the logarithmic derivative of P with respect to T at constant volume (8) chir = (d log P/d log rho)_T is the logarithmic derivative of P with respect to density at constant T (9) x(H) the atomic fraction: the total number of H atoms with non-destroyed energy levels divided by N (10) x(H0) the ground-state atomic fraction: the number of ground-state H atoms divided by N (11) x(H2) the molecular fraction: the number of H2 molecules with non-destroyed levels divided by N (12) x(pert.) the fraction of protons comprised in clusters and strongly perturbed atoms and molecules (13) lg(K0) K0 is the effective Rosseland mean opacity [cm**2/g] for radiative transport along B (14) lg(K1) K1 is the Rosseland mean opacity [cm**2/g] for radiative transport perpendicular to B Any second-order thermodynamic function can be obtained by combination of (3)-(8). For example, the heat capacity at constant pressure equals Cp = Cv + (PV/T)*chit**2/chir, the adiabatic gradient equals ( d log P / d log T )_S = chit/[chit**2+chir*(Cv/Nk)/(PV/NkT)]. The effective Rosseland mean opacity for radiative transport at arbitrary angle theta to the magnetic field can be obtained as 1/K = (1/K0)*(cos theta)**2 + (1/K1)*(sin theta)**2. -----------------------------------------------------------------------------------------------------------