Pyfol-

Рудинский Михаил Эдуардович

Исследование границы раздела и приповерхностных слоев полупроводника в системах электролит-полупроводник с помощью емкостных методов

01.04.10 - физика полупроводников

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Физико-техническом институте им. А.Ф. Иоффе Российской академии наук

Научный руководитель:	доктор физико-математических наук, профессор
	Гуткин Андрей Абрамович
Официальные оппоненты:	
	доктор физико-математических наук, доцент
	Зубков Василий Иванович
	Санкт-Петербургский государственный электротехнический
$\mathbf{y}^{_{1}}$	ниверситет «ЛЭТИ» им. В.И. Ульянова (Ленина) (СПбГЭТУ),
	профессор кафедры микро- и наноэлектроники
	доктор физико-математических наук, профессор
	Лебедев Александр Александрович
	Федеральное государственное бюджетное учреждение науки
Физико-техни	ический институт им. А.Ф. Иоффе Российской академии наук
	заведующий лабораторией полупроводниковых приборов
Ведущая организация:	
Федеральное государ	ственное бюджетное образовательное учреждение высшего
профессиона	льного образования «Санкт-Петербургский государственный
	политехнический университет»
Защита состоится 23 мая в	10 часов 00 минут на заседании диссертационного совета
	ххническом институте им. А.Ф. Иоффе, расположенном по
адресу:	min rection uncommy me turn in it is appet purious and
, 1 J	194021, Санкт-Петербург, Политехническая ул., д. 26.
С диссертацией можно ознак	омиться в библиотеке <i>ФТИ им. А.Ф. Иоффе.</i>
Автореферат разослан «»	
	рреферату в двух экземплярах, заверенные печатью, просьба
высылать по вышеуказанном	у адресу на имя ученого секретаря диссертационного совета.
Ученый секретарь	
диссертационного совета,	
доктор физико-математическ	их наук Л.М. Сорокин

Общая характеристика работы

В настоящее время емкостные измерения контакта электролит-полупроводник активно используются для исследования электронных свойств широкого спектра полупроводниковых структур в рамках метода электрохимического вольт-емкостного профилирования (Electrochemical capacitance-voltage profiling, ECV profiling) [1]. В связи с тем, что контакт электролит-полупроводник чаще всего служит инструментом для характеризации полупроводниковых материалов и гетероструктур, т.е. сам по себе не является объектом изучения, исследователи по умолчанию используют стандартный подход, основанный на классическом уравнении Пуассона, пренебрегая тем, что полученные ими экспериментальные характеристики являются эффективными [2] и для профиля распределения зачастую восстановления реального заряда требуется компьютерное моделирование с учетом, например, квантово-механических эффектов. квантовых эффектов, значительному К искажению результатов CV-профилирования может приводить присутствие электронных состояний, расположенных на поверхности полупроводника, в оксидном слое, или в слое Гельмгольца, а также химические процессы, происходящие на границе раздела электролит-полупроводник.

Таким образом, в связи с тем, что универсальной методики учета всех вышеперечисленных факторов на измеряемую дифференциальную емкость не существует, очевидно, что каждое новое исследование, связанное с вольт-фарадными измерениями контакта электролит-полупроводник требует внимательного рассмотрения всех возможных факторов, которые могут повлиять на результаты эксперимента. В противном случае, полученные профили распределения свободных носителей заряда, или другие характеристики образцов могут содержать ошибки и значительно отличаться от реальных. Помимо этого емкостные измерения контакта электролит-полупроводник могут быть использованы для оценки параметров всех вышеперечисленных эффектов, оказывающих влияние на дифференциальную емкость изучаемой системы.

Исследование нитридов элементов группы III (GaN, InN) и их сплавов является актуальной задачей ввиду того, что данные материалы наиболее перспективны для изготовления свето- и лазерных диодов, нетоксичных детекторов газов и ионов, а также сверхвысокочастотных транзисторов. В последнее время в связи с получением образцов достаточно хорошего качества большое внимание уделяется нитриду индия [3]. При этом контакт электролит-InN активно используется, например, для получения эффективного профиля распределения заряда в аккумуляционном слое, обнаруженном на поверхности n-InN [4] или для наращивания слоя анодного окисла, перспективного для использования в транзисторных структурах на основе нитрида индия [5]. Применение контакта электролит-GaN возможно, как минимум, в трех областях: управление реакциями в фотоэлектрохимической ячейке [6], разработка очень чувствительных и долговечных сенсоров для детектирования ионов, и полярных жидкостей [7], ECV-профилирование многослойных нитридных гетероструктур [8].

Помимо получения профилей распределения носителей заряда по толщине многослойных нитридных гетероструктур, контакт электролит-полупроводник применяется также для ECV-профилирования большого количества других структур, в

особенности, содержащих на поверхности толстые сильнолегированные слои. Примером такой гетероструктуры является широко используемый в наше время HEMT-транзистор на основе соединений InGaAs/AlGaAs/GaAs, содержащий тонкие квантово-размерные слои [9]. Получение реального профиля распределения заряда по такой структуре является также актуальной задачей.

Таким образом, <u>актуальность</u> представляемой работы определяется следующими факторами:

- Емкостные измерения контакта электролит-полупроводник в настоящее время активно используются при изучении широкого спектра полупроводниковых материалов и гетероструктур. В данной диссертации содержатся примеры корректной трактовки результатов экспериментов в случаях наличия состояний, локализованных на границе раздела и присутствия квантово-механических эффектов;
- В качестве объектов для изучения в данной диссертации выбраны вызывающие в настоящее время значительный интерес эпитаксиальные слои нитридов индия и галлия, а также их твердые растворы и такой широко используемый в современной электронике прибор, как НЕМТ-транзистор на основе арсенида галлия.

Цель работы:

Основной целью представляемой работы являлось исследование границы раздела электролит-полупроводник и приповерхностной области эпитаксиальных слоев нитридов индия и галлия, а также GaAs-HEMT-гетероструктуры с помощью емкостных измерений и компьютерного моделирования их результатов.

Для достижения поставленной цели в ходе работы решались следующие задачи:

- разработка программного обеспечения для расчета CV-характеристик контактов электролит-полупроводник, барьеров Шоттки и МДП-структур, с учетом влияния всех вышеупомянутых эффектов;
- теоретическое и экспериментальное исследование особенностей вольтемкостных характеристик контакта электролит – вырожденный n-InN;
- экспериментальное изучение электронных свойств анодного окисла и приповерхностных слоев полупроводника в системе электролит-n-InN;
- экспериментальное исследование особенностей вольт-емкостных характеристик контакта электролит n-GaN и электролит n-InGaN;
- определение реального профиля распределения свободных носителей заряда в многослойной GaAs-HEMT-структуре, основываясь на данных электрохимического вольт-емкостного профилирования.

Научная новизна диссертации определяется тем, что в рамках нее:

• с помощью численного решения самосогласованной системы уравнений Шредингера и Пуассона рассчитаны CV-характеристики барьера Шоттки на вырожденном полупроводнике n-типа в области аккумуляции электронов с учетом квантово-механических эффектов;

- обнаружены электронные состояния, локализованные на границе раздела водный раствор NaOH -n-InN, -n-InGaN и -n-GaN и оценены их параметры; экспериментально показано, что состояния на границе раздела водный раствор NaOH -n-InGaN и -n-GaN связаны с наличием гидроксильной группы в электролите;
- впервые проведено КFM-исследование (сканирующая Кельвин-зондмикроскопия) поверхности исходных и подвергнутых анодному оксидированию эпитаксиальных слоев n-InN, а также оценена величина работы выхода из анодного окисла на поверхности нитрида индия;
- развита методика определения профиля распределения концентрации свободных носителей заряда по сложной многослойной гетероструктуре, содержащей сильно легированные и квантово-размерные слои.

