Федеральное государственное бюджетное учреждение науки

Физико-технический институт им. А.Ф. Иоффе РАН

Лаборатория неравновесных процессов в полупроводниках

НАУЧНЫЙ ДОКЛАД

ЭЛЕКТРИЧЕСКИЕ И ОПТИЧЕСКИЕ СВОЙСТВА УГЛЕРОДНЫХ НАНОСТРУКТУР И ИХ КОМПОЗИТОВ С ПОЛУПРОВОДНИКОВЫМИ ПОЛИМЕРАМИ И ПЕРОВСКИТАМИ

Ненашев Григорий Васильевич

Специальность 1.3.11 – Физика полупроводников

Научный руководитель: доктор физико-математических наук Алешин Андрей Николаевич

Санкт-Петербург 2024 Работа выполнена в Федеральном государственном бюджетном учреждении науки Физико-техническом институте им. А.Ф. Иоффе Российской академии

наук

Научный руководитель:

Алешин Андрей Николаевич, д. ф.-м. н., Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А. Ф. Иоффе РАН, заведующий лабораторией неравновесных процессов в полупроводниках.

Рецензент:

Маслов Александр Юрьевич, д. ф.-м. н., Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А. Ф. Иоффе РАН, ведущий научный сотрудник в лаборатории неравновесных процессов в полупроводниках.

Бобков Антон Алексеевич, к. т. н., Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина), сотрудник кафедры МНЭ, руководитель Центра сканирующей микроскопии.

Оглавление

Общая характеристика работы5
Актуальность работы5
Цель диссертационной работы6
Основные задачи работы6
Научная новизна7
Научная и практическая ценность работы8
Методология и методы исследования8
Научные положения, выносимые на защиту9
Достоверность результатов и апробация работы 10
Публикации
Личный вклад автора12
Структура НКР12
Содержание работы12
Введение
Глава 1. Обзор литературы. Углеродные квантовые точки, графен, проводящие полимерные гидрогели, металлоорганические перовскиты: описание, свойства, применение12
Глава 2. Экспериментальные методы исследования12
Глава 3. Эффект резистивного переключения и памяти в композитных 3

пленках на основе оксида графена в матрице металлоорганических перовскитов	13
Глава 4. Влияние изменения температуры на поведение двухполюсного металлоорганического перовскитного перезаписываемого мемристора для нейроморфных операций	14
Глава 5. Влияние концентрации углеродных точек на электрические и оптические свойства их композитов с проводящим полимером	20
Глава 6. Анализ влияния углеродных квантовых точек на свойства перовскитов	22
Заключение	23
Список публикаций автора по теме диссертации	26
Список цитированной литературы	27

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования.

Углерод уникальный элемент, способный образовывать ____ различные соединения и структуры как в макроскопическом, так и в наноскопическом масштабе. Более 95% известных химических соединений можно отнести к соединениям на основе углерода. Исторический опыт показывает, что исследования в области углеродных наноструктур привели к значительным научным и технологическим достижениям. В частности, открытие простого метода получения графена В 2004 году [1] стимулировало разработку новых материалов и устройств с уникальными свойствами, таких как высокая проводимость, прочность и гибкость.

Для расширения применения этих соединений в различных отраслях и условиях, их часто комбинируют с другими материалами. Результатом такого сочетания являются композиционные материалы со значительно улучшенными свойствами. В частности, углеродные наноструктуры, включая углеродные квантовые точки, обладают свойствами, делающими их привлекательными для использования в различных областях, таких как электроника, оптоэлектроника, энергетика и медицина [2-6]. Исследование их электрических и оптических свойств открывает путь к разработке новых материалов и устройств.

С другой стороны, полупроводниковые полимеры и перовскиты представляют собой перспективные материалы для создания солнечных элементов, светодиодов, лазеров и других оптоэлектронных устройств [7-8]. Например, модификация поверхности с-Si солнечных элементов пленками металлоорганических перовскитов считается одним из наиболее перспективных направлений [9] благодаря высокому коэффициенту поглощения в этих материалах в видимом спектре [10], способности многослойные формировать на ИХ основе гетероструктуры [11]. достаточно высокой подвижности носителей заряда [12], а также относительно низкой стоимости их производства. Также взаимодействие

перовскита с углеродными наноструктурами может привести к созданию новых композитных материалов с улучшенными электрическими, оптическими и механическими свойствами И функциональностью, объединяющие преимущества каждого компонент, что делает ИХ привлекательными для широкого спектра применений. Международные исследования значительный потенциал использования выявили перовскитных материалов для оптоэлектронных применений, к которым, в частности, можно отнести солнечные элементы [13-15], светодиоды [16], фотодетекторы [17], устройства резистивной памяти [18-21] и даже лазерные структуры [22]. Развитие методов синтеза и характеризации этих композитных материалов является важным шагом для создания новых технологий и устройств.

