На правах рукописи

# Цветкова Анастасия Евгеньевна

# Наблюдения гамма-всплесков с известным космологическим красным смещением в эксперименте Конус-Винд

Специальность 01.03.02 — астрофизика и звёздная астрономия

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

> Санкт-Петербург 2018

| Работа  | выполнена     | В  | лаборатории | экспериментальной | астрофизики |
|---------|---------------|----|-------------|-------------------|-------------|
| ФТИ им. | . А. Ф. Иоффе | э. |             |                   |             |

| Научный руководитель:  | Фредерикс Дмитрий Дмитриевич,<br>кандидат физико-математических наук,<br>ведущий научный сотрудник лаб. экспериментальной<br>астрофизики ФТИ им. А. Ф. Иоффе                     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Официальные оппоненты: | Блинников Сергей Иванович,<br>доктор физико-математических наук,<br>главный научный сотрудник НИЦ «КИ» – ИТЭФ                                                                    |
|                        | Сазонов Сергей Юрьевич,<br>доктор физико-математических наук,<br>профессор РАН,<br>зав. лабораторией экспериментальной астрофизики<br>отдела астрофизики высоких энергий ИКИ РАН |
| Ведущая организация:   | Государственный Астрономический Институт<br>имени П. К. Штернберга Московского<br>государственного университета<br>имени М. В. Ломоносова                                        |

Защита состоится 5 июня 2018 г. в 16 часов на заседании диссертационного совета Д 002.205.03 при ФТИ им. А. Ф. Иоффе, по адресу: 194021, Санкт-Петербург, Политехническая ул., 26

С диссертацией можно ознакомиться в библиотеке ФТИ им. А.Ф. Иоффе и на веб-сайте ФТИ www.ioffe.ru.

Автореферат разослан 4 мая 2018 г.

Ученый секретарь диссертационного совета, к.ф.-м. н.

А. М. Красильщиков

## Общая характеристика работы

#### Актуальность темы диссертации

Несмотря на то что с момента открытия космических гамма-всплесков (GRB, Gamma-Ray Burst), кратковременных (от десятков миллисекунд до нескольких часов) вспышек мягкого  $\gamma$ -излучения, прошло более полувека, многие аспекты данного явления остаются неизвестными. Прорыв в исследованиях гамма-всплесков был достигнут 20 лет назад, когда с началом эпохи оптических отождествлений гамма-всплесков была достоверно установлена космологическая природа их источников [1]. К 2017 г. космологические красные смещения z были определены для ~ 450 гамма-всплесков и находятся в диапазоне от z = 0.0087 (GRB 980425) до z = 9.4 (GRB 090429B).

Энергия взрыва является одним из ключевых параметров, важных для понимания физики прародителей, центральной машины и механизма излучения гамма-всплесков. Знание красного смещения гамма-всплеска позволяет оценить изотропный эквивалент его энерговыделения (E<sub>iso</sub>), характеристику энергии, выделенной центральной машиной всплеска, и изотропный эквивалент пиковой светимости (L<sub>iso</sub>), характеризующий механизмы преобразования кинетической энергии взрыва в излучение. С учётом высоких наблюдаемых потоков энергии гамма-всплесков и космологических расстояний до их источников, данные характеристики достигают гигантских величин:  $E_{\rm iso} \lesssim 10^{55}$  эрг (GRB 080916С, z = 4.35) и  $L_{\rm iso} \sim 5 \times 10^{54}$  эрг с<sup>-1</sup> (GRB 110918А, z = 0.981). Огромное изотропное энерговыделение гаммавсплесков было впервые объяснено для GRB 970508 [2] предположением о высокой коллимации излучения (jet beaming). Ключевой характеристикой, позволяющей оценить угол коллимации гамма-всплеска  $\theta_{\text{iet}}$  [3], является время наблюдения ахроматического излома (jet break) в кривой блеска послесвечения  $t_{\text{iet}}$ . Для типичных углов коллимации в несколько градусов истинное энерговыделение большинства гамма-всплесков составляет  $\sim 10^{51}$  эрг, что сопоставимо с энерговыделением сверхновой [4].

