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Simple relativistic expressions are derived for the electron contribution to the thermal and electrical
conductivites ®, o in the degenerate core of a white dwarf and the degenerate layers of a neutron-star envelope
(in which the density p <4 10" g/cm®). At temperatures T above the crystallization temperature T’y of the
ions (the crystal melting point), the main factor governing » and o will be the scattering of electrons by ions;
for T < T\, the dominant process will be scattering by crystal lattice vibrations (phonons) or, if T is low
enough, by impurities in the crystal structure. In the ionic-scattering case, n and o can be simply expressed in
terms of the Coulomb logarithm, for which a convenient interpolation formula is obtained. For phonon
scattering, unified analytic expressions are derived to describe the behavior of %, o at temperatures both above
and below the Debye temperature ®. This lattice-type scattering will be produced by acoustic phonons
through Umklapp processes, and as a result when 70® the Wiedemann—Franz rule will qualitatively remain

valid.
PACS numbers: 97.60.Jd, 97.20.Rp, 97.10.Ld, 97.10.Ri

1. INTRODUCTION

1. When studying many of the processes that take
place in white dwarfs and neutron stars, such as the cool-
ing of the star, the evolution of its magnetic field, or nu-
clear burning of accreted matter, it is important to have
accurate values for the thermal conductivity as well as
the electrical conductivity of the stellar material,

In this paper we shall calculate the electron thermal
and electrical conductivities of the degenerate layers of
neutron-star envelopes and the degenerate cores of white
dwarfs, Matter in these regions consists chiefly of prac-
tically free degenerate electrons and nondegenerate, non-
relativistic, fully ionized ions of charge Z|e| and atomic
number A, Heat and charge are transported there primar-
ily by electrons, The density p and temperature T vary
within the ranges

Zlg/em® <p<<4-10'glem® T<T,
p,_pomet 593400 /u)* @)
T ks 1+ 1+ (pe/pe) *1"

Here p = mxc? = (m%c? + czp%-)l/ 2 represents the Fermi
energy of electrons having a number density ne, pp =
1i (312ng)1/? ~ me(pg/pe)l/? denotes the Fermi momentum,
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kg is the Boltzmann constant, pg = pa/ (108 g/cm®), and

ue =A/Z. At densities p ~ Z%g /cm® the condition Ze¥q «
kg Ty for an ideal electron gas will be violated [a =
(3wnj/4)}/3, with n; the ion number density], while at den-
sities p > 4-10! g/cm® free neutrons! or perhaps pions
(see, for example, Saakyan and Grigoryan?®) will be formed
in the electron gas.

The state of the ions is specified by the gas param-
eter I' = Z%%kpTa. KT < 1, the ions will constitute a
Boltzmann gas; for T in the range 1 < T' < Ty, a liquid®;
and if I' > T'yr ~ 50, they will form a crystal (Ref. 4). The
crystallization temperature is given by

Tu=2"aksTy=1.51-10°Z" (ps/pc) " (150/T) °K, )
while the Debye temperature of the crystal is®
0=0.45A0pks =2.4-10°(ps/1e) " (2/pe) " °K,
0p=(4nZ*e’n,/m;)", ®
where wp denotes the ion plasma frequency and mj is
the mass of the ions,

Figure 1 shows the temperatures defined by Egs.
(1)-(3) as functions of p for the case of an equilibrium
nuclear composition! (Z S 26). In this case the melting
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FIG. 1. The several characteristic temperatures of cool, dense matter with
an equilibrium nuclear composition,’ as functions of p/Me. Tf, Fermi
temperature; Ty, crystallization temperature of ions; @, Debye temperatire
of crystal; T;, temperature corresponding to a gas parameter TP = ﬁQP/kB
(@p is the electron plasma frequency).

/)

point Tyg >®, andfor T < Ty we willhave I'<1. However,
for matter with smaller values of Z (again for T < Tg)
we canhaveI' < 1. If Z is small and p is large, it is
also possible (see, for example, D. Q. Lamb and Van
Horn®) to have ® > Ty The ions will then remain in
liquid form even for T < Ty

We would point out here that the influence of the
magnetic field on the thermal and electrical conductivity
is neglected in this paper. I is not difficult, however,
to generalize the results to the case of a nonquantizing
magnetic field, and we have done so in a separate paper.’

The thermal and electrical conductivity of metals
on the earth have been studied very thoroughly (see, for
example, Ziman's book?). But these results cannot be ap-
plied directly to astrophysical conditions because, in the
first place, in astrophysics one must deal with relati-
vistic electrons, and furthermore, the properties of astro-
physical crystals are highly distinctive. In such crystals
the electrons will be scattered by acoustic phonons through
Umklapp processes — not at all what happens in ordinary
terrestrial crystals (see Sec. 4).