В заключение, актуальность данной темы исследования определяется необходимостью разработки новых материалов и устройств с улучшенными свойствами, а также расширением фундаментальных знаний в области нанотехнологий, оптоэлектроники и материаловедения.

Цель диссертационной работы.

Исследование и анализ электрических и оптических свойств углеродных наноструктур и их композитов с полупроводниковыми полимерами и перовскитами, а также определение их потенциала для использования в оптоэлектронике и других технологических применениях.

Основные задачи работы:

1. Исследование морфологии и оптоэлектронных свойств композитных пленок на основе металлоорганических перовскитов, углеродных квантовых точек, оксида графена и проводящих полимеров.

2. Анализ эффектов резистивного переключения в композитных пленках на основе металлоорганических перовскитов и оксида графена.

3. Оценка стабильности и проводящих свойств композитов на

основе углеродных квантовых точек и PEDOT:PSS.

4. Исследование влияния перовскитов на фотопроводимость структур на основе кристаллического кремния.

5. Анализ фоточувствительности и проводимости композитных пленок на основе металлоорганических перовскитов и углеродных квантовых точек.

6. Исследование влияния переноса ионов на энергию активации проводимости в тонких пленках перовскитов.

 Разработка двухполюсного перезаписываемого мемристора на основе эффекта резистивного переключения пленок перовскита и частиц оксида графена.

Научная новизна.

Научная новизна данной диссертационной работы заключается в комплексном исследовании и анализе электрических и оптических свойств углеродных наноструктур и их композитов с полупроводниковыми полимерами и перовскитами. Это представляет собой новый подход к изучению этих материалов, расширяя наше понимание их свойств и возможностей применения.

В работе также открыты новые эффекты резистивного переключения в композитных пленках на основе металлоорганических перовскитов и оксида графена, ЧТО дополняет наше понимание ЭТИХ сложных механизмов. Особое внимание уделено оценке стабильности и проводящих свойств композитов на основе углеродных квантовых точек и PEDOT:PSS, что открывает путь для создания новых материалов с улучшенными свойствами. Важным результатом работы является исследование влияния перовскитов на фотопроводимость структур на основе кристаллического кремния, что может привести к новым методам улучшения свойств этих структур. Наконец, в работе представлена разработка двухполюсного эффекта перезаписываемого мемристора на основе резистивного

переключения пленок перовскита и частиц оксида графена, что представляет собой новый подход к созданию таких устройств.

Научная и практическая ценность работы.

Результаты работы могут быть использованы для разработки новых материалов и устройств с улучшенными электрическими и оптическими свойствами, что может привести к созданию новых продуктов и решений для различных отраслей, включая электронику, оптоэлектронику, энергетику и медицину.

Методология и методы исследования.

1. В качестве основных объектов исследования выступали композитные пленок на основе металлоорганических перовскитов, углеродных квантовых точек, оксида графена и проводящих полимеров, нанесенные на подложку.

2. Структуру и толщину пленок образцов исследовали методом атомно-силовой микроскопии (ACM), с помощью микроскопа NTegra-Aura (NTMDT-SI, Россия) и зондов NSG10 (ТірsNano, Россия). Кроме того, был использован сканирующий электронный микроскоп (SEM) Zeiss Supra 25 Carl Zeiss AG фирмы (Оберкохен, Германия), включая энергодисперсионные детекторы дифракции рентгеновского излучения и обратного рассеяния электронов (EDX и EBSD, National Instruments, Остин, Техас, США). Для проведения исследования растворы были кремниевую нанесены подложку на полированную с удельным сопротивлением 20-40 Ом*см.

3. Спектры фотолюминесценции пленок образцов стимулировались ультрафиолетовым светодиодом, а именно UVTOP280TO39HS, с длиной волны 285 нм. Излучение светодиода фокусировалось на поверхности пленки с помощью кварцевой линзы, расположенной под углом примерно 10° к нормали к поверхности пленки,

нацеливаясь на пятно диаметром 2 мм. Регистрация как спектров фотолюминесценции, так и спектров поглощения была осуществлена с помощью сложного волоконно-оптического спектрометра, оснащенного функцией сверхсветового рассеяния, AVANTES AvaSpec-ULSi2048L-USB2 OEM, который имеет спектральный диапазон 322-1100 нм и спектральное разрешение 4 нм.

4. Вольт-амперные характеристики образцов были определены в плоской геометрии с использованием схемы с двумя зондами. Измерения проводились при температурах в диапазоне от 290 до 100 К в отсутствие света и при воздействии имитируемого солнечного света. Для этой цели было использовано автоматизированное измерительное устройство с поддержкой азотного оптического криостата, в частности optCRYO198. Этот функцией криостат обладает стабилизации температуры И электронной автоматизированной интегрирован с измерительной системой, основанной на пикоамперметре Keithley 6487 и регулируемом источнике напряжения АКІР-1124.