Практическая ценность:

- разработано программное обеспечение для расчета CV-характеристик контактов электролит-полупроводник, барьеров Шоттки и МДП-структур, с учетом влияния квантово-механических эффектов и электронных состояний у поверхности полупроводника;
- определены области напряжений смещения, в которых отсутствует влияние состояний, локализованных на границе раздела водный раствор NaOH-n-InN и -n-GaN, на дифференциальную емкость системы, что существенно для выбора рабочей точки при ECV-профилировании нитридных гетероструктур;
- оценена работа выхода электронов из анодного окисла на поверхности нитрида индия и построена качественная энергетическая диаграмма n-InN, покрытого анодным окислом;
- развита методика определения профиля распределения концентрации свободных носителей заряда по сложной многослойной гетероструктуре, содержащей сильно легированные и квантово-размерные слои.

<u>Результатом диссертационной работы являются следующие основные</u> положения:

- 1. Рост дифференциальной емкости системы электролит-полупроводник или МДП-структуры на вырожденном полупроводнике п-типа квантово-размерным аккумулирующим слоем без поверхностных состояний при увеличении аккумуляции электронов характеризуется монотонным уменьшением производной емкости по напряжению, также как и в случае структуры классическим аккумулирующим При слоем. ЭТОМ волновых функций аккумулированных проникновение носителей промежуточный изолирующий слой может привести к возрастанию емкости до величин, превышающих значения, полученные в классическом приближении.
- 2. Поверхностные состояния, существующие на границе раздела контакта водный раствор NaOH n-InN, значительно влияют на вольт-фарадные

характеристики данной системы. Энергетическое распределение этих состояний вблизи дна зоны проводимости (E_C) в диапазоне энергий ($E_C - 0.16$ эВ) ÷ ($E_C + 0.2$ эВ) может быть приближенно описано функцией Гаусса с дисперсией ~0.1 эВ, максимум которой лежит в диапазоне ($1.2 \div 1.4$)· 10^{12} см⁻²·эВ⁻¹ и находится примерно на 0.16 эВ ниже дна зоны проводимости. Характеристическое время перезарядки этих состояний меньше 10^{-4} с.

- 3. Средний электростатический потенциал окисленной поверхности n-InN выше, чем исходной. При этом увеличение толщины анодного окисла до ~5 нм приводит к уменьшению аккумуляции электронов, т.е. увеличению энергии дна зоны проводимости на поверхности n-InN относительно уровня Ферми на ~0.1эВ. Работа выхода электронов из этого окисла, образовавшегося при анодном оксидировании n-InN в водном растворе NaOH, меньше 5 эВ.
- 4. На границе раздела водного раствора NaOH с n-GaN и n-In_xGa_{1-x}N (x≈0.15) существуют электронные состояния, энергетические уровни которых лежат в верхней половине запрещенной зоны полупроводника. Плотность и характеристическое время перезарядки этих состояний увеличиваются при смещении их энергии вглубь запрещенной зоны. Для границы раздела n-GaN − 0.2M раствор NaOH в диапазоне энергий, лежащих на 0.15 0.3 эВ ниже дна зоны проводимости, плотность состояний с характеристическим временем перезарядки $10^{-4} \div 10^{-2}$ с находится в диапазоне $10^{12} \div 2 \cdot 10^{13}$ см⁻²эВ⁻¹.
- 5. Электрохимическое вольт-емкостное профилирование сложных гетероструктур с квантово-размерными слоями должно сопровождаться численным моделированием результатов. В этом случае оно может успешно использоваться для получения информации о геометрических и электронных параметрах многослойных структур. В частности, указанный метод позволяет рассчитывать профиль распределения концентрации носителей заряда в канале GaAs-HEMT-структуры и прилегающих к нему слоях, а также энергетическое и пространственное положение уровней размерного квантования в ней.

Апробация работы

Результаты диссертационной работы докладывались на XIII Международном симпозиуме "Нанофизика и наноэлектроника" (Нижний Новгород, 2009г.) и конференции по физике и астрономии для молодых ученых Санкт-Петербурга и Северо-Запада "ФизикА.СПб" (Санкт-Петербург, 2010г.).

Пубикации:

По материалам диссертации опубликовано 7 печатных работ, список которых приведен в конце автореферата.

<u>Личный вклад автора</u> заключается в разработке программного обеспечения CV Simulator, проведении экспериментов, обработке экспериментальных данных, участии в обсуждении результатов и подготовке статей.

Структура и объем диссертации:

Диссертация состоит из введения, пяти глав, заключения и списка цитированной литературы. Диссертация содержит 144 страницы, включая 41 рисунок и 4 таблицы. Список цитируемой литературы содержит 175 наименований.

Содержание работы

Во <u>введении</u> дана историческая справка, обоснована актуальность выбранной темы, приведено краткое содержание диссертации, сформулированы основная цель работы и научная новизна полученных результатов, приведены выносимые на защиту научные положения.

Первая глава посвящена моделированию CV-характеристики контакта электролит-полупроводник с учетом квантово-механических эффектов и существования электронных состояний, локализованных на границе раздела. Во введении к главе дан обзор литературы по физическим явлениям, которые могут влиять на емкость контакта электролит-полупроводник, а также по примерам применения компьютерного моделирования для анализа емкостных измерений полупроводниковых гетероструктур с квантово-размерными слоями.

По своим электрическим свойствам контакт электролит-полупроводник подобен МДП-структуре, в которой роль диэлектрического слоя играют слои Гуи и Гельмгольца на границе раздела, а также слой окисла на поверхности полупроводника. При этом, помимо емкости полупроводника, на дифференциальную емкость контакта электролит-полупроводник могут влиять электронные состояния на границе раздела, квантово-механические эффекты в полупроводнике и свойства диэлектрического слоя.

В разделе 1.2 описаны физические основы расчета и применяемый в работе компьютерного моделирования CV-характеристик электролит-полупроводник, МДП-структур и диодов Шоттки на базе численного самосогласованного решения уравнений Шредингера и Пуассона. Используемая позволяет учитывать влияние электронных одномерная модель состояний, локализованных у границы раздела, вырождения полупроводника, квантово-механических эффектов (размерное квантование в тонких слоях, проникновение волновых функций в диэлектрический слой на поверхности образца) и параметров диэлектрического слоя на дифференциальную емкость системы. Алгоритм компьютерного CV-характеристик был реализован нами в виде пакета программ «CV Simulator» в среде программирования Delphi и, помимо расчетной части, включает в себя также удобный редактор структур, позволяющий создавать структурные файлы, содержащие полное описание гетероструктуры, для которой проводятся вычисления. На «CV Simulator» получено авторское свидетельство (Свидетельство о государственной регистрации программы для ЭВМ № 2012611467).

Также в разделе 1.2 продемонстрирована корректность работы созданного программного обеспечения (ПО) и получено аналитическое выражение для классической

CV-характеристики диода Шоттки на однородно легированном вырожденном полупроводнике в приближении низких температур. Данное выражение может быть использовано ДЛЯ определения корректности выбранного при компьютерном моделировании расстояния от поверхности структуры, на котором выполняется граничное условие равенства нулю электрического поля.

Вторая глава диссертации содержит результаты теоретического и экспериментального исследования вольт-емкостной характеристики контакта электролит-вырожденный n-InN. Во введении к главе представлен обзор литературы по поверхностной аккумуляции электронов в эпитаксиальных слоях нитрида индия n-типа проводимости.