The first authors to investigate the electron thermal
conductivity » and electrical conductivity ¢ under astro-
physical conditions (for scattering of electrons by ions in
the case T > Tyy) were Marshak,® in 1941, and Mestel'?
and Lee,!! in 1950. Lee obtained simple, relativistic equa~
tions expressing # and ¢ in terms of the "Coulomb log-
arithm" (see Sec. 3), although the logarithm itself was not
accurately evaluated,

Subsequent calculationsi?~17 of n and ¢ for various
values of I" have on the whole been carried out numerical-
ly, and the results are presented in far more cumber-
some form.!) In Sec. 3 we shall demonstrate that actually
these results can conveniently be expressed in terms of
the Coulomb logarithm, and we shall obtain a simple inter-
polation formula for it.
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Even less satisfactory are the calculations that have
been made for the scattering of electrons from lattice
vibrations (if T < Tyy). Such calculations have been per-
formed for T < ® by several authors!%1517-19 and for T <
® by Flowers and Itoh!” and by Ewart et al.}® For T < Ty
detailed tables of #and ¢ are available,l” In the case T >
®, however, the values of » and ¢ given?) by Solinger!s
and Ewart et al.1? are three times the values found by
Hubbard and Lampe!4 and by Kovetz and Shaviv,15 while
they are four or five times Flowers and Itoh's values.!?
Furthermore, in the case T < @ the tables!? indicate that
o « T2, whereas Ewart et al.!® find that ¢ « T™°. The
various authors have not intercompared their results or
analyzed the reasons for the discrepancies.

We shall show in Sec. 4 that the discrepancies are
caused by comparatively inaccurate approximations having
been used for the vibration spectrum of astrophysical
crystals. Employing more exact data, we have obtained
values of » and ¢ which in the case T > ® are about 13
times lower than those of Solinger!® and Ewart et al.,1®
while in the case T < ® they are about five times lower
than found by Flowers and Itoh.!” In addition, the re-
sults of Ewart et al.1° for T < @ are qualitatively incor-
rect. We would further point out that Flowers and Itoht?
have made certain mistakes in calculating the electrical
conductivity due to the scattering of electrons by im-
purities (see Sec. 5) and in estimating the role of elec-
tron—electron scattering.?’ As a consequence, large
parts of their extensive tables (including all of their
Tables 2, 3, and 4, and the third column of their Table
I) are inaccurate.

To facilitate the calculations, we shall first express
n and ¢ in terms of the effective electron collision fre-
quencies (Sec. 2). Simple equations will then be derived
(Secs. 3-5), enabling these frequencies easily to be evalu-
ated for various electron scattering mechanisms, We
conclude (Sec. 6) by briefly suggesting some physical
processes that it might be possible to investigate by using
the values found for % and ¢.

2. EXPRESSIONS FOR CONDUCTIVITIES

2. In strongly degenerate electron gas (T < Ty),
where heat and charge are transported chiefly by elec-
trons whose energy ¢ is close to the quantity p(je—p|<
ksT, e=(m*c*+c*p*)*), it is convenient to express ¢ and
in terms of the effective frequencies y;, vy of electron
collision (see, for example, Flowers and Itoht?);

o=n.mwe n=n’ks*Tn./3m.v,, 4)

where mx = p/c?. The following expressions are useful
for numerical calculations:

0=1.51-10?(pe/pe) [ 1+ (pe/pre) *]1-" (10'sect /vs)sec™®,
w=4.11-10" (ps/pc)
X [1+ (pa/pe) *1-"T6 (10" sec™ /v.) ergecm™ - sec™ - deg™,

(5a)
(5b)

with Tg = T/(10°°K).

To evaluate o and " we must determine the frequen-
cies vg and vy which, generally speaking, are not equal
to each other. If several independent electron scattering
mechanisms are simultaneously operative and described
by collision frequencies v(',,-u v&"n, ..e, then the total fre-
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quencies and the conductivities will be given (see, for ex-
ample, Ziman®) by expressions of the form

Vou=VosFvout ..., Alo=A/a'+4/c"+ ..., ©)
Vu=A/n'+1/0"+... .

We turn now to the principal mechanisms for scatter-
ing electrons: against ions, with T > Ty (Sec. 3), and
against crystal lattice vibrations (Sec. 4) or impurities
(Sec. 5), when T < Typ.

3. ION SCATTERING

Under the conditions (1) of interest to us, if T > Ty
the energy of an electron will change by an amount Ag £
2p2Fmi- tx kT, when it is scattered by an ion; thus the
scattering will be elastic. We can then readily calculate
o and % (see, for example, Ziman®) in the approximation
of the electron relaxation time T(g):

ve=vi=1"'(n), T7'(e)=nwo.(e),
(7)
o (e) =j do(e,¥) (1—cos®).