5. Измерения импедансной спектроскопии проводились с использованием фазового анализатора импеданса/усиления Elins Z-500PX. Чтобы уменьшить внешние помехи, исследуемые образцы помещались в медную коробку со стенками толщиной 1 мм и электрически заземлялись на импедансное устройство.

Научные положения, выносимые на защиту.

1. Композитные пленки на основе металлоорганических перовскитов CH₃NH₃PbBr₃ и CH₃NH₃PbI₃, при 1-3 мас. % частиц GO, проявляют эффекты резистивного переключения, которые связаны с механизмами захвата и накопления носителей заряда в частицах GO [A1].

 На основе эффекта резистивного переключения пленок перовскита CH₃NH₃PbBr₃ и частиц GO создан двухполюсный перезаписываемый мемристор для нейроморфных операций. Обнаружено,

что время переключения составляет ~40 нс и эффект более выражен при температурах ниже 250 К, где преобладает электронный транспорт. Изменение электропроводности при температурах от 290 К до 100 К объясняется переходом от миграции ионов к электронной проводимости во внешнем электрическом поле с возможным влиянием фазового структурного перехода в пленке перовскита при T < 200 К [A4, A5, A7].

3. Композиты CQDs/PEDOT:PSS демонстрируют лучшие проводящие свойства, чем чистые пленки CQDs, а также более стабильны, чем чистая пленка PEDOT:PSS [A6].

4. Пленка CQDs, полученных из L-лизина с использованием микроволнового синтеза, обладает низким удельным сопротивлением, которое уменьшается с понижением температуры от 293 до 89 [A8].

5. Композитные пленки на основе перовскитов и углеродных квантовых точек (CQDs+MAPbBr3) обладают меньшей проводимостью в сравнении с чистыми углеродными квантовыми точками, но имеют повышенную фоточувствительность [A8].

Достоверность результатов и апробация работы.

Достоверность полученных результатов подтверждается их повторяемостью, воспроизводимостью и применением современного оборудования.

Результаты работы докладывались диссертантом на следующих международных и российских научных конференциях и семинарах:

1. Всероссийский симпозиум с международным участием, посвященный 125-летию со дня рождения академика Н.Н. Семенова «Физика и химия процессов и материалов: от идей к современной технике и технологии», Санкт-Петербург, Россия, 26-28 апреля, 2021 г.

 XII Международная конференция «Аморфные и микрокристаллические полупроводники», Санкт-Петербург, Россия, 5 - 7 июля 2021 г.

3. Четвертая международная конференция "Физика — наукам о жизни", Санкт-Петербург, Россия, 11-14 октября 2021 г.

 XXIII Всероссийской молодежной конференции по физике полупроводников и наноструктур, полупроводниковой опто – и наноэлектронике, Санкт-Петербург, Россия, 22-26 ноября 2021 г.

5. XV Российская конференция по физике полупроводников, Нижний Новгород, Россия, 3-7 октября 2022 г.

6. Международная конференция ФизикА.СПб, Санкт-Петербург, Россия, 17-21 октября 2022 г.

 25-я Всероссийская молодежная научная конференция «Актуальные проблемы физической и функциональной электроники», Ульяновск, Россия, 25-27 октября 2022 г.

 The Anniversary 10th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures "SPb OPEN–2023" Санкт-Петербург, Россия, 23-26 мая 2023 г.

 XIII Международная конференция «Аморфные и микрокристаллические полупроводники», Санкт-Петербург, Россия, 3 – 5 июля 2023 г.

Кроме того, результаты работы были неоднократно отмечены грантами комитета по науке и высшей школе правительства Санкт-Петербурга для студентов вузов, расположенных на территории Санкт-Петербурга, аспирантов вузов, отраслевых и академических институтов, расположенных на территории Санкт-Петербурга за 2021, 2022 и 2023 гг., а также премией отделения твердотельной электроники ФТИ им. А.Ф.Иоффе за 2021 и 2023 гг.

Публикации.

По результатам диссертации опубликовано 18 работ, в том числе 10 публикаций в рецензируемых научных журналах, индексируемых в базах данных Web of Science и Scopus [A1-A10] и 8 тезисов в трудах российских

конференций.

Личный вклад автора.

Все приведенные в диссертационном исследовании результаты были получены непосредственно автором или при его личном участии. Автор принимал участие в постановке целей и задач, проведении экспериментов, обработке исследовательских данных, анализе результатов, написанию опубликованных работ и их редактированию по представленным замечаниям рецензентов, созданию презентации опубликованной работы и представлению результатов на конференциях.

Структура НКР.

Научно-квалификационная работа состоит из введения, шести глав, заключения, списка сокращений, условных обозначений и списка литературы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность и новизна проведенных исследований, сформулированы цели и задачи работы, представлена значимость полученных результатов и приведены выносимые на защиту положения.

В первой главе представлена теоретическая информация об исследуемых материалах. Проведен литературный обзор актуальных исследований и современного уровня знаний в данной области. Приведено описание углеродных квантовых точек, проводящих полимерных гидрогелей, металлоорганических перовскитов, а также представлены их свойства и указаны сферы их применения.