Исследование корреляций между жёсткостью и энергетикой гаммавсплесков в космологической системе отсчёта (так называемые соотношения «Амати» [5], «Йонетоку» [6] и их «коллимированные» версии [7]) может способствовать разрешению вопроса о применимости гамма-всплесков в качестве «стандартных свечей» [8]. Положительное решение данного вопроса позволит наложить ограничения на параметры космологических моделей в диапазоне красных смещений до  $z \sim 10$ . Постепенное накопление статистики по наблюдениям гамма-всплесков с известными красными смещениями позволяет перейти к оценке таких характеристик их популяции, как функция светимости и темп образования источников гамма-всплесков (GRBFR, GRB Formation Rate), и их космологической эволюции. Оценки данных параметров важны для понимания природы центральной машины и механизмов генерации излучения GRB, а также исследования параметров популяций их прародителей в разные космологические эпохи.

Эксперимент Конус-*Винд* [9] успешно проводится с ноября 1994 г. и играет важную роль в исследовании гамма-всплесков благодаря уникальному сочетанию характеристик орбиты и аппаратуры: положение космического ап-

парата вблизи точки Лагранжа L1 системы Солнце-Земля обеспечивает стабильный фон излучения и непрерывный обзор всего неба в широком диапазоне энергий (~10 кэB-~10 МэВ) с высоким временны́м разрешением (до 2 мс). Благодаря широкому спектральному диапазону Конус-Винд энергия обрезания спектра может быть определена непосредственно из спектральных данных прибора, и энерговыделение гамма-всплесков может быть оценено с минимальной экстраполяцией. К 2017 г. в триггерном режиме эксперимента Конус-Винд зарегистрировано ~ 2700 гамма-всплесков, из них 150 – с известными красными смещениями. Данная выборка представляет на сегодня наиболее обширный гомогенный набор наблюдательных данных, полученных в широком спектральном диапазоне, и её систематическое исследование с целью получения несмещённых характеристик гамма-всплесков в собственной космологической системе отсчёта является, несомненно, актуальной задачей в контексте исследования процессов генерации излучения гамма-всплесков, построения моделей их источников и исследования параметров Вселенной, начиная с самых ранних этапов её существования.

Цель настоящей работы заключается в определении временны́х и спектральных характеристик, а также полных и пиковых потоков энергии гаммавсплесков с известным красным смещением, зарегистрированных в триггерном режиме эксперимента Конус-*Винд*; получении характеристик гаммавсплесков в космологической системе отсчёта, в том числе, с учетом коллимации излучения, и оценке на их основе параметров популяции гамма-всплесков. Для достижения поставленной цели решены следующие **задачи**:

- 1. Анализ данных о красных смещениях гамма-всплесков. Формирование выборки GRB с известными *z*, зарегистрированных в триггерном режиме эксперимента Конус-*Винд*. Классификация отобранных GRB по критерию жёсткость-длительность.
- 2. Оценка фоновой обстановки, временной анализ кривых блеска гаммавсплесков, определение полных длительностей всплесков  $T_{100}$ , длительностей  $T_{90}$  и  $T_{50}$ . Вычисление спектральных задержек излучения.
- 3. Определение оптимальных временны́х интервалов для анализа энергетических спектров. Анализ интегральных и пиковых спектров с использованием стандартных для GRB моделей Банда [10] и CPL. Определение наилучшей модели для каждого исследованного энергетического спектра. Вычисление полного (S) и пикового (F<sub>p</sub>) потока энергии гаммавсплесков в системе отсчёта наблюдателя.
- 4. Оценка, с учетом космологической k-коррекции,  $E_{\rm iso}$  и  $L_{\rm iso}$  в болометрическом диапазоне энергий 1 кэВ–(1 + z) 10 МэВ в системе отсчета источника гамма-всплеска.
- 5. Анализ данных об ахроматических изломах кривых блеска послесвечений гамма-всплесков и формирование выборки GRB с надёжными оценками  $t_{jet}$ . Оценка полного энерговыделения и пиковой светимости гаммавсплесков с учётом коллимации излучения.
- 6. Оценка болометрической чувствительности эксперимента Конус-*Винд*. Оценка космологических пределов наблюдаемости гамма-всплесков в эксперименте Конус-*Винд*.

