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DESCRIPTION OF A RELATIVISTIC ELECTRON IN A QUANTIZING
MAGNETIC FIELD. TRANSVERSE TRANSPORT COEFFICIENTS

OF AN ELECTRON GAS
A.D. Kaminker and D.G. Yakovlev

Many relations needed for calculating elementary processes with the participation of
relativistic electrons in a quantizing magnetic field in the Landau gauge for the
vector potential are obtained {properties of the wave functions, matrix elements, and
quadratic combinations of them). Simple expressions are found for the transverse
transport coefficients in a relativistic electron gas with quantizing magnetic field
that can be used in solid-state physics and astrophysics.

1. Introduction

In solid-state physics and astrophysics much interest has recently been shown in the investigation
of elementary processes with the participation of electrons, which may be relativistic, in quantizing magnetic
fields, Magnetic fields which are quantizing (10°-10° G) for a solid-state plasma were achieved comparatively
long ago in the laboratory, Various processes in them {kinetics and thermodynamics of the carriers,
propagation of electromagnetic and acoustic waves, etc.) have been studied intensively both experimentally
and theoretically (see, for example, [1]). And because of the great variety of structures of the energy bands,
it is not only a nonrelativistic electron gas {quadratic dispersion law) but also a relativistic gas that is of
interest for the solid-state plasma. Indeed, it is well known that in a number of semiconductors and semi-
metals the behavior of the electrons is described by a relativistic Dirac equation in which the velocity of
light is replaced by the corresponding effective "imiting"” velocity of the carriers (see, for example, [2]).

The interest in such a theme in astrophysics is due to the discovery of superstrong magnetic fields
fup to 10" G, see, for example, [3]), which quantize the electron component of a plasma, in the surface
layers of neutron stars (radio and x-ray pulsars, x-ray bursters, gamma sources, etc.). Both in neutron
stars and near their surfaces, various processes with the participation of electrons (cyclotron and synchro-
tron radiation, interaction of photons with matter, thermodynamics and kinetics of the electron gas, etc; see,
for example, [4, 5]) play an extremely important part,

In the study of these processes one uses an elegant but rather laborious mathematical formalism.
An exposition of the formalism when the cylindrical gauge of the vector potential of the magnetic field is used
is given in the monograph of Sokolov and Ternov [6]. However, for the solution of many problems it is more
convenient to use the Landau gauge of the vector potential,

In the present paper, we give a systematic exposition of the mathematical formalism needed for
calculations in the Landau gauge. Most of the expressions given here are original. Some formulas are
common to the cylindrical gauge and the Landau gauge. For generality, we take them from [6].

In Sec.2 of this paper, we describe the properties of the wave functions of relativistic electrons in
a constant homogeneous field in the Landau gauge (Subsection A), the properties of the matrix elements,
which can be expressed in terms of normalized associated Laguerre functions (Subsection B), the general
properties of these functions (Subsection C), their quasiclassical representations (Subsection D), and various
sums containing quadratic combinations of them (Subsection E). In Sec.3, these formulas are used to obtain
simple expressions for the transverse transport coefficients — the transverse conductivity, the thermal
conductivity, and the specific thermoelectric force — in a relativistic electron gas. These expressions
apply both in solid-state physics as well as in astrophysics.
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2. General Properties of Matrix Elements

A, Wave Functions. In the Landau gauge of the vector potential A = (-By, 0, 0) of the magnetic
field B = B, the states of a free relativistic electron are conveniently specified [7] by the quantum numbers
£ P, Py, 0, 5. Here, ¢ is the electron energy, p, is the momentum component along the magnetic field,

n =0,1,2, ... is the number of the Landau level, p,  characterizes the y coordinate of the center of the
Larmor gyration of the electron: yy=p./mows s = £l is the sign of the projection of the momentum p + eA/c
onto the spin, ws=eb/me is the cyclotron frequency, and m and -e are the mass and charge of the electron.

The energy is {7]

e==1 (mic*+c*pl-t2mcinhios) ™, (1)

where n = %1 is the sign of the energy.