The two conductivities will satisfy the standard Wiede-
mann—Franz rule: %/o = r’kp?T/3e?. Here n; denotes
the number density of the ions (which are stationary in
comparison with the electrons); v is the velocity of an
electron; do(e, #) represents the cross section for scat-
tering into solid angle do, averaged over the initial and
summed over the final spin states of the electron; ¢ is the
scattering angle; and oty is the transport cross section.
In Eq. (7) the integration extends over the full solid angle.

In the Born approximation (see, for example, Beres-
tetskii et al.2l)

. v o0
do (g,9) = (4n*h‘c*) |V, I%* (1 -z sin® -—2—) do, fhg=2psin—-.

-

(®

where Hiq denotes the momentum transmitted in the scat-
tering process, and Vq is the Fourier transform of the
electron—ion interaction potential; we shall write it in the
form qul = 47rZe2(,0q. As in Sec. 4, we here assume for
simplicity that all the ions have the same charge; the re-
sults can readily be generalized to the case of a mixture
of different ions, as Hubbard and Lampe!?4 have done.

Equations (7) and (8) now yield
2p/h

0 () = 451 (Ze*/pv)* At (p), Aui(p) = [ P (1-R'e’q/4e?)dq, (g)

v
4nZt¢*nile (p)
- 3nh® 5.65-10-*"
Vox = 4m.Ze‘A¢1 ZA"‘[1+(po/M,)%]'/‘

where Aei = Aei(pF) is the Coulomb logarithm. Although
Eq. (10) has previously been obtained by Lee,!! he deter-
mined Ag; inaccurately (see, for example, Lampe"“’). In
subsequent calculations (such as those by Kovetz and
Shaviv!® and Canuto!®), Eq. (10) has generally been written
in a far more cumbersome form, without separating out
Agj, even though there is a real advantage in doing so,
because Agj depends only weakly on T, p, and Z (see be-
low). In order to evaluate Agj we must know Pq- Asq—
® (small impact parameters), ¢q ~ q~% will correspond to a

1(e)=
(10)

sec,
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a pure Coulomb potential. To avoid the logarithmic ("Cou-
lomb"™) divergence of the integral in Eq. (9) at g = 0, the
screening of the potential at large distances by the polari-
zation of the plasma should be taken into account.

In a degenerate gas the controlling factor is ion
screening, whose radius will be denoted by rpyax. Elec-
tron screening will be of little importance for Ty < T <
T, as its radius rpp > rpax (see below). Even with
these simplifications it is a difficult matter to calculate
Agj accurately (see, for example, Lampe!?), but we can
obtain some simple approximate expressions. In particu-
lar, when integrating the second term in Agj(), in which
the Coulomb divergence does not develop, we may set @q =
q%

But the integral of the first term for p = py is the
Coulomb logarithm Ag’i), which arises when one is con-
sidering a nonrelativistic gas (since the character of the
ion screening is practically independent of the degree to
which the electrons are relativistic). Then Ay = Aé“l) -
v}/2¢%, where vy is the Fermi velocity. For I'< 40 the
values of © an be found from Hubbard's results!? {in
his notation Agi =[2Gt F)]"}, and for I' «< 1, from
Lampe's analysis.!> We would point out that with an ap-
propriate choice for r,, .., these results may be written
in the form A eoi =1In (Cyyax/Tmin). For T « 1, according
to Hubbard!? and Lampe,!3 r;,, ~ rp;, where rp; = v -
(wp)'1 is the ion Debye radius. For I > 1, Hubbard's
qualitative result!? indicates that rmax is slightly smaller
than the average inter-ion distance (ryax ~ a/3).

One can easily show that all of Hubbard's results!?
for 1 < T < 40 correspond with good accuracy (at least
as good as that of Hubbard's calculation itself) to rpax =
(rDi2 +a?/ 6)’/ 2 [In particular, for T > 1 the parameter
rmax = a/ V6 fits better than ¢/3; and it is curious to see
that the empirically selected parameter g/v'6 practically
coincides with ¢!, where qp= (61r2ni)1/ 3 is the Debye
wave number,] Since the above expression for ry,x also
satisfies the required asymptotic relationship for I' « 1,
we propose that it be adopted as an interpolation formula
for allT.

Then in view of the fact that rp,;, = 1/2py, we may
write

Aev=In [ (2nZ/3)" (1.5+3/T) "] —vs?/2¢?,
ve?/c®=(pe/tte) [ 1+ (po/pc) 2] .

Values of Agj for p; > 1 and I > 1 can also be obtained
directly from Canuto's tabulations!® {in his notation Agj =
[pg/ne)(vE/c)¥/4Gl; they also are in good agreement with
the values given by the simple expression (11).