Во второй главе описываются экспериментальные методики, использованные в работе. Приведено описание методов синтеза углеродных квантовых точек (куда входит химическая абляция,

карбонизация, лазерная абляция, электрохимическая микроволновое облучение, гидротермальная/сольвотермическая обработка), графена, проводящих полимерных гидрогелей И перовскита. Представлены основные принципы работы атомно-силового микроскопа, сканирующей электронной микроскопии, ИК-Фурье спектроскопии, анализатора размера оптической спектрометрии, частиц, вольт-амперной характеризации, импедансной спектроскопии. Также детально описаны методики, разработанные или улучшенные в рамках выполнения исследования.

В **третьей главе** приводятся результаты исследования эффекта резистивного переключения в композитных пленках, состоящих из металлоорганических перовскитов CH₃NH₃PbBr₃ и CH₃NH₃PbI₃ с добавлением частиц оксида графена (GO) в концентрации 1–3 мас.% и слоя [60]PCBM, что представлено на рисунке 1.

Рисунок 1 - Вольт-амперные характеристики образца Ag/[60]PCBM/CH₃NH₃PbBr₃:GO/PEDOT:PSS/ITO в темноте (а), образца

Ag/[60]PCBM/CH₃NH₃PbI₃:GO/PEDOT:PSS/ITO в темноте (б) и того же

образца при облучении имитатором солнечного света (в).

Экспериментально установлено, что эффект резистивного данных пленках проявляется переключения В В переходе ИЗ низкопроводящего в относительно высокопроводящее состояние при приложении как положительного, так и отрицательного смещения к электродам, независимо от условий освещения (в темноте или при имитации солнечного света). Предполагается, что механизм резистивного переключения обусловлен процессами захвата и накопления носителей заряда в частицах оксида графена. Исследованные композитные пленки на основе $CH_3NH_3PbBr_3(I_3)$:GO с добавлением слоя [60]PCBM демонстрируют значительный потенциал для применения в энергонезависимых ячейках RRAM памяти, поддерживающих как электрическую, так и оптическую запись информации.

В четвертой главе представлено исследование двухполюсного перезаписываемого мемристора на основе металлоорганического перовскита, который был создан на основе эффекта резистивного переключения и памяти (представленного в третьей главе). Был проведен обоих анализ вольт-амперных характеристик мемристоров, представленных на рисунке 2, и температурных вариаций в поведении BAX двухполюсного металлоорганического мемристора $CH_3NH_3PbBr_3:GO$, представленного на рисунке 3.

Рисунок 2 - Вольтамперные характеристики образцов (а) CH₃NH₃PbBr₃:GO и (б) CH₃NH₃PbI₃:GO при температуре 290 К.

Рисунок 3 - Температурная вольт-амперная характеристика двухполюсного перезаписываемого мемристора на основе металлоорганического перовскита CH₃NH₃PbBr₃:GO (GO ~ 2,5 мас.%) при температурах Т 290 - 100 К.

Было обнаружено, образец Au/CH₃NH₃PbBr₃:GO/Al демонстрирует проводимости при положительном и отрицательном два состояния что является типичным поведением биполярного напряжениях, переключения. При изменении напряжения от 0 В до +2,5 В наблюдается резкое увеличение тока на один порядок величины, указывающее на переход образца из состояния с низкой проводимостью (выключенное состояние) в состояние с высокой проводимостью (включенное состояние). "записи" Этот процесс эквивалентен процессу В ячейку памяти. Дальнейшее повышение напряжения до +15 В приводит к плавному увеличению тока. При обратном изменении напряжения от +15 В до +10 В образец продолжает находиться в состоянии высокой проводимости, однако при напряжениях ниже +10 В происходит возврат в состояние низкой соответствующее переходу проводимости, ИЗ включенного

состояния в выключенное во время процесса "стирания". При изменении напряжения от нуля до отрицательных значений около -2-3 В образец демонстрирует низкую проводимость с плавным увеличением тока. При дальнейшем изменении напряжения от -2,5 до -15 В наблюдается на один порядок, указывающее на увеличение тока переход из выключенного состояния во включенное. При обратном изменении напряжения от -15 В до -10 В образец продолжает находиться в состоянии высокой проводимости, однако при напряжениях ниже -10 В происходит возврат в состояние низкой проводимости. Это состояние низкой проводимости может поддерживаться BO время последующей положительной развертки напряжения для следующего цикла измерений.

Время переключения является важным параметром, определяющим надежность устройств энергонезависимой памяти, а также ключевой синаптической характеристикой. На рисунке 4а и 4б представлены результаты тестов на цикличность исследуемых образцов, где значения тока в выключенном (черный) и включенном (красный) состояниях регистрировались для каждого цикла при напряжении "считывания" +2 В. Количество протестированных циклов выносливости для образца 100. Au/CH₃NH₃PbBr₃:GO/Al около а образца составило для Au/CH₃NH₃PbI₃:GO/Al - около 10. Тем не менее, эти значения могут быть существенно увеличены для каждого образца. Следует отметить, что соотношение токов BO включенном И выключенном состояниях практически стабильно по мере увеличения количества циклов.