Solving the Dirac equation in the standard representation, we obtain the following expression for the
wave function:

, ( o dH . (L)
() = exp{i(l%ihz)/h} l ;]ZEB;_SZ) | )
—npBH. (§)
where
(1-L50=21 G-l
|3 =V _m;:)B (y—ys), H.(E)= ( n;;‘i)s ) K exp(—E¥/2) (2°n!) ~H, (E), "

. (%) are the normalized harmonic oscillator functions, H, (¢) are Hermite polynomials; L, and L, are the
normalization lengths. The levels with n # 0 are nondegenerate with respect to s. To the Landau ground
level (n = 0) there corresponds only a single value of s, which corresponds to orientation of the spin in the
opposite direction to the magnetic field (s = ~—sign p, for p, # 0, which gives A = 0; for p, = 0, the value
of s is not determined, and in this case one must additionally set B = 1, and then the dependence of ¥(r)

on s disappears), The positron wave function in the standard representation in the state Psr Dye B, 8, M i8S
obtained from the electron function @) for the state —p,, —p,, n, s, —n by the operation of charge con-
jugation. This positron wave function is the same as the function found by Klepikov {7}. However, Klepikov
erroneously associated this function with an electron in the state p,, p,, n, s, n. This did not influence the
correctness of the probabilities of the various processes calculated in [7], since the errors in the probabilities

disappear after averaging over the orientations of the particle spins.

In calculations using the Landau gauge, one frequently employs a different set of wave functions
(see, for example, the monograph of Akhiezer and Berestetskii [8]). These functions are linear combinations
of the functions 2) with s = *1 chosen to make one of the bispinor components vanish. For this reason,
they have 4 less symmetric form and describe quantum states in which the projection of the spin onto the
momentum does not have a definite value.

B. Matrix Elements. Using the functions (2), we find matrix elements of the operators of the
form fe', where =1, B, a (i=z, y, z), and § and G are the Dirac matrices; such matrix elements are
frequently encountered in applications. We obtain

(1|J'|fexp (iqr) I\p) =6?:', Pz+hqx‘51!:', px«quf; (5)
I r ’ t’ ’ s r r 4
{ B } =(s"sa’axn'nP’'P) (B'Blu nts'sA Al —in-1), Q=(o/spnt+s'8'n'a)a;, a,.=—A"Bsl,, »~5B' ALy un,
(6)
ay=iAd'Bsl, oy n—is'B' Al ey, a.=A"Al._\ wey—3'sB'Bl,- .,
where, following [7], we have introduced the functions
EX
I = ,f dy &' w5, (&) #n(8) = Furn(u)exp{i(n—n')otig, (ys+ys')/2}, @
. n’l ' nen’
Fon(u)=(=)""F, . (u)= = ut e LT (u), ®)
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u=fq 2mos =g g} @=arctg ¢,/qx (9)

Ls(u) is a Laguerre polynomial, and F. .(u) is a normalized Laguerre function. If n < 0, and for) n' <o,
the functions (7) and (8) are equal to zero. For the reasons given above, the expressions (8) differ from the
analogous expressions in [7],

To calculate the probabilities of various processes, we require quadratic combinations of the
matrix elements (5) summed over the spin variables. In this connection, we calculate the quantities

0= Y iwlevinly o= Y 1wiBerior Qo= Y Golevaly) (¥lde vy, (10)

Rotating for simplicity the coordinate system to ensure q, = 0 and In, »=Fn (), and setting h = ¢ = 1,
we obtain

P, o .
{ QQ } %( w) (P“ -1, -n—1+Fn, S ﬂn, Fﬂ'—l,n—iﬁn',ﬂr
0 €e
2+p.p. 7 ~
{Qw} i_( _1_13_1.’_.) (Pl P )% 2 Y B B i
Quy 2 ee
i m*tp.p,
Qn=—-0w=——2—(1—————%’—-) (Fn =t Fﬂ ln)» an

{ ng } {LQ }_ - EB (m(zoa ) [Vnpl (Fn -1, n—-lF f-1 n:tFn nFn' At >+Vn pz(Fﬂ nF —1n:tFn'—l n«AFn n-l)],
iy 2y