- 7. Оценка космологической эволюции энерговыделения гамма-всплесков, их функций светимости и энерговыделения. Оценка темпа образования источников гамма-всплесков.
- 8. Исследование корреляций жёсткости излучения гамма-всплесков и их энерговыделения в изотропном приближении и с учётом коллимации излучения.

#### Научная новизна

Следующие основные результаты получены впервые:

- 1. В результате анализа 150 GRB с известным красным смещением, зарегистрированных в триггерном режиме в эксперименте Конус-Винд, получены оценки длительности, спектральных параметров и энерговыделения в космологической системе отсчёта, для 32 GRB оценено энерговыделение с учётом коллимации излучения. Опубликованный каталог [A5] является наиболее полным набором характеристик GRB в собственной системе отсчёта, полученных в результате систематического анализа однородного массива наблюдений в широком диапазоне энергий γ-квантов.
- 2. Проведён совместный временной и спектральный анализ данных GRB 140801A, одновременно зарегистрированного в экспериментах Конус-Винд и Fermi-GBM, подтверждена согласованность методик анализа данных двух экспериментов. На основании совместного анализа результатов экспериментов Конус-Винд и Fermi-GBM по 26 гаммавсплескам показана согласованность полученных оценок  $E_{iso}$ .
- 3. Получены оценки чувствительности прибора Конус-*Винд* в космологической системе отсчёта гамма-всплесков и оценки космологических пределов наблюдаемости гамма-всплесков в эксперименте Конус-*Винд*.
- 4. Получены независимые оценки параметров космологической эволюции энерговыделения гамма-всплесков, функций изотропной светимости и энерговыделения в интервале  $0.1 \le z \le 5$ . На независимой выборке получены свидетельства в пользу экспоненциального завала функции изотропного энерговыделения GRB с параметром обрезания  $E_{\rm cut} \gtrsim 10^{54}$  эрг и отсутствия такого обрезания у функции светимости вплоть до верхней границы исследованной выборки  $L_{\rm iso} \sim 5 \times 10^{54}$  эрг с<sup>-1</sup>.
- 5. Проведена независимая оценка космологической эволюции темпа образования источников гамма-всплесков в интервале  $0.1 \le z \le 5$ , и получены свидетельства в пользу относительного избытка GRBFR в сравнении с темпом звездообразования в области малых красных смещений (z < 1).
- 6. Получены независимые, наиболее надёжные оценки параметров корреляций жёсткости и энерговыделения гамма-всплесков в космологической системе отсчёта. Установлено, что учёт фактора коллимации излучения не повышает значимость исследованных корреляций. Показано, что уникальная яркость гамма-всплеска GRB 110918А обусловлена исключительно сильной коллимацией излучения.

#### Достоверность полученных результатов подтверждается:

1. Использованием стандартных и апробированных методик обработки наблюдательных данных по гамма-всплескам. 2. Научной кооперацией с другими космическими экспериментами по изучению гамма-всплесков, совместным анализом общих событий, показавшим применимость используемых методик.