Рисунок 4 - Тест на цикличность запоминающих приборных структур на основе (a) CH₃NH₃PbBr₃:GO и (б) CH₃NH₃PbI₃:GO в выключенном (черный) и включенном (красный) состояниях при 2В для каждого С цикла.

В контексте исследования запоминающего устройства на основе Au/CH₃NH₃PbBr₃:GO/Al, была проведена оценка скорости переключения сопротивления в планарной геометрии. Для этого на электроды Au-Al подавалось импульсное напряжение. Анализируя данные, представленные на рисунке 5 и во вставке к рисунку 5, можно заметить, что задержка между моментами подачи импульсов напряжения И регистрации соответствующих импульсов тока составила приблизительно 40 наносекунд. Это значение задержки может быть интерпретировано как время процесса включения в рассматриваемом запоминающем устройстве.

Рисунок 5 - Задержка между импульсами напряжения и тока после подачи импульсного напряжения на электроды Au–Al запоминающего устройства Au/CH₃NH₃PbBr₃:GO/Al. Вставка: задержка между импульсами напряжения и тока составила около 40 нс.

Рисунок 6 - Температурная зависимость удельного сопротивления перезаписываемого мемристора на базе металлоорганического перовскита CH₃NH₃PbBr₃ с добавлением графенового оксида в концентрации приблизительно 2,5% по массе в диапазоне температур от 290 до 100 К.

Типичная температурная зависимость удельного сопротивления $\rho(T)$ композитной пленки CH₃NH₃PbBr₃:GO с концентрацией GO ~ 2,5 мас.%, измеренная в омическом режиме при U = 1 В в выключенном состоянии показана на рисунке 6. Наблюдаемая зависимость $\rho(T)$ типична для модели прыжкового транспорта с переменной длиной прыжка (VRH), где показатель

степени отличается от значений 0,25 и 0,5, что характерно для Моттовской модели переноса VRH [23] и транспортной модели гранулированных пленок, что может быть объяснено относительно узким температурным интервалом доступным в экспериментах. Было обнаружено, что локальные энергии активации E_a для уравнения (1):

$$\rho(T) = \rho_0 \exp\left(\frac{E_a}{kT}\right) \tag{1}$$

составляют $E_{a1} \sim 48~M \Im B$ и $E_{a2} \sim 24~M \Im B$ для T > 200~K и T = 200--130~K.

Результаты измерений импедансной спектроскопии, представленной на рисунке 7, подтверждают, что полученные графики Коула-Коула для исследуемых пленок коррелируют с моделью эквивалентной схемы, отражая последовательное сопротивление, сопротивление рекомбинации и геометрическую емкость, связанные с накоплением заряда, сопротивлением переносу заряда и/или присутствием дополнительных межфазных электронных состояний.

Рисунок 7 - Характеристика импеданса для Au/CH₃NH₃PbBr₃:GO/Au (a) Au/CH₃NH₃PbBr₃/Au (б) композитных пленок при различных смещениях в условиях окружающей среды; модель эквивалентной схемы

(B).

Изменение проводимости в диапазоне температур от 290 К до 100 К можно объяснить переходом от ионной миграции к электронной проводимости под воздействием внешнего электрического поля, что может быть связано с фазово-структурным переходом в перовскитной пленке при T < 200 К. Разработанные двухполюсные перезаписываемые мемристоры, демонстрирующие стабильные характеристики в широком диапазоне температур, открывают перспективы для их использования.

В пятой главе рассматривается влияние концентрации углеродных квантовых точек (CQDs) на электрические и оптические свойства их PEDOT:PSS. композитов проводящим полимером Исследования с **CQDs** CQDs/PEDOT:PSS обладают показали, что композиты И глобулярной структурой с диаметрами глобул в диапазоне примерно 50-300 нм, зависящими от концентрации PEDOT:PSS.

Рисунок 8 - Вольт-амперные характеристики композитов CQDs/PEDOT:PSS и чистого PEDOT:PSS в темноте (a). CQDs/PEDOT:PSS (50%) с прямым и обратным смещением в полулогарифмическом масштабе при различных температурах (77-300 K) (б).

Температурные зависимости удельного сопротивления для композитов CQDs/PEDOT:PSS с различным содержанием PEDOT:PSS (3%, 5%, 50%),

представленные на рисунке 8, демонстрируют слабый активационный характер и могут быть описаны выражением (2):

$$\rho(T) = \rho_0 exp(E_a/k_B T) \quad (2)$$

где E_a - энергия активации, T - температура, а k_B - постоянная Больцмана. Энергия активации была рассчитана из температурных зависимостей ρ(T) по формуле (3):

$$E_a(meV) = (200\Delta \log \rho)/(\Delta 1000/T) \quad (3)$$

где р - удельное сопротивление пленки.