1 De
zzz"‘—(1 Ln'—""p—f—") (Fn—1n~i+Fn n) 2
2 ge
Formulas (11) for Q,; are identical with the ones obtained in {7, 9]. Note that the formulas in [7] are given
for an arbitrarily oriented coordinate system (q_ # 0) and can be obtained from (11) by rotation of the axes

through arbitrary angle ¢. Note that Q and Qij are components of a 4-tensor of second rank, and Qo is
a 4-scalar,

Ynn, Fn'—l,n—-iFn',n-

C. Properties of the Functions. The normalized associated Laguerre functions F. .(z) (n, n'=0),
determined in ), satisfy the differential equation (see, for example, [10])

d d n+n'+1 u (n—-n')?
e F s —Fp )t e LN F ()= (12)
e Frm(@) ¥ du Furn(a) [ 2 4 4u ]F () =0

and the orthogonality condition (see, for example, [10])
jdu For n(0) P o (u)= _[ A F o (1) F e () =00 . (13)
¢ [

From (4) and (7) there follow the helpful integral relations [12]

Fora(u) =e~¥* (2" nin’1) j”dt e "H, (t + .Vw-i;-) H, (t — Vg) s (14)
For (@) Fom(u) == J?dt Frt ot () P () — g o (2 08) | (15)

where J,(x) is a Bessel function.
In the special cases n = 0, 1, 2, we have
Fo n==(nl) =" u"2e=u  F, ,=(nl)hgt=0 =2 (o), Fp ,=(2n!) tun-22e~v/2 (g2 2nu+n*—n), (1e)

From the recursion relations for the Laguerre polynomials [11], we can obtain various recursion
relations for F.. .(u). We give some of them:

V (n+1) (n/+1)Fn'—H, n+1+an’—-x, n—x=(n+n'+1——u)an, a3 (17)
Vb ooy, stV Fo = lo s i Y8y VR F ey st VB, pos=mlF e o/ Vi) VRF e aes— V0 P y=V0Fims 0y (18)
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_ - e i _ _ - d
yn/ ﬁﬁ""‘i.”“yn}(’“’,"“i="yu ({(ﬂ',ﬂ+2"-‘"“1’n',1x>q VnFn'~1n”“Vn' Fn',nﬂ:l/u (Fn"—j,n-—i”'“2""—-lv'n'-—1 n—i); (1
du ' du '

2V (F g Br it Bt oot ) = VU (B2 o b F ) =1 (F B ) IV @
- d
2Yan"’—-1,n—-;Fn'—~1,n“Fn’,nFn’,n—x) = Fﬂ%..i,n_i—pn’z,nWLFnz’—s,n‘"Fnz',n-—a”‘%‘(Fnz',n'lkl}nz'“i,n—i) ' (2
e 2
4ynn/ F'n'—i,nlvn',n—% zL(Fn%,n+Fn?~i,n-—i)"‘(n‘*—n,) (Fnz'—i,n+Fn2',n-—i)q
u
2:
LY AR Bty e B = (b0 (Fey e FF )~ (P it F e ).
Here and below, l=n'-—n.
The behavior of F. .(2) at small and large u follows from the asymptotic behavior [11] for the
Laguerre polynomials.
For u<k(1+]|l])/min (n, n’) the principal term in the Laguerre polynomial is the one containing the
lowest power of u. Then
) 2 Mmaxtn oy 11
Foo(u)= {—) Carg-s (= [max (z,n') ]! ' ©3
12 [min (n,n") I
In the interval u<<(1‘+]ll)/v in 23) (here and below v = n +n’ + 1) we can successively set e-*=1, and
we then obtain the well-known formula of [6]. If n « n’ or n’ « n, the given interval is much narrower
than the interval of applicability of (23); if |l[|~n~r/, the two intervals coincide.
For ux|l|+1, the substitution u = t*/2v reduces Eq. (12) to the Bessel equation. Using @3) to
determine the normalization factor, we obtain
For olu) =C(2/v) 2] (=V2vu). (24a,
In particular, for [I|<v we have the well-known [6] result
Fron(u)=Ji(—~V2va). (24b)
For u» (Yn+Vn')% we obtain
Fov () = (=)™ (nln/1)=Suto+e 2=, (25)
For n = 0 or (and) n’ = 0, formulas (23) and (25) are identical and are exact (see (16)) in the entire range
of u.
D. Quasiclassical Expressions for the Functions Fu,»{(#). Equation (12) is equivalent to the
equation [6]
(Ve n (@)~ V2 P (@)=, 26)
u
where
-1 v 1 1
== e — — ' — == (0 — Uy ) (U— W),
1) == o = ) ()

and a, ,=vF(v*—I'+1)" are the roots of the equation f(u)=0.