На свободной поверхности эпитаксиального n-InN существует узкий слой, аккумулирующий электроны, то есть сильный изгиб энергетических зон вниз. Предположительно, такое устройство приповерхностной области связано с существованием положительно заряженных электронных состояний на поверхности изучаемых образцов [10]. Характерной чертой аккумуляционного слоя в InN является высокая концентрация электронов, которая достигает величин, близких к 10^{21} см⁻³ [11]. Экспериментальные исследования также показали, что потенциальная яма, образуемая изогнутыми у поверхности энергетическими зонами, настолько узкая, что существенными становятся квантово-размерные эффекты и электроны аккумуляционного слоя заселяют две локализованные вблизи поверхности двумерные зоны [12].

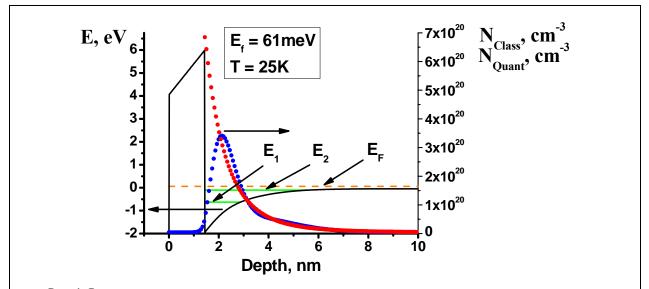
В разделе 2.2 диссертации представлены результаты классических и квантовых численных расчетов зависимости емкости контакта электролит-вырожденный полупроводник от напряжения смещения при комнатной температуре, выполненные с помощью ПО CV Simulator для выявления особенностей вольт-емкостной характеристики, в частности, системы электролит-n-InN, связанных с квантовыми эффектами в приповерхностной области полупроводника.

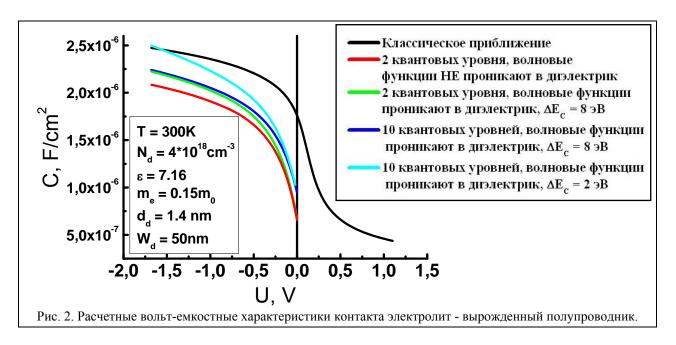
На Рис. 1 показан пример расчетных распределений плотности электронов в аккумуляционном слое на поверхности вырожденного полупроводника, полученных в классическом приближении и с учетом квантовых эффектов. Из рисунка видно, что полученные профили распределения плотности электронов значительно различаются. Ход дна зоны проводимости в этих расчетах также различался, однако это различие было не велико.

Мы рассмотрели два варианта положения левой границы, на которой ставится граничное условие равенства волновых функций электронов нулю: на границе между полупроводником и диэлектриком (волновые функции электронов в двумерном газе не проникают в диэлектрик), либо на внешней границе диэлектрика (проникновение волновых функций в диэлектрик учитывается). Помимо варианта расчета с учетом двух квантово-размерных подзон, для выявления влияния более высоких уровней размерного квантования на емкость системы, был произведен расчет с учетом 10 квантовых уровней.

Расчеты показали, что учет размерного квантования приводит к заметному уменьшению емкости по сравнению с классическим случаем (Рис. 2). Никаких особенностей на расчетных CV-характеристиках при уменьшении изгиба зон на поверхности не обнаружено, что связано с плавной делокализацией квантово-размерного состояния при уменьшении глубины квантовой ямы, а также с отсутствием пересечения

уровнем Ферми уровней размерного квантования вследствие вырождения электронов в объеме полупроводника. Проникновение волновых функций электронов диэлектрический слой может оказывать существенное влияние на емкость системы в случае большой толщины диэлектрика И малого разрыва 30H полупроводник/диэлектрик (голубая кривая на Рис. 2).




Рис. 1. Расчетные распределения плотности электронов в аккумуляционном слое на поверхности вырожденного полупроводника при низкой температуре в классическом приближении (красные точки) и с учетом квантовых эффектов (синие точки). Вариант расчета с учетом двух подзон размерного квантования.

При сильной аккумуляции первые две квантово-размерные подзоны определяют емкость рассматриваемой системы (зеленая кривая на Рис. 2). Однако по мере приближения к плоским зонам их относительное влияние падает (синяя кривая на Рис. 2). Важно заметить, что при напряжении плоских зон емкости контакта электролит вырожденный полупроводник, рассчитанные в классическом приближении и с учетом эффектов, должны совпадать. Однако ДЛЯ проведения корректного компьютерного моделирования процесса перехода рассматриваемой аккумуляции с квантовыми эффектами к обеднению, в котором работает классическое приближение, необходимо, чтобы глубина модельной структуры (W_d) была очень большой, а учитываемое количество квантовых энергетических уровней было сопоставимо с плотностью состояний в непрерывном спектре. При этом увеличение W_d приводит к увеличению количества точек в сетке дискретизации расчетной структуры, и, следовательно, к возрастанию времени расчета. Увеличение количества учитываемых уровней размерного квантования также повышает продолжительность расчета. Поэтому компьютерное вольт-емкостной характеристики моделирование контакта электролит-вырожденный полупроводник с учетом квантово-размерных эффектов в области перехода от слабой аккумуляции к обеднению представляется невозможным. В этой области можно использовать классическое приближение.

В разделе 2.3 представлены результаты экспериментального исследования CV-характеристики контакта электролит-n-InN. Образцы представляли собой слои n-InN толщиной порядка 1мкм, с ориентацией поверхности (0001), концентрацией электронов $(2\div3)\cdot10^{18}$ см⁻³ и шероховатостью поверхности (средним квадратическим отклонением

рельефа поверхности от плоскости) от 6 до 11 нм. В качестве электролита применялся 0.2M водный раствор NaOH с добавлением трилона Б.

В связи с тем, что количественный анализ экспериментальных CV-характеристик контакта электролит-n-InN в области аккумуляции затруднен из-за необходимости учета эффектов, параметры которых точно не известны (проникновение волновых функций электронов в диэлектрик, зависимость эффективной массы электронов от энергии, уменьшение ширины запрещенной зоны с увеличением концентрации носителей заряда), в диссертации с помощью численных расчетов была проанализирована область экспериментальной вольт-фарадной характеристики вблизи напряжения плоских зон и начала обеднения, где справедлив классический подход и влияние перечисленных эффектов незначительно. Типичный вид полученных зависимостей дифференциальной емкости исследуемой системы от напряжения смещения представлен на Рис. За. Как расчеты, напряжение плоских показывают численные 30H электролит-полупроводник с концентрацией носителей $2\cdot10^{18}$ см $^{-3}$ находится на ~ 0.03 В ниже минимума производной дифференциальной емкости системы по напряжению (~0.45В в данном случае). Это обстоятельство удобно использовать при анализе экспериментальных данных.

Аппроксимация экспериментальных данных расчетной зависимостью емкости системы от напряжения позволила показать, что на границе раздела электролит – n-InN существует массив поверхностных состояний, энергетическое распределение которых может быть приближенно описано хвостом функции Гаусса (Рис. 3b). При этом максимум функции Гаусса лежит в диапазоне $(1.2 \div 1.4)\cdot 10^{12}$ см $^{-2}\cdot 3$ В $^{-1}$ и находится примерно на 0.16 эВ ниже дна зоны проводимости, а дисперсия составляет ~ 0.1 эВ. Измерения зависимости активной проводимости системы от напряжения смещения показали, что обнаруженные состояния при частоте зондирующего сигнала 300 Гц успевают обмениваться носителями с полупроводником.