Полученное значение активации для энергии композита CQDs/PEDOT:PSS (50%) составило приблизительно 7,5 МэВ. Это указывает на скачкообразную проводимость носителей заряда между примесными состояниями В запрещенной зоне. Неравномерное распределение агломератов CQDs в матрице PEDOT:PSS приводит к формированию участков на поверхности проводящего полимера PEDOT: PSS, не покрытых CQDs. Именно через эти участки происходит основной перенос носителей заряда в таких системах.

Также были изучены изменения удельного сопротивления композитов CQDs/PEDOT:PSS и чистого PEDOT:PSS в течение времени хранения.

Рисунок 9 - Зависимости удельного сопротивления от времени хранения образцов PEDOT:PSS и CQDs/PEDOT:PSS с различным содержанием CQDs и PEDOT:PSS.

Было выявлено, как показано на рисунке 9, что добавление CQDs к PEDOT:PSS способствует формированию более стабильного композита по сравнению с чистым PEDOT:PSS, что делает его перспективным для применения в качестве устойчивых слоёв переноса дырок в устройствах гибкой органической электроники.

В шестой главе описываются оптические И электрические характеристики чистых пленок углеродных квантовых точек (CQDs) и пленок CQDs+MAPbBr₃ в температурном интервале от 89 до 293 К. Целью исследования является анализ влияния CQDs на свойства перовскитов. Углеродные квантовые точки были синтезированы из L-лизина с использованием микроволнового метода, который отличается своей быстротой и простотой, позволяя получать CQDs средним размером менее 10 нм. Также представлен метод получения сухого порошка CQDs, растворимого В различных органических растворителях. Было установлено, что средний размер полученных частиц CQDs составляет от 1 до 30 нм, при этом максимальный размер частиц находится в диапазоне от 2 до 15 нм с пиковым значением размера 4 нм.

Вольт-амперные характеристики показывают, что пленка CQDs не демонстрирует фотоотклик, что указывает на то, что пленка CQDs не обладает заметной фотопроводимостью В видимом спектральном В CQDs+MAPbBr₃ диапазоне. то же время, композитная пленка фотоотклик, добавление демонстрирует ЧТО указывает на светочувствительности благодаря перовскиту, ЭТО снижает ХОТЯ электропроводность образца. Характеристика импеданса для CQDs на основе L-лизина подтверждает данные, полученные из вольт-амперных характеристик.

Рисунок 10 - Вольт-амперные характеристики пленки CQDs (Lлизин) при прямом и обратном смещении в линейном (а) и полулогарифмическом (б) масштабах при различных температурах;

температурная зависимость удельного сопротивления (в).

В исследовании был обнаружен эффект положительного температурного коэффициента удельного сопротивления в диапазоне температур от 90 до 290 К, представленный на рисунке 10, что является редким и уникальным явлением для углеродных структур и может быть использовано для создания уникальных органических устройств.

В заключении представлены основные результаты и выводы:

1. Установлено, что в пленках Ag/[60]PCBM/CH₃NH₃PbBr₃(I₃):GO/PEDOT:PSS/ITO/glass резистивное переключение проявляется как изменение из низкопроводящего состояния в высокопроводящее под воздействием как положительного, так и отрицательного напряжения, приложенного к электродам, как в темноте, так и под воздействием искусственного солнечного света. Также был обнаружен эффект фотоиндуцированного переключения В пленках СН₃NH₃PbI₃:GO. Предложенный механизм резистивного переключения связан с захватом и накоплением носителей заряда в частицах GO, интегрированных перовскитные структуры через В процессы восстановления и окисления. Исследованные композитные пленки на основе $CH_3NH_3PbBr_3(I_3)$:GO с добавлением слоя [60] PCBM демонстрируют значительный потенциал для применения в энергонезависимых ячейках RRAM памяти, поддерживающих как электрическую, так и оптическую запись информации.

2. Обнаружено, что эффект переключения двухполюсных перезаписываемых разработанных мемристоров, на основе металлоорганических перовскитов с использованием пленок CH₃NH₃PbBr₃:GO, демонстрирует время переключения порядка ~40 нс и температурах К, 250 более заметен при ниже что объясняется прекращением ионной проводимости и преобладанием электронного переноса. Данный эффект проявляется как при положительном, так и при отрицательном напряжении, при этом гистерезис ВАХ значительно снижается при температурах T < 250 К. Результаты измерений импедансной спектроскопии подтверждают, что полученные графики Коула-Коула исследуемых пленок коррелируют ДЛЯ с моделью эквивалентной схемы. отражая последовательное сопротивление, сопротивление рекомбинации и геометрическую емкость, связанные с накоплением заряда, сопротивлением переносу заряда и/или присутствием межфазных электронных состояний. Изменение дополнительных

проводимости в диапазоне температур от 290 К до 100 К можно объяснить переходом от ионной миграции к электронной проводимости под воздействием внешнего электрического поля, что может быть связано с фазово-структурным переходом в перовскитной пленке при T < 200 К. Разработанные двухполюсные перезаписываемые мемристоры, демонстрирующие стабильные характеристики в широком диапазоне температур, открывают перспективы.