Since n, n’ = 0, it follows that u, > 0; u, > 0 for [I[>1, m=0 for |/[=1 and u < 0 for l——-‘O. For
problems in which values n, n > 1 are important, it is convenient to solxﬁa Eq_: {26) in the quasiclassical
approximation. The quasiclassical turning points are the points u=u, 2= (YnFVn’)™

In the classically forbidden regions 0 < u < u, and u > u, and not too near the turning points (for

u—u® (/A)" and u—u,>(u.*/A)"*, respectively, where A=u;—u,), the standard procedure for finding quasi-
classical solutions using 23) and 25) to determine the normalization constants leads to the expressions

F“,' " (u<u,) = (__) (/2 (43.[ lp I u) —‘Ixelplu—Q’ (2 7a)

Fo p(@>ny)=(—)" (4st|plu)~"e7?"%, 27b)

oo i, (alual+iwlau)? v Oleel-Via—uD® 08
2 uA 2 A

where p=p(w)=Y—f(u).
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In the neighborhoods of the turning points for fu — ut <«<u, Aandfor lu - ul « 4, introducing
the variables §, ,=F (u~u, ) (Af4u],)" and determining the normalization constants by means of 27), we
obtain
Foron(m)=(=)"""72(2/n)" (2u,A) "D (E,), 29a)
Fo, w(u)y=(=)""(2/m) " (2u,4) 70 (%), 29b)

where & (&) is the Airy function, With allowance for the relation @ (£>0)=K, (28%/3)(&/3n)" (Ku(y) is a
MacDonald function) we obtain from (29) the well-known expressions [6] for F.. , in the classically forbidden
regions in the neighborhoods of the turning points. Note that the solutions {27a) and (29a) have meaning only
for |} »1. Otherwise, in the region u 2 u, the quasiclassical solution is invalid, since the characteristic

scales of variation of F. .(u) in this region become comparable with its dimensions; however, at the same
time formula (24b) holds.

In the classically allowed interval u, < u < u, not too near the turning points (for u—u.>(u,/A)" and
u—u> (u,°/A)") we obtain

+ — o —
F."",.(u):(ﬂpu)'lh cos (Pu"‘(P), @zlarCSinwmﬁLarcsinwa ——{I—(V"}-Il!“}'zl—i) (30)
2 A 2 uA 4

It can be shown that in the interval 0 < u < « the function F. .{(u) has min(n, n’) nodes, and in the

quasiclassical approximation all nodes are in the classically allowed region, In accordance with (30), F2, (u)
averaged over the oscillations is in this region equal to

(@)= (w—u,) = (u,—u) ™, (31)

In many problems [13-15], one is interested in the cases n > n’ and n’ > n. At the same time,
the smaller of the indices may be either larger or of the order of 1. To be specific, suppose n > n’ (for
n' > n, see (8)). Then the distance A between the turning points u,, .~nFVn(4n’+2) satisfies the condition
A<u, .. By the substitution g=(rn—u)/yn for |E]<¥n Eq.(©@6) is reduced to the equation for the parabolic
cylinder functions D, (&) (which for integral n’ can be expressed in terms of Hermite polynomials) and with

allowance for (13) for the determination of the normalization factor and (25) for the determination of its sign
gives the well-known expressions [13]

X D. (%) v o 13
Frau) s e 8 ~ (0 1y =B E 2
) (2rn)y ™ (n'1)" ()4 @V e (}/2 ) 32)

Note that in the case n > n’ when F2,, (u) is integrated over u with a function that varies smoothly in the
region |u-n|=¥n(r’+1), we can use the formula (16] F,. * (uy=n~'6(1—u/n).