Finally, if I' «< 1 and pg > 1, then Egs. (10), (11) will
yield Kovetz and Shaviv's re sults,!’ apart from a number
of small and inconsequential terms due to screening, It
is also noteworthy that Eqgs. (10), (11) can replace a whole
series of awkward interpolation formulas proposed by
Iben.2

(11)

In the case T > 1, numerical calculations of n and ¢
have been performed for three values of T by Flowers
and Itoh.l" Their values of ® and ¢ are several times too
high, compared with the values given by Egs. (10), (11).
Moreover, Flowers and Itoh do not give their final work-
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FIG. 2. Frequency y as a function of wave number k for (1, 2) acoustic and
(3) optical vibrations of a body-centered Coulomb crystal in the crystallo-
graphic orientation[1, 1, 0], according to Clark.” The value k = 0.905 ap
corresponds to the boundary of the Brillouin zone in this orientation. The
dashed line represents Flowers and Itoh's approximation'” to the acoustic
vibration spectrum.

ing formulas, which would have allowed their scheme of
calculation to be checked. For pg < 1 their results!? dis-
agree with Hubbard's,!? and for pg > 1 they are incon-
sistent with Canuto's data,!® even though Flowers and
Itoh's calculations in effect merely replicate the earlier
ones. 1218

We should also like to point out that some authors
(Refs. 12, 15, 16) have eliminated the Coulomb divergence
by taking ion—ion correlations into account, while Lampe13
has instead introduced into V¢ the dielectric constant of
the plasma. As a result, for T" « 1 the values obtained by
Lampe!? (the method he employed is more systematic)
differ, although weakly, from Hubbard's values.!? Fur-
thermore, in the range I' > 10 Hubbard!? and Canuto!®
obtained their results by modeling the ion distribution
function [the weak oscillations in Agj as a function of T
found by Canuto for I" > 10 are not described by Eq. (11);
evidently they fall beyond the accuracy provided in Canuto's
calculation]. A more systematic calculation of Ay; would
therefore be desirable. Nevertheless, the simple expres-
sion (11) appears to afford enough precision for practical
purposes.

One last point: for small Z and T % Tp/3 (Fig. 1), in
addition to the scattering of electrons on ions, a definite
contribution to the thermal conductivity might come from
electron —electron scattering.!®*2® This effect can easily
be taken into account by accepting those results!3*? and

applying Eq. (6).

4, SCATTERING FROM LATTICE VIBRATIONS

One of the principal mechanisms for scattering elec-
trons at temperatures T < Ty is scattering by thermal
vibrations of the crystal lattice. Astrophysical, "Coulomb"
crystals differ greatly from ordinary crystals on the
earth. Under astrophysical conditions the kinetic energy
of the electrons will far exceed the energy of electron—
electron and electron—ion interaction and the energy of
ion interaction. Hence the electrons will be practically
free (except for the negligible fraction of electrons whose
momenta are very close to the Brillouin zone boundaries;
see, for example, Flowers and Itoh!?), and the ions will
crystallize against the background of a uniformly "smeared”
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electronic charge.

The thermodynamic properties and vibrations of such
crystals have been studied in some detail.#%%25 Among
the (cubic) Coulomb crystals, those most strongly bound
are the body-centered crystals.25** Hence these are the
ones that ought to form in white dwarfs and neutron stars.?
Of the three branches of lattice vibration wg(k) (s =1, 2,
3; k is the wave vector, confined to the first Brillouin
zone) in such a crystal,?$® two (s = 1, 2) are acoustic and
one (s = 3), because of the long-range interaction between
ions that is peculiar to Coulomb crystals, is optical (Fig.
2). As k= 0, the acoustic modes will be transverse and
the optical mode longitudinal. We would also mention®®

that Zlim.z (k) =0,* so that wg(k) = wp-.

Flowers and Itoh!’ have obtained general expressions
for the frequencies Vs Py when electrons are scattered
from lattice vibrations, The variational solution they give
for T > ® [see Eq. (3)] agrees with the exact solution;
for T < ® it leads to insignificant deviations for vg and
deviations by no more than a few tens of percent for vy
(see, for example, Ziman?®); this level of accuracy is fully
acceptable for astrophysical applications.

In our notation, Flowers and Itoh's expressions3)
may be written in the form

41— (heq/2up)*?
4nks*q (g*+qre®)?

q<hy)

oy’ dq
vpk BT p

Vox==

s -
__iz_ 24(0,x) 12

g9(q, 2)=¢", g"(q, 2)=¢*—¢’s"/2x*

+3ke?2%n?,  ke=pe/h, z,=ho,(k)/ksT. (13)

Here hq denotes the transferred momentum (its maximum
possible value q = 2kyp = r=}. restricts the region of in-
tegration); k and eg(k) represent the wave vector and the
polarization unit vector of the phonon excited or absorbed
by the electron (+tk=q —Q, where Q is the reciprocal lat-
tice vector for the Brillouin zone to which q is confined).
In Eq. (12) we have included only single-phonon transitions
(only when T — Ty is this assumption not very accurate!?)
and have used static screening of electron—ion interac-
tions by electrons. The screening radius (the Thomas—
Fermi radius) is here given by ry 54 = qTF-l = VF/ \/“o—‘ﬂp,
where Qp = (4mee/m4)'/? is the electron plasma fre-
quency.