3. Исследования электрических и оптических свойств композитов углеродных квантовых точек с проводящим полимером PEDOT:PSS показали, что морфология композитов CQDs/PEDOT:PSS (3%, 5%, 50%) характеризуется неоднородностью, шероховатостью и более сложной структурой по сравнению с чистыми CQDs, которые обладают развитой поверхностью. Отмечено, что шероховатость поверхности увеличивается с ростом концентрации PEDOT:PSS. При этом PEDOT:PSS способствует формированию областей, свободных от CQDs, что оказывает значительное влияние на электрические характеристики композитов. Комбинация CQDs с PEDOT:PSS позволяет создать стабильный композит, который проявляет улучшенную стабильность по сравнению с чистой пленкой PEDOT:PSS и перспективен для использования в стабильных слоях переноса дырок в устройствах гибкой органической электроники.

4. Были синтезированы углеродные квантовые точки, полученные из L-лизина с использованием микроволнового метода синтеза, а также получены их композиты с перовскитом CH₃NH₃PbBr₃. Электрические свойства этих композитов были исследованы в диапазоне температур от 89 до 293 К. Установлено, что средний размер частиц CQDs составляет от 1 до 30 нм, при этом максимальный размер частиц находится в диапазоне от 2 до 15 нм с пиковым значением размера 4 нм. Вольт-амперные характеристики показывают, что пленка CQDs не реагирует на свет, что CQDs не обладает указывает на TO, что пленка заметной фотопроводимостью в видимом спектральном диапазоне. В то же время,

композитная пленка CQDs+MAPbBr₃ реагирует на свет, что указывает на добавление светочувствительности благодаря перовскиту, хотя это снижает электропроводность образца. Характеристика импеданса для CQDs на основе L-лизина подтверждает данные, полученные из вольтамперных характеристик. Температурные зависимости вольт-амперных **CQDs** характеристик пленки демонстрируют положительный температурный коэффициент удельного сопротивления, что является редким и уникальным явлением для углеродных структур и может быть использовано для создания уникальных органических устройств.

Список публикаций автора по теме диссертации:

A1. Arkhipov A.V., **Nenashev G.V.**, Aleshin A.N. Resistive Switching and Memory Effects in Composite Films Based on Graphene Oxide in a Matrix of Organometallic Perovskites // Phys. Solid State 63, 525–529 (2021).

A2. Nenashev G.V., Istomina M.S., Shcherbakov I.P., Shvidchenko A.V., Petrov V.N., Aleshin A.N., Composite Films Based on Carbon Quantum Dots in a Matrix of PEDOT:PSS Conductive Polymer // Phys. Solid State 63, 1276– 1282 (2021).

A3. Kryukov R.S., Istomina M.S., **Nenashev G.V.**, Podkovyrina E.V., Aleshin A.N., Hydrothermal Synthesis of Carbon Quantum Dots (CQD's) and Research of Composite Films Based on CQD's // Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 978-981 (2022).

A4. Nenashev G.V., Aleshin A.N., Shcherbakov I.P., Petrov V.N., Effect of temperature variations on the behavior of a two-terminal organic–inorganic halide perovskite rewritable memristor for neuromorphic operations // Solid State Commun. 348, 114768 (2022).

A5. Ivanov A.M., **Nenashev G.V.**, Aleshin A.N., Low-frequency noise and impedance spectroscopy of device structures based on perovskite-graphene oxide composite films // J Mater Sci: Mater Electron. 33, 21666–21676 (2022).

A6. **Nenashev G.V.**, Istomina M.S., Kryukov R.S., Kondratev V.M., Shcherbakov I.P., Petrov V.N., Moshnikov V.A., Aleshin A.N., Effect of Carbon Dots Concentration on Electrical and Optical Properties of Their Composites with a Conducting Polymer // Molecules 27, 8000 (2022).

A7. Nenashev G.V., Aleshin A.N., Electrical Behavior of a Two-Terminal Organic–Inorganic Halide Perovskite Rewritable Memristor for Neuromorphic Operations // Bull. Russ. Acad. Sci. Phys. 87, 832–838 (2023).

A8. **Nenashev G.V.**, Kryukov R.S., Istomina M.S., Aleshin P.A., Shcherbakov I.P., Petrov V.N., Moshnikov V.A., Aleshin A.N., Carbon quantum dots: organic–inorganic perovskite composites for optoelectronic applications // J Mater Sci: Mater Electron. 34, 2114 (2023).