Практически линейное возрастание емкости, наблюдающееся на экспериментальных вольт-фарадных характеристиках в области аккумуляции при

отрицательных U (Рис. 3a) и отсутствующее на расчетных кривых (Рис. 2), свидетельствует о существовании поверхностных состояний с энергетическими уровнями, лежащими на \sim 0.5 эВ выше дна зоны проводимости, плотность которых растет с увеличением энергии.

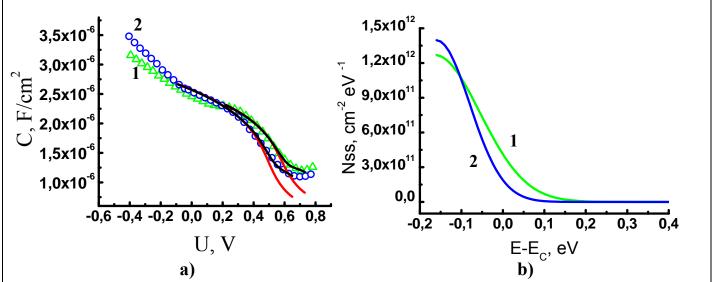


Рис. 3. (а) Экспериментальные и расчетные зависимости дифференциальной емкости контакта электролит-n-InN от напряжения смещения. Точки — эксперимент, красные линии — расчет без учета поверхностных состояний, черные линии — расчет с учетом поверхностных состояний. Частота зондирующего напряжения 300Гц. (b) Энергетический спектр состояний на границе раздела образцов 1 (кривая 1) и 2 (кривая 2).

<u>Третья глава</u> диссертации посвящена исследованию электронных свойств анодного окисла и его влияния на приповерхностные слои полупроводника в системе электролит-n-InN. Во введении к главе дан краткий обзор литературы по методам получения слоя окисла на поверхности нитрида индия и возможностям его применения.

Как известно, наличие аккумуляционного слоя является препятствием при разработке электронных приборов с металлическим затвором на основе InN, например, полевых транзисторов [5]. Выпрямляющих контактов Шоттки на эпитаксиальных слоях нитрида индия до настоящего времени получено не было [5], поэтому для создания полевых транзисторов на базе этого полупроводника необходимо использование изолирующих материалов в качестве подзатворного диэлектрика. Одним из возможных вариантов получения тонкого слоя диэлектрика на поверхности InN является использование ее окисления, которое может приводить к модификации поверхностных состояний, изменяющей аккумуляцию носителей заряда в приповерхностной области полупроводника. Удобным способом окисления нитрида индия является анодное оксидирование в электролите [5].

В третьей главе диссертации представлены результаты исследования поверхности эпитаксиальных слоев n-InN до и после ее анодного оксидирования. Рельеф поверхности образцов определялся в полуконтактном режиме атомно-силового микроскопа (ACM), а для измерений распределения локального потенциала использовался двухпроходный метод сканирующей Кельвин-зонд-микроскопии (СКЗМ или KFM).

Анализ результатов сканирования квадратной области размером 3x3 мкм показал, что для исходной поверхности n-InN среднее квадратичное отклонение рельефа от

плоскости Δh и средняя квадратичная флуктуация потенциала $\Delta \Phi$ составляют соответственно 7.0 нм и 2.4 мВ, а впадинам на поверхности образца соответствует понижение электростатического потенциала поверхности относительно потенциала зонда. Такое соответствие может объясняться отсутствием изгиба энергетических зон вниз для перпендикулярных плоскости c плоскостей m и a [13], которые в некотором количестве выходят наружу в боковых стенках впадин рельефа, либо соответствием мест выхода отрицательно заряженных дислокаций впадинам на рельефе, как это наблюдалось в GaN. Следует отметить, что измеряемая нами величина падения потенциала в ямках рельефа практически не зависела от расстояния между зондом и поверхностью при втором проходе СКЗМ при изменении этого расстояния (Y) в диапазоне от 30 до 150 нм, что свидетельствует об отсутствии существенного влияния паразитных эффектов на изменение потенциала (отсутствии артефактов) [14,15].

После проведенных измерений исходные образцы подвергались анодному окислению в 0.2 M водном растворе NaOH с добавкой трилона Б (0.8 г NaOH и 3.72 г трилона Б на 100 г воды) посредством приложения анодного напряжения, которое увеличивалось от 0.8 до 1.5 В по мере уменьшения анодного тока. Судя по результатам атомно-силовой микроскопии, толщина полученного таким образом окисла достигала величины 5÷7 HM. Нарастание анодного окисла приводило К изменению CV-характеристики изучаемой системы (Рис. 4). Важно заметить, что положение минимума емкости на Рис. 4, соответствующее началу перехода приповерхностного слоя полупроводника от истощения к инверсии, при достаточно высокой толщине слоя окисла смещается к меньшим величинам постоянного напряжения смещения (кривая 5, Рис. 4). Поскольку увеличение толщины диэлектрика (как и в МДП-структуре) в отсутствии каких-либо дополнительных изменений должно приводить к увеличению напряжения перехода к инверсии из-за увеличения падения постоянного напряжения на слое диэлектрика, указанный выше эффект прямо показывает, что, по крайней мере, при высоких толщинах окисного слоя изгиб энергетических зон вниз на поверхности n-InN при нулевом смещении уменьшается.

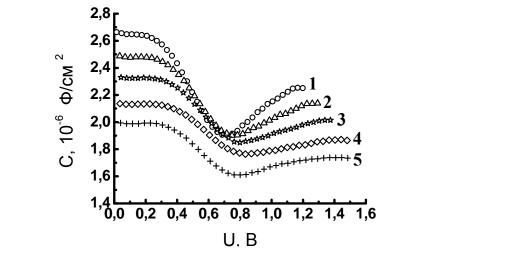


Рис. 4. Зависимость дифференциальной емкости системы электролит — окисел — n-InN от напряжения смещения на различных этапах анодного окисления. Потенциал на аноде (InN) и время окисления увеличиваются с номером кривых: $1 - U_A = 1.2B$, $2 - U_A = 1.3B$, $3 - U_A = 1.4B$, $4 - U_A = 1.5B$, $5 - U_A = 1.5B$. Кривая 5 соответствует большему времени окисления по сравнению с кривой 4.

Компьютерный анализ полученных в ходе наших исследований вольт-фарадных характеристик, проведенный с использованием программы CV Simulator, подтвердил качественный вывод о том, что по мере нарастания окисла приповерхностная аккумуляция электронов становится слабее (при толщине окисла \sim 5 нм приповерхностный изгиб зон уменьшается на \sim 0.19B), а также показал, что плотность поверхностных электронных состояний, расположенных ниже уровня Ферми при нулевом смещении, уменьшается.

КFМ-исследование поверхности образцов, подвергнутых анодному оксидированию, показало, что величины Δh и $\Delta \Phi$ для окисленной поверхности соответственно составили 6.4 нм и 2.1 мВ. В отличие от не окисленной поверхности, впадинам на рельефе окисленной поверхности в заметном числе случаев не соответствуют минимальные значения потенциала поверхности. По-видимому, это связано с дополнительными флуктуациями зарядов в окисном слое.

Основной особенностью электростатического потенциала поверхности n-InN, подвергнутой сильному анодному окислению, является то, что его средняя величина заметно выше средней величины потенциала исходной поверхности n-InN. Увеличение электростатического потенциала поверхности и энергии дна зоны проводимости на поверхности n-InN при анодном оксидировании может быть объяснено только тем, что работа выхода электронов для анодного окисла ниже, чем работа выхода для исходной поверхности n-InN. Сказанное выше сводится к качественной энергетической диаграмме исходного и окисленного образцов, представленной на Рис. 5, которая также позволяет, зная работу выхода зонда, грубо оценить работу выхода анодного окисла InN (эта величина меньше 5 эВ).