The number of Brillouin zones coming within the re-
gion of integration in Eq. (12) is of order (2kF/qD)3 =47
[ap = (6112ni)1/ 3, and a single zone has a volume Vg =
41rq;b/3]. In astrophysics the case 4Z » 1 is of special in-
terest, and this is the case we shall consider. Umklapp
processes will then make the main contribution to the
scattering, with the vector q falling in Brillouin zones dis-
tant from the first zone. This property is peculiar to
astrophysical crystals and causes lattice scattering in
them to be highly distinctive.

It happens that the quantity (2kp/ qD)3 introduced above
is approximately equal to half the ratio of the volume nj 1
allocable per ion to the de Broglie volume 47/3k} of an
electron. Hence the condition 4Z > 1 actually means that
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electrons will be scattered by individual ions that parti-
cipate in the collective lattice oscillations. Thus when
47 » 1 the integral (12) need include only the contribu-
tion of distant Brillouin zones. In performing an integra-
tion within a single distant zone characterized by the vec-
tor Q, it suffices to set q =Q in the integrand and to pass
to an integration with respect to k within the first zone
only. Since the condition (1) implies that q:']')/qTF3 ~ 2
10°z vy /cB/2 % 1, screening of the interaction need
not be taken into account for the distant zones, The sum
with respect to Q that is formed in Eq. (12) need merely
be replaced by an integral over a spherical layer Qi <
Q <2kp Qmin ~ 9p) that contains the distant Brillouin
zones in question,

The result of integrating the vector Q with respect to
angles is expressed by the function

3

(U ¢ nra( et )2 —(3V,)- dkf, (k),
O Shezren (en—1) -2, {f,(k)>=(3V5) ;(v{) f.(k) "
z=hwp/ksT,

where n = 0, 2, and the angle brackets signify an average
over wave vectors and phonon polarizations. In the re-
maining integration over Q the contribution of small @ ~
Qmin may be neglected almost everywhere, and we may
set Quin = 0. The only exception is in one term in v.q,
where the expression in the integrand behaves like Q™ for
small Q; we theretake Qnjp = ap. Strictly speaking, by
virtue of its derivation the quantity Qmjy ~ qp, but it is
not accurately determined. This circumstance is unim-
portant, however, since the integral merely depends
logarithmically on Qp,in. This last property does not im—
ply that the contribution of the first Brillouin zone (that
is, normal scattering processes) to the sum over Q is
large. Straightforward estimates of this contribution in-
dicate that for 4Z > 1 it will be smaller than the contribu-
tion in the distant zones. [For purposes of estimates one
should recognize that, according to the results of Cohen
and Keffer® and Carr,® as k — 0 we will have e; ,®)k/k ~
(k/qD)2, and that when allowing for the inter-ion screening
interaction? for small k ~qTF <X 4p, the optical branch
of vibration will go over to the acoustic branch.]

Performing the integration, then, we obtain

ve=(e¥/hivg) @pz[ (2—v/c?) O (z) + (3Apn—11vs*/2¢*) D (z)/n*],

vo=(e¥/fivy) 0z (2—vs*/c*) O (2), (152)
Aph=1n(2kp/q;)) '—U32/202=‘/3 In (4Z) —v,’/Zc’. (15b)
For x « n + 2, Eq. (14) yields
o™ (z) =u,._zz""2—-—‘/ﬂu,,:l:”-l-’/z‘ou,,“z””
el .., w=Ca (k)05 (16)

The quantities u; appearing in Eq. (16) (other than u_y)
have been evaluated by Coldwell-Horsfall and Maradudin
(Ref. 25): uy =1, uy =1/3, uy =0.203, ug = 0.136. The
quantity u_, has been calculated by Pollock and Hansen?:
U, =13.0. These authors further point out? that the value
quoted® for ug is 10% too low, However, there is no point
in introducing such corrections, although small adjust-
ments of this order might arise, for example, when allow-
ance is made for the screening interaction between ions.?
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In the case x > n + 2, itis adequate to employ in Eq,
(25) the averaging formula?

flos(k))>=0,"° jdmm’f(m) [ete(@/@p) Fes(0/05) . . ],
g @anmn

=300, c=—86.3, ¢=27.2,...
extending the upper limit of integration to infinity. We
then find