A9. Boudjemila L., Davydov V.V., **Nenashev G.V.**; Aleshin A.N., Malyshkin V.G., Exciton dynamics characterization by electrochemical impedance spectroscopy of CsPbBr3 (I3) perovskite nanocrystals for photovoltaic application // St. Petersburg. State. Polytech. Univ. J. Phys. Math. 16, 3, 278 – 283 (2023).

A10. Moshnikov V., Muratova E., Aleshin A., Maksimov A., **Nenashev G.**, Vrublevsky I., Lushpa N., Tuchkovsky A., Zhilenkov A., Kichigina O., Controlled Crystallization of Hybrid Perovskite Films from Solution Using Prepared Crystal Centers // Crystals, 4, 4 (2024).

Список цитированной литературы:

[1] Geim A. K., Graphene: Status and prospects // Science, 324, 5934, 1530–1534 (2009).

[2] Novoselov K. S., Geim A. K., Morozov S.V., Jiang D. et al., Electric Field Effect in Atomically Thin Carbon Films // Science, 306, 5696, 666-669 (2004).

[3] Xu X., Ray R., Gu Y., Ploehn H.J., et al., Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments // J. Am. Chem., 126, 40, 12736–12737 (2004). [4] Yuan T., Meng T., He P., Shi Y., et al., Carbon quantum dots: an emerging material for optoelectronic applications // J. Mater. Chem. C, 7, 6820–6835 (2019).

[5] Thangaraj B., Solomon P.R., Ranganathan S., Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review // Curr. Pharm. Des., 25, 13, 1455–1476 (2019).

[6] Nallayagari A.R., Sgreccia E., Pizzoferrato R., Cabibbo M., et al., Tuneable properties of carbon quantum dots by different synthetic methods // J. Nanostruct. Chem., 12, 565–580 (2022).

[7] Green M. A., Hishikawa Y., Dunlop E.D., Levi D.H., et al., Solar cell efficiency tables // Progress in photovoltaics, 27, 1, 3-12 (2019).

[8] Stranks S. D., Eperon G.E., Grancini G., Menelaou C., et al., Electronhole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber // Science, 342, 6156, 341-344 (2013).

[9] Eperon G.E., Horantner M.T., Snaith H.J., Metal halide perovskite tandem and multiple-junction photovoltaics // Nat. Rev. Chem., 1, 0095 (2017).

[10] Gao C., Du D., Shen W., Monolithic perovskite/c-Si tandem solar cell: Progress on numerical simulation // Carb Neutrality, 1, 9 (2022).

[11] Al-Ashouri A., Magomedov A., Roß M., Jost M., et al., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells // Science, 366, 857 (2019).

[12] Sahli F., Werner J., Kamino B.A., Brauninger M., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency // Nature Mater., 17, 820 (2018).

[13] Kim H.-S., Lee C.-R., Im J.-H., Lee K.-B., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% // Scientific reports, 2. 591 (2012).

[14] Kumar A., Gupta U., Tanya R., Chaujar R., et al., Simulation of perovskite solar cell employing ZnO as electron transport layer (ETL) for improved efficiency // Materials Today: Proceedings, 46, 4, 1684-1687 (2021).

[15] Cha J., Kim M., Lee W., Jin H., et al., Perovskite nanowires as defect passivators and charge transport networks for efficient and stable perovskite solar cells // Chemical Engineering Journal, 451, 3, (2023).

[16] Cho H., Jeong S.-H., Park M.-H., Kim Y.-H., Wolf C., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes // Science, 350, 6265 (2015).

[17] Choi J., Park S., Lee J., Hong K., Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching // Adv. Mater., 28, 31, 6562 (2016).

[18] Dou L., Yang Y. M., You J., Hong Z., Solution-processed hybrid perovskite photodetectors with high detectivity // Nat. Commun., 5, 5404 (2014).

[19] Liu Z., Cheng P., Kang R., Zhou J., Photo-Enhanced Resistive Switching Effect in High-Performance MAPbI3 Memristors // Adv. Mater. Interfaces, 10, 2201513 (2023).

[20] Nenashev G. V., Aleshin A. N., Shcherbakov I. P., Petrov V. N., Effect of temperature variations on the behavior of a two-terminal organic– inorganic halide perovskite rewritable memristor for neuromorphic operations, Sol. State Com. 348-349, 114768 (2022).

[21] Ivanov A. M., Nenashev G.V., Aleshin A.N., Low-frequency noise and impedance spectroscopy of device structures based on perovskite-graphene oxide composite films // J Mater Sci: Mater Electron, 33, 21666–21676 (2022).

[22] Xing G., Mathews N., Lim S. S., Yantara N., Low-temperature solution-processed wavelength-tunable perovskites for lasing // Nat. Mater., 13, 5, 476-480 (2014).

[23] Mott N.F., Conduction in glasses containing transition metal ions // Journal of Non-Crystalline Solids, 1, 1, 1-17 (1968).