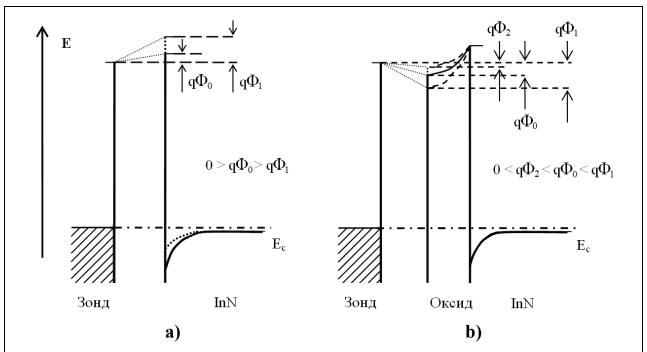


Рис. 5. Качественная энергетическая диаграмма исходного n-InN (a) и n-InN, покрытого слоем анодного окисла (b). На Рис. (a) показано изменение потенциала Φ под влиянием изменения изгиба зон, на Рис. (b) - под влиянием флуктуации заряда в окисле, Φ_0 в этом случае соответствует среднему заряду в окисле. E – энергия электрона, q – абсолютная величина заряда электрона.

В <u>четвертой главе</u> представлены результаты исследования электронных свойств контакта электролита с эпитаксиальными слоями n-GaN и n-InGaN с помощью измерений зависимостей дифференциальной емкости и активной проводимости системы от приложенного напряжения смещения. Во введении к главе даны сведения о наиболее часто встречаемых в литературе способах применения контакта электролита с нитридом галлия, о существующих результатах изучения его электронных свойств, а также моделирования электронной структуры чистой поверхности GaN. Важно отметить, что на свободной поверхности n-GaN, в отличии от n-InN, существует слой, обедненный электронами.

Образцы n-GaN были выращены на сапфировых подложках методом газофазной эпитаксии из металлоорганических соединений, толщина эпитаксиального слоя ~ 1 мкм. Концентрация электронов составляла $\sim 10^{18}$ см⁻³. Образцы n-In_xGa_{1-x}N получены молекулярно-пучковой эпитаксией с плазменной активацией на подложке из Al_2O_3 , покрытой буферным слоем GaN. Толщина эпитаксиального слоя составляла ~ 1 мкм, а концентрация электронов в них была $\sim 10^{18}$ см⁻³. Все образцы имели полярную ориентацию поверхности (0001). В качестве электролитов использовались 0.2М водный раствор NaOH, 0.2М водный раствор NaCl или 0.2 М водный раствор HCl.

На Рис. 6а представлены измеренные нами зависимости квадрата обратной дифференциальной емкости контакта полупроводник — раствор NaOH от приложенного напряжения (U). Как видно из рисунка, в области напряжений смещения, близких к напряжению плоских зон U_{FB} , и для GaN и для InGaN наблюдается заметное отклонение от идеальной зависимости, говорящее о значительном увеличении емкости по сравнению с величиной для идеального случая. В принципе такое отклонение может быть вызвано тремя причинами:

- 1. достаточно глубокими (относительно дна зоны проводимости полупроводника) состояниями на границе раздела и в изолирующем слое;
- 2. увеличением концентрации основной мелкой донорной примеси в приповерхностных слоях полупроводника;
- 3. появлением в приповерхностных слоях полупроводника дефектов с глубокими уровнями.

Однако указанные отклонения были зафиксированы и после травления поверхности полупроводника в том же электролите при освещении ультрафиолетовым излучением. Это позволяет связать наблюдаемое увеличение дифференциальной емкости с перезарядкой глубоких состояний на границе раздела.

В этом случае, если период переменного зондирующего напряжения оказывается сравнимым с характеристическим временем перезарядки таких состояний (τ), в области напряжений, соответствующей появлению их вклада в дифференциальную емкость, должно наблюдаться возникновение активной дифференциальной проводимости системы (G_{SS}), которая связана с запаздыванием перезарядки относительно изменения напряжения смещения [16]. Как видно из Рис. 6b, подобное поведение зависимости дифференциальной активной проводимости G от напряжения смещения действительно наблюдалось. Таким образом, обнаруженные состояния существенно отличаются от состояний на границе раздела электролит-n-InN, которые имеют малое по сравнению с периодом зондирующего напряжения характеристическое время перезарядки.

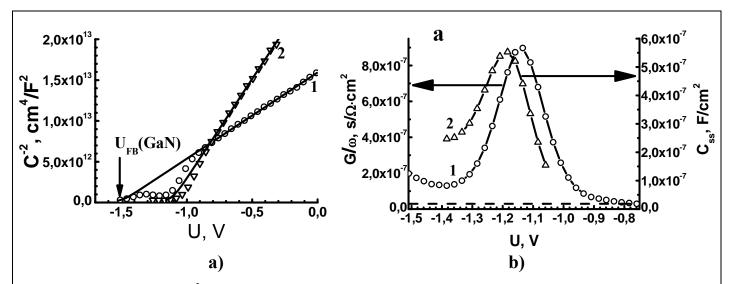


Рис. 6. (а) Зависимости $C^2(U)$ для контакта n-GaN (1) и n-In_xGa_{1-x}N, $x\approx0.15$ (2) с 0.2М водным раствором NaOH. Точки - эксперимент, сплошные линии — расчет для идеального барьера Шоттки на полупроводнике с соответствующей концентрацией свободных электронов с учетом хвоста фермиевского распределения носителей. (b) Зависимости активной проводимости G и связанной с состояниями на границе раздела емкости C_{SS} от напряжения

смещения для контакта n-GaN – 0.2M раствор NaOH. Частота зондирующего сигнала 300 Гц.

Для приближенной оценки параметров обнаруженных состояний величины связанных с перезарядкой поверхностных состояний емкости (C_{SS}) и активной проводимости (G_{SS}) были выделены нами из измеряемых полных дифференциальных емкости и активной проводимости (Рис. 6b). Предполагая, что электронные состояния на границе раздела, имеющие одну энергию, характеризуются одним временем перезарядки τ и их плотность и величина τ изменяются не сильно при изменении их энергии на величину порядка kT (k — постоянная Больцмана, T — абсолютная температура), можно получить в системе СИ следующие выражения для активной и емкостной проводимостей, связанных с перезарядкой этих состояний в идеальной МДП — структуре [16]:

$$G_{ss} = \frac{q^2 N_{ss}}{2\tau} \ln(1 + \omega^2 \tau^2)$$
 (1)

$$\omega C_{SS} = \frac{q^2 N_{ss}}{\tau} arctg(\omega \tau) \quad (2)$$

Здесь q — заряд электрона, ω — угловая частота переменного зондирующего напряжения, N_{ss} - энергетическая плотность состояний на границе раздела.

Численное решение уравнений (1) и (2) при экспериментальных значениях G_{SS} , C_{SS} и ω позволяет оценить параметры N_{SS} и τ для состояний, которые вносят заметный вклад в величины G_{SS} , C_{SS} при заданной частоте зондирующего напряжения. Полученные таким образом зависимости N_{SS} и τ от энергии состояний (E_{SS}) относительно дна зоны проводимости для контакта n-GaN с раствором NaOH при двух частотах зондирующего напряжения представлены на Рис. 7. Как видно из этого рисунка, значения N_{SS} и τ , при различных частотах несколько различаются. Это главным образом связано с нестрогим выполнением условий, при которых справедливы соотношения (1) и (2) и, по-видимому, определяется большой величиной дисперсии характеристического времени перезарядки τ для зондируемых состояний.