O™ (z) =c,z=2(n+2) 1L (n+2)

e (ntH4) 1L (nt4) +eez™" (n+6) 1T (nt6)+..., as)

where ¢(n) denotes the Riemann zeta-function,

The asymptotic expressions (16), (18) suffice for con~
structing the relations 4:(0’2)(x) over the entire range of x
variation. The only function that is not very accurately
determined is &®)(x) in the interval 6 < x < 10 (the error
is 220%), but @) (x) is less important in this interval
than &(0)(x). A more accurate calculation would require
an elaborate numerical integration in Eq, (14). The rela-
tionships we have obtained can be approximated, to an ac-
curacy at least as good as that of the calculation itself,
by the simple expressions

O (2) =u-a[ 14 (Buosel'er) ] H=1811+ (O/B46T)1 ™,

(a/m) 0 (2) =(z/m) [ 1+2* (15/4n‘c:) ¥*]

=13(8/5.1T)*[1+6/4.17T)%]-*. (19b)

To facilitate numerical estimates from Eqgs. (15) and (19),
we would point out that
2=0/0.45T, e*wyu_o/Avex=1.25-10"Tsc/vr sec™t
(20)
and that, by Eq. (11), Aph practically coincides with Agj
whenT > 1,

By using Eqgs. (3), (15), (19), and (20), we can now
easily calculate the electrical and thermal conductivity
due to lattice scattering. Figure 3 displays the results.
It is remarkable that in these equations only depends
explicitly on Z, and even that dependence is logarithmic.
We shall consider two limiting cases in detail: A) T >
®;B) TKO,

Case A, If T » O, the change in the energy of an
electron when it emits or absorbs a phonon will be Ag ~
hwg <kpT, so a relaxation time 7(¢) will exist which
can readily be computed from Eq. (7). If the condition (1)
holds, the time required by the electron to traverse an
elementary cell will be much shorter than the character-
istic periods of ion vibration, which are of order wzl,
Furthermore, if T >» @ the vibrations of the ions may be
treated classically, Then in the event that 4Z > 1 (see
above), each elementary event will involve elastic scatter-
ing of the electron in the potential (see, for example, Hub-
bard and Lampel?) V(r) = —Ze?(|r—§|'—r-") ~—Ze*(rE) ",
produced by a single ion when it undergoes small dis-
placements ¢ relative to its equilibrium position.

The scattering cross section will therefore be given
by Eq. (8), in which |Vq|2 should be taken to be the squared
absolute value of the Fourier transform of V(r), averaged
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FIG. 3. Temperature dependence of the thermal conductivity » and the
electrical conductivity ¢ in matter having an equilibrium nuclear com-
position’ (left-hand scale, log w; right-hand scale, log o), for: I) non-
relativistic electrons (p/p e = 10* gem®, Z = 26, A = 56); II) relativistic
electrons (p/pe = 10° g/cm®, Z = 34, A = 84). The curves for % and ¢
presuppose that electrons are scattered by jons for T > Ty (where T,

is the crystallization temperature), and by phonons and impurities for

T < Tp. The pairs of curves a, b correspond to impurities having a num-
ber density and charge such that ximp(AZ) =1, 0.1, respectively; the
curves wphs oph take only the phonons into account. In the dotted portions
of the curves, at temperatures T & T}y, the behavior of # and ¢ is not
known in detail. In order graphically to demonstrate that the thermal
conductivity #ee due to electron—electron collisions is unimportant for
large Z, separate wee curves have been plotted according to the results
of Lampe13 and the authors.’

over the ensemble of displacements §. Then
o () = (4n/3) (Ze*/hw)* (2—v*/c?) E?,

E= (37*/2m:ksT) <z,~* (1—e~%) . 21)

Here £2 represents the mean-square thermal displace-
ment of the ion, neglecting quantum fluctuations, which are
unimportant when T >> ® (see, for example, Coldwell-
Horsfall and Maradudin®®), Inasmuch as T > @, Egs. (7)
and (21) yield in the relaxation-time approximation

()= (/) (2—vY?) (ksTIR) B, T () =vo=vi,

(22)

which naturally coincides with the leading terms in the

expansion of the general expressions (15) for small x,

Note that the quantities (21) do not depend on Z (see Solin-
18

ger:?),

The more limited case ® < T < Ty has been treated
in the literature, 14151719 Some of these calculations!15
are analogous to those we have performed in deriving Eq.
(21), but the authors assume at the start of their deriva-
tion that wg(k) = wp/w/'g. Hence their result agrees with
Eq. (21) if the quantity u_, = 3, rather than u_, = 13,0,
Moreover, they maintainl15 that their result holds true
if Umklapp processes are unimportant; but actually it
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holds only if these processes do play a decisive role, One
can easily verify this statement by turning to Eq. (12):

if the contribution of Umklapp processes were excluded
(electrons then would be scattered not by the individual
ions but by the lattice as a whole), one would obtain a re-
sult different from the expression (21).