The formulas obtained in this section, together with Eqs. 23)-(25), make it possible to calculate

£, a(u) for all values of u if at least one of the indices n or n’ is much greater than unity. The regions

of applicability of the given expressions partly overlap, and in the regions of overlapping they give the same
result,

E, Summation of Quadratic Combinations of F",'n (z). From the integral representation (14), we

obtain
N B @) o @)= ¥ B @) B () = 0, 33)
n' e n' o0
and by means of (15) we obtain the well~known (6] formula
Z Byl (u)ei™ —memgivstnep (4u sin*%p-) , (34)
E AT

from which there follow the sum rules [6, 17]

Zﬁ',fl.n(uw—zi, Z(n'~n>ﬁ"$,n<u>=u, Z (7' =n)F} () = w*+2na+u  etc, (35)
1wt n' el n'a=l

When various processes in a nonrelativistic nonde

to sum quadratic combinations of F. . with facto
can be done by means of the relation

generate plasma are considered [9, 18-20], it is necessary
r exp(-nb) for fixed value of I=n'—n. Such summation
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§ Fon@Fu o) (2sh—§)”ca 3 (36)

nes0

thich follows from the corresponding sum for the Laguerre polynomials [11]. In (36), L(¢) is a modified

lessel function, and

b b at+v b
— 2 = . — ——
(uv)*/sh 5 c exp{ 3 (I+1) 5 cth 5 ] 37)

We give some sums:

]

ZF" O Era@e= (2on ) o[ L1 - n©], 1= 1) 38)

= by b T b b
ZYnn'F,.vﬂ,,n(u)F,,.,,ln,(u)e“”"=(4sh”a2~) uexp[—«—l ucthvi—][l, (x)-ch-2——11(x)], x=u/sh~2-. (39)

LT

Transport of Heat and Charge by Relativistic

lectrons at Right Angles to a Magnetic Field
Using the above formulas, we can readily obtain simple general expressions for the transverse
ransport coefficients in a relativistic. electron gas with quantizing magnetic field B.

We consider an electron gas in which there are weak gradients of the temperature T and the chemical
otential u, and also a weak electric field E, all at right angles to B. Then the conduction current density j

nd the heat flux q (see, for example, [1]) have the form

§=0, &+ OAbXEFA VT +AIDX VT, q=—T2, &—TA\bX &2, VI —x bXVT. (40)

lere, §=E+Vy/e, h=B/B; 0., As, %, are the transport coefficients that determine the transport of heat and
harge along the vectors & and VT; os, M, %4 determine the transport at right angles to these vectors and B.
Che quantities o, and ox are the transverse and Hall conductivities, respectively, and the remaining
ioefficients determine the thermal conductivity and the specific thermoelectric force in the well-known

nanner (see, for example, [1)).

As a rule, the effects due to the quantizing nature of the magnetic field are manifested for @p*>ven,
vhere u”l‘g is the characteristic gyrofrequency of the electrons, and ver is the effective frequency of electron
‘ollisions. In this case, op, Ap, x4 do not depend on the electron scattering mechanism and can be
*xpressed in a universal manner in terms of the thermodynamic characteristics of the electron gas (see, for
:xample, [1,21]; in particular, o,=en.c/B and A,=cS/B, where n, and § are the electron councentrations

ind entropy per unit volume). Thus, it is sufficient to consider T, A, Ry

We restrict ourselves to the frequently encountered case when the electron collisions can be
regarded as elastic (this is the case if the characteristic change in the energy of an electron in a collision
satisfies Ae<T). Under these assumptions and for o,*®v., we have in the Born approximation (see, for

sxample, (1))

oy . o .
{ A }- _ 3o ow.. (ys—ys') [e(e—-u)T"} 1)
En 2
Ry ax’ (a_p)zT—n

fom () W =3;ia (eatar) | Vaur]. 2)

Here, W,, is the probability (in unit time) of an electron scattered on the potential V(r) making a transition
from the state a=(p., p., n, 8, n=1) to a’'=(p./, p/, n’, §', n=1) with shift of the y coordinate of the center of

gyration of the electron by ng ~ ¥y (see Subsection 2A), ex=g. =s¢.
The matrix element V... of the potential V(r) can be calculated by means of (5) by expanding V(r)
in a Fourier integral. Under the assumption that V(r} does not depend on the orientation of the electron’s

spin, the summation with respect to the spin variables s and s’ in (41) can be readily performed by rneans

of (11) and simplified by means of 22). The energy conservation law in 42) is satisfied by two values of pz,

which correspond to the two possible scattering channels., We denote the channel in which p, and pz have
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the same sign (forward scattering) by +, and the channel in which p, and p have opposite signs (backward
scattering) by —. The momentum component g, p2 — p, transferred during the scattering in these
channels is