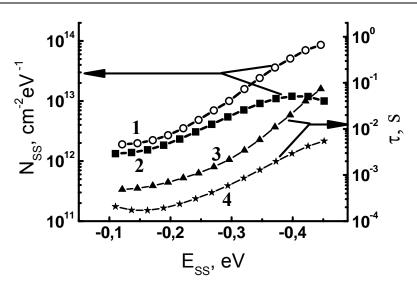


Рис. 7. Зависимости плотностей и характеристического времени перезарядки состояний на границе раздела n-GaN - 0.2M раствор NaOH от энергии. 1, 3 - частота зондирующего напряжения 300 Γ ц, 2, 4 - частота зондирующего напряжения 1000 Γ ц.

Хотя для исходных образцов в обычной комнатной атмосфере средняя квадратичная флуктуация поверхностного потенциала, измеренная нами методом сканирующей Кельвин-зонд-микроскопии не превышала 6 мэВ, эти флуктуации могли увеличиться при контакте с электролитом из-за неоднородности в распределении адсорбированных атомов. Такие флуктуации увеличивают дисперсию τ . Другими причинами повышенной дисперсии могут быть различные расстояния центров на границе раздела от поверхности полупроводника и различие в природе этих центров. Вместе с тем для состояний с $E_{SS} = -0.3 \div -0.15$ эВ величины параметров, полученные при сильно различающихся частотах, разнятся не слишком сильно (Рис. 7), что позволяет использовать их для приближенной оценки полной плотности состояний в этой области энергий.

Для контакта n-InGaN с раствором NaOH вычисленные значения N_{SS} и τ при частоте 0.3 кГц с изменением энергии качественно вели себя, так же как и для GaN. При $E_{SS} = -0.18 \div -0.08$ эВ $N_{SS} \approx 10^{14}$ см $^{-2}$ эВ $^{-1}$ и $\tau \approx 0.1$ с. Однако, частотная зависимость этих величин была более сильной.

Отклонения экспериментальной $C^2(U)$ зависимости от идеальной, подобные представленным на Рис. 6а, также наблюдались нами для контакта n-GaN с водным раствором КОН и отсутствовали в случае использования в качестве электролита водных растворов HCl и NaCl. Эти обстоятельства позволяют предположить, что состояния на границе раздела с раствором NaOH и КОН связаны с адсорбцией на поверхности полупроводника гидроксильной группы.

Проведенные исследования также показывают, что при ECV-профилировании гетероструктур на основе GaN рабочая точка для измерения емкости между этапами травления должна выбираться из области напряжений больше -0.8B, где влияние обнаруженных состояний практически отсутствует.

Помимо исследования электронных свойств границы раздела и приповерхностной области гомогенных полупроводниковых слоев, емкостные исследования системы

электролит - полупроводник также могут применяться для получения реального профиля распределения заряда по сложной гетероструктуре с тонкими квантово-размерными слоями. В связи с этим, пятая глава посвящена использованию контакта электролит-полупроводник ДЛЯ электрохимического вольт-емкостного (ECV) профилирования концентрации свободных носителей заряда в НЕМТ-гетероструктурах на основе соединений InGaAs/AlGaAs/GaAs с применением компьютерного моделирования и комплекса взаимодополняющих экспериментальных методов, включавших в себя просвечивающую электронную микроскопию (ПЭМ), вторичную ионную массспектрометрию (ВИМС) и локальную катодолюминесценцию (КЛ). Во введении к главе обосновано использование ECV-профилирования и компьютерного моделирования при исследовании распределения заряда по GaAs-HEMT-гетероструктуре, а также представлен краткий обзор литературы по примерам расчета реального профиля распределения заряда, который в ряде случаев может отличаться от эффективного профиля $N_{CV}(z)$, полученного в рамках приближения обедненного слоя [1].

Экспериментальные образцы представляли собой используемые для изготовления НЕМТ-транзисторов псевдоморфные двухсторонние гетероструктуры InGaAs/AlGaAs/GaAs, выращенные методом молекулярно пучковой эпитаксии на полуизолирующих подложках GaAs с ориентацией (100). Параметры слоев структур приведены в Таблице. Как показала ПЭМ, слои и интерфейсы НЕМТ-структур характеризовались высоким кристаллическим совершенством, и толщины слоев достаточно хорошо согласовались с величинами, заданными при выращивании. Отличительной особенностью изучаемых структур является наличие одного или нескольких сильно легированных слоев, расположенных ближе, чем канал, к поверхности структуры (Таблица). В этих условиях оказывается невозможным при измерении C(V)характеристики охватить слоем объемного заряда канал структуры. Поэтому для определения распределения концентрации свободных носителей заряда в таких полупроводниковых многослойных гетероструктурах необходимо применять метод ECV-профилирования.

В качестве электролита в этом исследовании использовался 0.2 М водный раствор NaOH с добавкой трилона Б. Травление HEMT-структур проводилось с шагом 1 нм до толщин удаленного слоя ~60 нм. При этом дно кратера травления получалось зеркально-гладким. Эффективная концентрация свободных носителей $N_{CV}(z)$ измерялась на каждой ступени травления при одинаковом постоянном напряжении обратного смещения, величина которого была выбрана в ходе предварительных CV-экспериментов и составляла -0.4В. Полученное ходе ECV-профилирования В экспериментальное распределение концентрации носителей $N_{CV}(z)$ трех заряда НЕМТ-структур, выращенных в разных технологических процессах, показано точками на Рис. 8а.

Восстановление реального профиля распределения свободных носителей заряда n(z) по глубине HEMT-структуры может быть выполнено с помощью моделирования экспериментального $N_{CV}(z)$ профиля на основе численного самосогласованного решения уравнений Пуассона и Шредингера. Для этого нами была рассмотрена одномерная модель контакта электролит - исследуемая HEMT-структура, предполагающая, что границы гетероинтерфейсов являются плоскими и резкими. Программное обеспечение

CV Simulator в рамках такой модели предоставляет возможность найти распределение потенциала и плотности заряда по толщине HEMT-структуры, определить полный заряд и, затем рассчитать зависимость дифференциальной емкости от напряжения смещения C(V) и эффективный профиль распределение концентрации электронов $N_{CV}(z)$. Вычисление этого профиля при вариациях параметров структуры позволяет добиться наилучшего согласия с экспериментом. В этом случае можно полагать, что полученные при расчетах распределения потенциала и плотности свободных носителей тока достаточно хорошо соответствуют таковым в исследуемой реальной структуре.