Solinger® and Ewart et al.!® have obtained expres-
sions analogous to Eq. (21) by a longer route, But their
expressions are much more cumbersome, since allow-
ance is made for screening by electron—ion interaction,
an unimportant effect in our case., Furthermore, these
authors assume that the contribution of the acoustic pho-
nons to u_, is the same as the contribution of the optical
phonon, Taking ws(k) = Wp they find that u_y = 1. Actual-
ly, however, when T > ® the optical phonon will contribute
far less to the scattering than the acoustic phonons (since
the latter have small phase velocities; see Fig. 2), When
T < O, the contribution of the optical phonon will of course
be smaller still,

Finally, Flowers and Itoh!? replace the Brillouin zone
(a rhombo-dodecahedron) by a sphere of radius ap and
consider that ©..(k)=0.7w,k/¢», 0,(k)~we,. As Fig, 2 in-
dicates, by making this simplification Flowers and Itoh
have raised the frequencies of the acoustic phonons, there-
by diminishing u_,. In fact, in their approximationu_, =
s +2-(0.7~2 = 4.4, Although Flowers and Ttoh have not
themselves evaluated ¢ and % analytically, their numeri-
cal data agree with the values computed from Eq. (21)
if this value is taken for u_,. I is worth noting that even
an estimate based on the Debye model yields u_; =:30,’0p™
~15, @p =kz0/h, an expression far closer to the correct
value than the results we have discussed,!4,1%17719

Case B, If T < O, the relaxation-time approxima-
tion for describing lattice scattering will not work, in
general, because the scattering becomes decidedly in-
elastic (A¢ ~kgT). In ordinary metals on the earth (see,
for example, Ziman®), normal scattering processes pre-
dominate, in which electrons are deflected by small angles
when T < ®, One such scattering event will suffice to
turn a "hot" electron into a "cool" one, but many events
will be needed to lower the current velocity of the elec-
tron, Thus if T «©, the collision frequencies v > Vy
in ordinary metals; the relaxation-time approximation
and the Wiedemann—Franz rule willbe strongly violated,
and the conductivities ® o« T2, ¢ « T™? [in order to obtain
this result from Eq, (12), one should neglect the con-
tribution of Umklapp processes and regard the longitudi-
nal phonon as acoustic, with g > apl.

Matters are very different in astrophysical crystals
where, according to Eq. (18), we will have for T <« @:

¢ Cwp €° vet
2 ,

TR e\ T @3)
n® c,0p, e v
Vx=? ;Ph (44\ph+2—"‘r— >

Accordingly, although », > v, in typical circumstances
the frequencies differ by no more than a factor of 2-3, and
¢ « T2, na T . The point here is that in Coulomb crys-
tals the dominant role is played by Umklapp processes,
accompanied by scattering at large angles. Such scatter-
ing will be equally effective for electrical and for thermal
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resistance, Thus if T < ©, the relaxation-time approxi-
mation and the Wiedemann—Franz rule will be violated
not qualitatively but merely numerically [one can easily
show that for estimates when T < ®, an approximate
relaxation time can be introduced according to the simple
meaning of Eqs. (7) and (21)].

This important conclusion could have been drawn
from Flowers and Itoh's calculations!? of ¢ and %, but
they make no mention of this circumstance, In fact, when
T < O the results are much more sensitive to the details
of the phonon spectrum than when T > @, If we were to
approximate the spectrum in the same manner as Flowers
and Ttoh, we would obtain ¢, = 2- (0.7)=% = 5.85 in Eq. (23).
Flowers and Itoh's values of o and % agree with those
computed from Eq. (23) for T < ® if ¢, has this value, If the
expression (14) were averaged according to the Debye
model, we would have ¢, = 3(w “’D)z =~ 27 in Eq. (23), in
reasonable accord with the exact value, Ewart et al.}?
also calculate ¢ for T < ®, but they assume that only
normal processes are important when T < ®, and they
arrive at a qualitatively incorrect result: g o« T

The behavior of # and ¢ for T ~ @ is illustrated in
Fig. 3. Notice that the transition from Eq. (22) to Eq.
(23) actually occurs for T ~®/4., We would also point
out that when T ~ Ty, Egs. (11) and (21) may be some-
what inaccurate because of the complicated motion of the
ions, It is remarkable that, despite this fact, an extrap-
olation of these expressions to T = Ty gives, as Fig, 3
demonstrates, a practically continuous trend of the » and
o curves through the melting point.

5. SCATTERING BY IMPURITIES

One would hardly expect astrophysical crystals to be
perfect. Probably they will have a good many structural
defects of various kinds — impurities, cracks, and so on,
caused, for instance,!” by the crystallization process itself
or the presence of irregularities in chemical composition.
Scattering of electrons from these defects could become
significant at low T,

Let us consider scattering by impurities (ions of
charge Z' = Z impregnated at the lattice points), the effect
thought to be the most important,!4:171® This scattering
will take place elastically and will be similar to electron—
ion scattering (Sec. 3), except that now the effective charge
determined by the Coulomb potential of the impurity will
be AZ = Z' — A (see, for example, Flowers and Itoh!?),
while the screening radius rmax = q7f [see Eq. (12)].