ﬁiqzi‘:ipn:':pﬂ'lv cpn=(82"'~ m'c'—2mc*ho n) K (4:3)

Finally, from (41) we obtain

GL‘ ia v r d
P P P

,yv[ me? (6 “)ZT 1 :tnn ]
B . % + € 2 ﬁqz:t : u ﬁﬁ) R
bt = [(or) = (Gar) [ @ El i@ 2 (R @4 EE )], 4
where, as in (9), u=/q */2moy; Vq is the Fourier transform of V(r) and n; is the concentration of the

scatterers. The summatlon in (44) is over the values of n and n’ for whlch e>en and e>>e., where g,= (m'c*+
2me’hagn)®. For e=eg, and e=¢., the integrand in (44) contains integrable square root singularities due to

the singularities of the number density of electron states in the magnetic field. Exceptions are the terms
with n = n’, in which the singularities degenerate info power singularities. To avoid logarithmic divergence
of the integrals over &, the domain of integration in these terms must be restricted to values ¢ > ¢, + v,
(see, for example, [1]; for more consistent elimination of divergence, see [22]). Small y, <« T, on which
the transport coefficients depend very weakly, can be determined by physical considerations and can be

due to various factors, of which the main ones are (see, for example, [1,22,19]) a certain inelasticity of the
electron scattering, collisional broadening of the Landau levels, and a possible violation of the applicability
of the Born approximation for ¢ = ¢ . For hiq <« me and (¢ — me’) « me’

wE )= Fh e @)+ Fl (), (45)

and then formulas (44) go over into the well-known nonrelativistic expressions (see, for example, [1]) for
the transport coefficients. Note that in contrast to the ideal electron gas considered here, in which the spin
splitting of the Landau levels is equal to the distance between the levels, the most interesting case in solid-
state physics (see, for example, [23]) is when the spin splitting is negligibly small. The transition to such
a case in (45) is trivial and reduces to the substitution F, ., a-y=Fur o

For a nondegenerate nonrelativistic gas in (44)

- b

T 2mT

f NE(“"“”SLXP{ Ho P: } T = (23‘[ﬁ) (2 mT) Ihne th-—b" (46)
maog 2’

where b=Ros/T. We use (45) and by means of (36) carry out a summation over n for fixed values of l=n'-n.

We obtain

oo o

e'nmtb b T A b
o 10/ T . -y - e e 2 — —
o, TowR &'T eth 5 !Z ;‘-dCQ (&+rwslll)—"e p( 7 ——)Iduu!Vl exp( ucth 3 )I,( /sh?),
T @n
M‘—=~ [-—-(T<u)] [T 2 (1o, ]}
and in the term with I=0 in accordance with what we have said above the lower limit of integration with
respect to ¢ must be replaced by v.
Equations (44) also strongly simplify for a strongly degenerate relativistic electron gas. In this
case,
nz
At_l_—""""T G_L(u), %_L=—'—'~ITO_L, (48)

3e dp 3¢

 and o, is given by (44), in which it is sufficient to set df,/de= —&(e—w), so that the integration over & can be

performed, It should be noted that the conductivity o, in a relativistic degenerate gas for Coulomb scattering
of electrons by ions was considered in [24]. Although the general approach in [24] is basically correct (only
the screening radius of the Coulomb potential was incorrectly chosen [25]), the expressions obtained there
were not simplified and were given in a form far more cumbersome than (44), TIn [24], the numerical values
of 0, are strongly overestimated (see, for example, [25]), presumably because of inaccuracies in the
numerical calculations.
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The expressions (44) also simplify in the limit of a magnetic field so strong that the plasma electrons
populate only the Landau ground level. Then in the sum over n, n’ there remains the single term withn =
= 0, and by virtue of (16)

* 3 2 hot 2
» (U. == [( ) __“( e —t
Ko,0(12) aE S e . 49)
In the nonrelativistic limit, these formulas are well-known (see, for example, [1]}; in the ultrarelativistic
limit for the special case of a short-range potential with |v ? = const a formula for 7, was obtained in the
recent paper {26] (ote that the value of o, in 28] is two times too small).