		Таб	лица. П	араметрі	ы слоев иссл	едуемых	НЕМТ-с	структур.		
Nº	Состав	Толщина, нм		Элементный состав, x, y			Уровень легирования Si, см ⁻³			
		Эпит. рост	ПЭМ	Расчет	Эпит. рост	ВИМС	Расчет	Эпит. рост	ВИМС	Расчет
1.	n+-GaAs:Si	50-80	60	50	0	0	0	$4.0 \cdot 10^{18}$	$3.2\cdot 10^{18}$	$3.2\cdot 10^{18}$
				10					$5.5 \cdot 10^{18}$	$4.0\cdot 10^{18}$
2.	n-Al _x Ga _{1-x} As:Si	3-5	4.8	4.8	0.90	0.57	0.90	$5.0 \cdot 10^{16}$		$5.0 \cdot 10^{16}$
3.	n-GaAs:Si	15-20	13	13	0	0	0	5.0 · 10 ¹⁶		$5.0 \cdot 10^{16}$
4.	n-Al _x Ga _{1-x} As:Si	10-15	27	10	0.22	0.23	0.23	5.0 · 10 ¹⁶		$5.0 \cdot 10^{16}$
5.	n-Al _x Ga _{1-x} As:Si	15-20	21	15	0.22	0.23	0.23	$1.6 \cdot 10^{18}$	$2.7 \cdot 10^{18}$	$1.8 \cdot 10^{18}$
6.	$Al_xGa_{1-x}As$	3-5		2	0.22	0.23	0.23	Нелегированный		$1.0 \cdot 10^{15}$
7.	GaAs	1-3	< 1	1.5	0	0	0	»		$1.0 \cdot 10^{15}$
8.	$In_yGa_{1-y}As$	11-15	13	12	0.17	0.13	0.17	»		$1.0 \cdot 10^{15}$
9.	GaAs	1-3	2.8	2.8	0	0	0	»		$1.0 \cdot 10^{15}$
10.	$Al_xGa_{1-x}As$	3-5	100	3	0.22	0.23	0.23	»		$1.0 \cdot 10^{15}$
11.	n-Al _x Ga _{1-x} As:Si	5-10		4.5	0.22	0.23	0.23	$1.7 \cdot 10^{18}$	$1.3\cdot 10^{18}$	$1.7 \cdot 10^{18}$
12.	$Al_xGa_{1-x}As$	100		92.5	0.22	0.23	0.23	Нелегированный		$1.0 \cdot 10^{15}$
13.	GaAs	500	500	500	0	0	0	»		$1.0\cdot 10^{15}$

Как показали расчеты, величина толщин и уровня легирования эпитаксиальных слоев НЕМТ-структуры является одним из наиболее важных подгоночных параметров при вычислении профиля распределения свободных носителей. Полученный из модельного анализа профиль распределения легирующей примеси $N_d(z)$ достаточно хорошо согласуется с данными эпитаксиального роста и метода ВИМС (Таблица). Сопоставление результатов расчета с экспериментальным профилем распределения концентрации электронов представлено на Рис. 8а. Величины параметров, обеспечивающие наилучшее согласие расчета и эксперимента, приведены в Таблице. Как видно из приведенных данных, изменение при расчете параметров структуры в пределах погрешностей, допустимых в режимах её изготовления, позволяет качественно воспроизвести основные особенности экспериментального профиля удовлетворительно И количественно согласовать расчет $N_{CV}(z)$ профиля с экспериментом (Рис. 8a).

Полученные в результате расчета плотность электронов в квантовых ямах и распределение потенциала при нулевом напряжении смещения, приложенном к системе электролит – гетероструктура, представлены на Рис. 8b. Как видно из этих расчетов,

плотность электронов в первом сильно легированном слое AlGaAs (слой 5) не велика. Максимум $N_{CV}(z)$, находящийся в экспериментальном профиле примерно в месте расположения этого слоя, связан с электронами в канале (слой 8), заполнившими вторую квантово-размерную подзону (E_1) . Таким образом, очевидно, что эффективный (экспериментальный) профиль распределения заряда по структуре значительно отличается от реального (Рис. 8а и b). Пренебрежение этим фактом может привести к ошибкам при разработке новых и характеризации уже готовых НЕМТ-транзисторов на основе арсенида галлия. Электроны, заполнившие первую квантоворазмерную подзону канала (E_0) , дают следующий максимум, находящийся в области канала (Рис. 8b).

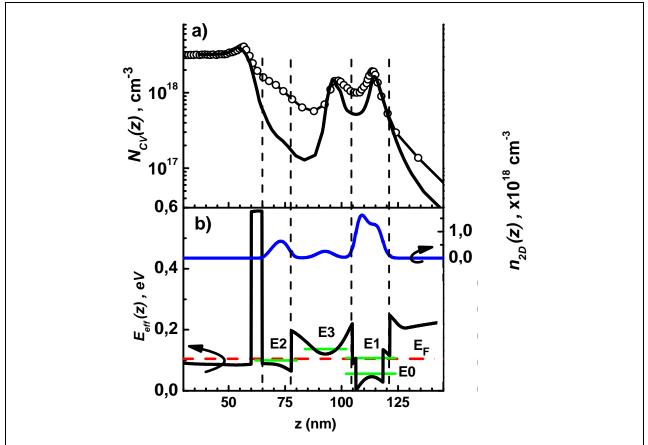


Рис. 8. Сопоставление экспериментального и рассчитанного профилей эффективной концентрации носителей заряда (a) и вычисленные распределения концентрации двумерных электронов, их уровни энергии и вид дна зоны проводимости (b). Точки – эксперимент, сплошные линии – расчет.

Проведенные вычисления позволяют также определить положение энергетических уровней электронов в областях размерного квантования (Рис. 8b). Разница минимальных энергий в первой и второй квантоворазмерных подзонах в канале $E_I - E_0$ составляет \sim 51 мэВ. Эта величина может быть сопоставлена с данными исследования спектров катодолюминесценции. В нашем случае в спектре КЛ наблюдаются два интенсивных максимума, расположенные при энергиях 1.281 эВ и 1.335 эВ. Расчеты показали, что эти максимумы связаны с рекомбинацией носителей в InGaAs канале HEMT-структуры. Разница между энергиями пиков на спектре КЛ равна 54 мэВ, что практически совпадает с нашими расчетами из уравнения Шредингера (51мэВ), и, следовательно, подтверждает правильность использованной физической модели.

Основные результаты работы:

- 1. Создано программное обеспечение CV Simulator, которое позволяет моделировать CV-характеристики контактов электролит-полупроводник, МДП-структур и диодов Шоттки на основе полупроводниковых гетероструктур с учетом квантово-механических эффектов и поверхностных состояний.
- 2. Получено аналитическое выражение для классической CV-характеристики диода Шоттки на однородно легированном вырожденном полупроводнике в приближении низких температур. Данное выражение может быть использовано при компьютерном моделировании для определения корректности выбора величины расстояния от поверхности структуры, на котором выполняется граничное условие равенства нулю электрического поля.
- 3. Показано, что рост дифференциальной емкости системы электролит-полупроводник или МДП-структуры на вырожденном полупроводнике п-типа с квантово-размерным аккумулирующим слоем без поверхностных состояний при увеличении аккумуляции электронов характеризуется монотонным уменьшением производной емкости по напряжению, также как и в случае структуры с классическим аккумулирующим слоем. При этом проникновение волновых функций аккумулированных носителей в промежуточный изолирующий слой может привести к возрастанию емкости до величин, превышающих значения, полученные в классическом приближении.
- 4. Показано, что на границе раздела $0.2~\mathrm{M}$ водный раствор NaOH n-InN существует массив поверхностных состояний. Энергетическое распределение этих состояний вблизи дна зоны проводимости может быть приближенно описано хвостом функции Гаусса, максимум которой лежит в диапазоне $(1.2 \div 1.4) \cdot 10^{12}~\mathrm{cm}^{-2} \cdot \mathrm{эB}^{-1}$ и находится примерно на $0.16~\mathrm{эB}$ ниже дна зоны проводимости, а дисперсия составляет $\sim 0.1~\mathrm{эB}$.
- 5. Обнаружено, что впадинам на поверхности исходных слоев n-InN, соответствует уменьшение электростатического потенциала на несколько мВ, тогда как на поверхности, подвергнутой анодному окислению с толщиной окисла ~5 нм, такое соответствие в заметном числе случаев нарушается. Причиной этого несоответствия, по-видимому, являются флуктуации заряда в окисле.
- 6. Обнаружено, что при увеличении толщины анодного окисла наблюдается заметное увеличение энергии дна зоны проводимости на поверхности п-InN. Средний потенциал окисленной поверхности (толщина окисла не менее 5 нм) выше, чем исходной, и положителен относительно потенциала зонда СКЗМ, покрытого слоем Co/Cr, что свидетельствует о том, что работа выхода электронов из анодного окисла, образовавшегося на поверхности InN при его анодном оксидировании в водном растворе NaOH с добавлением трилона Б, меньше 5 эВ.
- 7. На границе раздела 0.2 М водного раствора NaOH с n-GaN и n-In $_x$ Ga $_{1-x}$ N ($x\approx0.15$) обнаружены электронные состояния, энергетические уровни которых лежат в верхней половине запрещенной зоны полупроводника. Плотность и характеристическое время перезарядки этих состояний увеличиваются при