We can calculate the relaxation time from Eqgs. (7)
and (8). Following Flowers and Itoh, we take the Fourier
transform of the potential in Eq. (8) to be |V,|=4n|AZ|e".
(¢°+4¢*) ", the conditions (1) hold, the ratio rmax/Tmin =
2kp/aTF ~ 20.6 (VF/ ¢)/2 3 1. Then making the sub-

stitution nj — Z, in Eq. (7), where n' denotes the num-

ber density of 1mpur1t1es of charge Z', we find that 7(€)
will be given by the first of Egs. (10) 1f we make there the
substitutions

722~ (AZ) zx.mpEZ ' (AZ)/n., ot
g 2

Asi (p) > Aimp (p) =In (2p/ Bigzr) —*/:—V*/ 2%,
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Here Ximp» (AZ)? have been introduced as defined by Flow-
ers and Itoh; they represent the relative abundance of im~
purities and the mean value of (AZ)2, As a result we ob~
tain

7=t (1) =4m.e* (AZ) *TrmpAan/ 3 Z, Asap=Aimp (P¥), (25)
which may be compared with the expression (10). Note
that if pg > 0.1 the Coulomb logarithm Ajmp ~ 2. Fur-
thermore, the sum with respect to Z' in Eq. (24) contains
a term representing scattering by vacancies (Z' = 0). For
vacancies of fixed number density, their contribution to
the scattering will grow with Z,

Expressions analogous to Eq. (25) have been obtained
by Flowers and ftoh!? and Ewart et al.1® Flowers and
Itoh's equation is lacking a Lorentz factor mx/m. And
while their calculation, to judge fromtheir tabulated data,
was performed with the correct formula and 1 has been
properly computed, their values of ¢ are incorrect (they
are too low by about one and one-half orders of mag-
nitude). Moreover, the previous equations!™!? are much
more cumbersome than our Eq. (25), as they retain sev-
eral terms which are unimportant when 2kg > qgp.

For T < Ty one can easily allow for concurrent
scattering by phonons and impurities by using Egs. (6),
as illustrated in Fig, 3. Comparison of Egs. (22), (23)
with Eq. (25) clearly shows that at high T, phonon scat-
tering will predominate; at low T, scattering from im-
purities. The changeover temperature T=T imp depends
on the quantity xlmp(AZ) whose value is unknown for
the conditions in real stars, Figure 3 demonstrates that
(for Z ~ 30), roughly speaking, we will have Tjmp > ®/4
if ximp(AZ)2 > 1, while Tjmp < ®/4 in the opposite case
(compare curves a and b).

6. CONCLUDING REMARKS

We see, then, that in many cases our values for the
thermal and electrical conductivity differ significantly
from those obtained in more simplified treatments by
other authors. When calculations are made for specific
processes that will occur in white dwarfs and neutron
stars, such as the cooling of neutron stars,26:%7 extrap-
olated nonrelativistic expressions for ® and ¢ are often
applied to regions containing relativistic electron gas.
According to Eqs. (10) and (15), the values of ® and o ob-
tained from such an extrapolation will be much too high
[in particular, for T > Ty and pg > 1 the values of % are
exaggerated by a factor (ps/ue)zﬁ]. But neutron-star
envelopes and the cores of massive white dwarfs consist
chiefly of relativistic gas.

As a consequence, such results as the relation be-
tween the surface temperature and the internal tempera-
ture of a neutron star (which controls the cooling rate of
the neutron star,?6:27 the conditions whereby accreted mat-
ter undergoes thermonuclear burning,?® and so on), when
calculated on the basis of our improved values for ®, may
turn out to differ substantially from earlier findings, 26,27
We are devoting a separate paper? to such a calculation,

The authors are indebted to L, K, Gurevich, I, G.
Mitrofanov, G. G, Pavlov, and A, I. Tsygan for valuable
discussions.
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Canuto's equations'® contain a superfluous Lorentz factor ms/m, and
we find that the values of % and ¢ given by Flowers and Ttoh'” are several
times top high (see Sec. 5).

e have in mind Solinger's final "literal” equation (28). In substituting
numerical values of Solinger made several mistakes, so that his numerical
result (34) is about 15 times smaller than his Eq. (28) actually implies.
3)The numerator of Flowers and Iroh's Eq. (52) contains an extraneous
Lorentz factor m«/m. However, to judge from their Tables 2 and 3, their
numerical calculation of ¢ and ® has been made without this extra factor.
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