Finally, we consider the transmon to the limit of a nongquantizing magnetic ﬁeld In this case, the
contribution to (44) is made by values n, n° > 1. We replace the sum over n and n’ by a corresponding
double integral and go over to the variables of integration P, = (p; +p, }/2 and q, = (p; - p,)/K. Then

in (44),
by ;)—"p—xn,. @~ 3= jdq,jdp Font) | (= )z—(%)] (50)

®,n,n°
where o° = qi + qi. For FZ,(u) it is sufficient to use the expression (31), which is rewritten in the form
ﬁz 2 } —x .
- [QLZ(PZ ———42-)~P,2q2] , cp=={(et—mic)™ (51)

In (50) and (51), P, vary in the range P.<(q,/9)*[p’—(hg/2)’], where Tqg < 2p, in which the function (31) is
nonzero. In (50), we integrate over P, in this range and use the fact that by virtue of symmetry considerations
we can in (44) make the substitution u—f¢3/3mos As a result, we find that in (44)

2P/ h
Z jduuxn CANALSS iimj ¢ dg |V, 12[ (e/me?) 2~ (fig/2mc)?], (52)
PnPn 3

& 0.0

which corresponds to the well-known expressions for a nonquantizing magnetic field (see, for example, [27,
281,

Thus, we have obtained the simple expressions @4) for the transport coefficients in a relativistic
electron gas. The use of these expressions is of great interest in not only astrophysics — for investigating
the kinetic properties of the matter of neutron stars — but also in solid-state physics. In particular, for the
latter great interest attaches (1] to the dependence of ¢;, A, and 1, on B and T for different electron
scattering mechanisms in the limit of a quantizing magnetic field when the electrons populate only the Landau
ground level. For a nonrelativistic electron gas (parabolic dispersion law), these dependences are given in
[1]. In Table 1, we give the dependence of g, A, and %, on B and T in the limitofa quantlzmg magnetic
field for dlfferent scattering mechanisms in the case of a linear dispersion law (e =~ p,c » me %), This case

TABLE 1
Nondegenerate Degenerate elec-
Scattering Ly electrons, hwy > T trons, hw}h > u
mechanism a
9 R} LT BT B ST
Acoustic
phonons: sy N 3
low T Ag T8 T-ipti= BY: | Bt | BT /2
high T Ay (2T 1hs) const consg T | B | 1B | T°B
Piezoelec -
tric phonons: N
low T Ay Tl To1p=ts [ pous| gl | 1BV |TBY:
high T Agq?2T is) B B-1 | T imB I
Optical phonons
high T Agq® (2T oy | B B-1 1| T {TB| I?
Point defects A I -1 tconstl B |7B2| IB
Ionized A (gt g%y | T8 Iip-2 | pa| pal 1 |7B2
impurities
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is of interest for a number of semiconductors and metals, in which the behavior of the electrous is described
by a Dirac equation (with effective mass and effective velocity of light; see, for example, [2]). In Table 1,
as in [1], s is the velocity of sound, Copt is the frequency of an optical phonon, 4, , 5., are constants,

q, is the screening constant, wg*=eB/m*c (m*~Tc~* for nondegenerate electrons, and m*~uc™ for degenerate
electrons).

The ratios of the coefficients o,, A, %, for linear law (see Table 1) to the same coefficients for
quadratic law [1] in the case of nondegenerate statistics are proportional to 7-% In the case of degenerate
statistics, the corresponding o, and », ratios are proportional to B~*, and the A, ratio to B~

Note that in the ultrarelativistic case the scattering in — channel is strongly suppressed.

Note that the original expressions (40) are written down in a coordinate system in which the matter
as a whole is at rest. This system is generally used to study kinetic phenomena. For the use of (40) to
study motions of matter with relativistic velocities {for astrophysical applications) see, for example, [29].

We thank M. I. Klinger for discussing the work,
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