- смещении их энергии вглубь запрещенной зоны. Обнаруженные состояния связаны с наличием гидроксильной группы в электролите.
- 8. Показано, что для границы раздела n-GaN 0.2 M раствор NaOH в диапазоне энергий, лежащих на 0.15-0.3 эВ ниже дна зоны проводимости, плотность и характеристическое время перезарядки состояний, дающих заметный вклад в дифференциальные емкость и проводимость системы электролит полупроводник при частотах зондирующего напряжения 0.3-1 кГц, находятся соответственно в диапазонах $10^{12} \div 2 \cdot 10^{13}$ см⁻²эВ⁻¹ и $10^{-4} \div 10^{-2}$ с.
- 9. Развита методика определения реального профиля распределения концентрации свободных носителей заряда по сложной многослойной гетероструктуре, содержащей сильно легированные и квантово-размерные слои, на основе результатов ECV-профилирования.
- 10. Показано, что интерпретация эффективного (экспериментального) профиля распределения заряда по структуре с квантово-размерными слоями, как реально существующего, может привести к ошибочным выводам относительно положения областей накопления заряда в такой структуре.

Основные результаты диссертации отражены в следующих публикациях:

- 1. А.А. Гуткин, М.Э. Рудинский, П.Н. Брунков. «Особенности вольт-емкостных характеристик МДП-структур на вырожденном полупроводнике с квантоворазмерным аккумулирующим слоем»; "Нанофизика и наноэлектроника", Тезисы докладов XIII Международного симпозиума "Нанофизика и наноэлектроника", Нижний новгород, 16-20 марта 2009г. Институт физики микроструктур РАН, Нижний Новгород, С. 324-325.
- 2. М.Э. Рудинский, А.А. Гуткин, П.Н. Брунков; «Вольт-фарадные характеристики системы электролит—n-InN и электронные состояния на границе раздела»; ФТП, 44, 8, 2010, С. 1053-1058.
- 3. М.Э. Рудинский; «Влияние толщины поверхностного окисла на электронные свойства поверхности n-InN»; "ФизикА.СПб", Тезисы докладов конференции по физике и астрономии для молодых ученых Санкт-Петербурга и северо-запада "ФизикА.СПб", 27-28 октября 2010г., Издательство Политехнического университета, Санкт-Петербург, 2010, С. 63-64.
- 4. М.Э. Рудинский; «Электростатический потенциал поверхности (0001) эпитаксиальных слоев n-InN»; "ФизикА.СПб", Тезисы докладов конференции по физике и астрономии для молодых ученых Санкт-Петербурга и северо-запада "ФизикА.СПб", 27-28 октября 2010г., Издательство Политехнического университета, Санкт-Петербург, 2010, С. 64-65.
- 5. П.Н.Брунков, А.А.Гуткин, М.Э.Рудинский, О.И.Ронжин, А.А.Ситникова, А.А.Шахмин, Б.Я.Бер, Д.Ю.Казанцев, А.Ю.Егоров, В.Е.Земляков, С.Г.Конников; «Электрохимическое вольт-емкостное профилирование концентрации свободных

- носителей заряда в НЕМТ-гетероструктурах на основе соединений InGaAs/AlGaAs/GaAs»; ФТП, 45, 6, 2011, С. 829-835.
- 6. М.Э. Рудинский, А.А. Гуткин, П.Н. Брунков; «Электростатический потенциал поверхности эпитаксиальных слоев InN и его изменение при анодном окислении»; Поверхность, 5, 2012, С. 48-52.
- 7. М.Э. Рудинский, А.А. Гуткин, П.Н. Брунков; «Электронные состояния на границах раздела электролит/n-GaN и электролит/n-InGaN»; ФТП, 46, 6, 2012, С. 775-778.

Цитированная литература

- [1] P. Blood. Capacitance-voltage profiling and the characterisation of III-V semiconductors using electrolyte barriers // Sernicond. Sci. Technol. 1986. Vol. 1. Pp. 7–27.
- [2] H. Kroemer, W.Y. Chien, J.C. Harris, D.D. Edwall. Measurements of isotype heterosjunction barriers by C-V profiling // Appl.Phys.Lett. 1980. Vol. 36. Pp. 295–297.
- [3] J. Wu, W. Walukiewicz, K.M. Yu et al. Unusual properties of the fundamental band gap of InN // Appl. Phys. Lett. 2002. Vol. 80.
- [4] H. Lu, W.J. Schaff, L.F. Eastman, C.E. Stutz. Surface charge accumulation of InN films grown by molecular-beam epitaxy // Appl. Phys. Lett. 2003. Vol. 82. Pp. 1736–1738.
- [5] A. Denisenko, C. Pietzka, A. Chuvilin et al. Depletion of surface accumulation charge in InN by anodic oxidation // J. Appl. Phys. 2009. Vol. 105. 033702.
- [6] J.D. Beach, R.T. Collins, J.A. Turner. Band-edge potentials of n-type and p-type GaN // J. Electrochem. Soc. 2003. Vol. 150. Pp. A899–A904.
- [7] M.E. Sharifabad, M.S.Z. Abidin, S.F.A. Rahman et al. Gateless-FET pH sensor fabricated on undoped AlGaN/GaN HEMT structure // Sains Malaysiana. 2011. Vol. 40. P. 267–273.
- [8] T. Wolff, M. Rapp, T. Rotter. Electrochemical etching and CV-profiling of GaN // phys. stat. sol. (a). 2004. Vol. 201. P. 2067–2075.
- [9] А.Ю. Егоров, А.Г. Гладышев, Е.В. Никитина и др. Двухканальные псевдоморфные HEMT-гетероструктуры InGaAs/AlGaAs/GaAs с импульсным легированием // ФТП. 2010. Т. 44. С. 950–954.
- [10] T.D. Veal, I. Mahboob, L.F.J. Piper, C.F. McConville. Indium nitride: Evidence of electron accumulation // J. Vac. Sci. Technol. B. 2004. Vol. 22.
- [11] W. Walukiewicz, J.W. Ager III, K.M. Yu et al. Structure and electronic properties of InN and In-rich group III-nitride alloys // Journal of Physics D: Applied Physics. 2006. Vol. 39, no. 5. P. R83.
- [12] L. Colakerol, T.D. Veal, H.-K. Jeong et al. Quantized electron accumulation states in indium nitride studied by angle-resolved photoemission spectroscopy // Phys. Rev. Lett. 2006. Vol. 97.
- [13] C.G. Van de Walle, D. Segev. Microscopic origins of surface states on nitride surfaces // J. Appl. Phys. 2007. Vol. 101. 081704.
- [14] D. Ziegler, A. Stemmer. Force gradient sensitive detection in lift-mode Kelvin probe force microscopy // Nanotechnology. 2011. Vol. 22. 075501.
- [15] S. Hudlet, M.St. Jean, B. Roulet et al. Electrostatic forces between metallic tip and semiconductor surfaces // J. Appl. Phys. 1995. Vol. 77. Pp. 3308–3314.
- [16] E.H. Nicollian, A. Goetzberger. The $Si\text{-}SiO_2$ interface -electrical properties as determined by the metal-insulator-silicon conductance technique // Syst. Techn. J. 1967. Vol. 46. Pp. 1055–1133.