#### Научная и практическая значимость

- 1. Оценки временны́х, спектральных, и энергетических характеристик гамма-всплесков в космологической системе отсчёта для обширной выборки как длинных, так и коротких гамма-всплесков, важны для проверки теоретических моделей прародителей, центральной машины и механизма генерации гамма-излучения в источниках всплесков.
- 2. Оценка болометрической чувствительности прибора Конус-*Винд* может быть использована для широкого круга задач, в том числе для совместного анализа выборок гамма-всплесков, зарегистрированных в различных экспериментах.
- 3. Оценка космологических пределов наблюдаемости гамма-всплесков в эксперименте Конус-*Винд* может быть использована для планирования экспериментов, детектирующих излучение от источников гаммавсплесков в различных спектральных диапазонах.
- 4. Оценка параметров космологической эволюции энерговыделения гаммавсплесков, их функций светимости и энерговыделения по данным эксперимента Конус-*Винд* важна для проверки теоретических моделей генерации гамма-излучения в источниках всплесков.
- 5. Оценка темпа образования источников гамма-всплесков важна для проверки моделей прародителей гамма-всплесков.
- 6. Параметры корреляций жёсткости излучения гамма-всплесков и их энерговыделения в изотропном приближении и с учётом коллимации излучения позволяют исследовать вопрос о возможности использования гаммавсплесков в качестве стандартных свечей.

#### Основные положения, выносимые на защиту

- 1. Временны́е и спектральные характеристики 150 гамма-всплесков с известным космологическим красным смещением, зарегистрированных в триггерном режиме эксперимента Конус-*Винд*.
- Изотропный эквивалент полного энерговыделения и пиковой светимости 150 гамма-всплесков, зарегистрированных в эксперименте Конус-Винд. Полное энерговыделение и пиковая светимость с коррекцией на коллимацию излучения для 32 гамма-всплесков с надёжными оценками t<sub>jet</sub>.
- 3. Эффекты селекции при наблюдениях гамма-всплесков в эксперименте Конус-Винд и соответствующие им ограничения в космологической системе отсчёта. Космологические пределы наблюдаемости гаммавсплесков в эксперименте Конус-Винд.
- 4. Оценка космологической эволюции энерговыделения гамма-всплесков, их функций светимости и энерговыделения по данным эксперимента Конус-*Винд*. Оценка относительного темпа образования источников гамма-всплесков.
- 5. Корреляции жёсткости излучения гамма-всплесков и их энерговыделения в изотропном приближении и с учётом коллимации излучения.

## Апробация работы

Результаты, вошедшие в диссертацию, получены в период с 2013 по 2017 годы и опубликованы в **пяти** статьях в реферируемых журналах, входящих в Перечень ВАК. Полученные результаты также доложены на **пяти** всероссийских и международных конференциях:

- 1. «Астрофизика высоких энергий» НЕА2013, Москва, ИКИ РАН, 12.2013 (стендовый доклад);
- 2. Ioffe Workshop on GRBs and other transient sources: Twenty Years of Konus-Wind Experiment, St. Petersburg, Russia, 09.2014 (устный доклад)
- 3. «Успехи российской астрофизики 2016: Теория и Эксперимент» Москва, ГАИШ МГУ, 12.2016 (устный доклад);
- 4. «Взрывающаяся Вселенная глазами роботов» Москва, ГАИШ МГУ, 08.2017 (устный доклад);
- 5. 7th International Fermi Symposium, Garmisch-Partenkirchen, Germany, 10.2017 (устный доклад);

а также на семинарах Max Planck Institute for Astrophysics (Garching, Germany), ГАИШ МГУ и  $\Phi$ ТИ им. А.  $\Phi$ . Иоффе.

# Структура и объём диссертации

Диссертация состоит из введения, семи глав и заключения. Полный объем диссертации составляет 146 страниц текста с 29 рисунками и девятью таблицами. Список литературы содержит 153 наименования.

# Содержание работы

Во **введении** представлен краткий обзор истории наблюдения гаммавсплесков, описаны основные характеристики их излучения и наиболее вероятные модели источников. Обсуждаются методы и особенности определения красных смещений гамма-всплесков. Приведено возможное обоснование эволюции энерговыделения GRB. Поставлены задачи исследования и продемонстрирована их актуальность. Сформулированы основные результаты работы, их научная новизна и положения, выносимые на защиту. Приведен список работ, в которых опубликованы основные результаты диссертации.

В первой главе приведены характеристики эксперимента Конус-Винд, в ходе которого получены используемые в диссертационной работе наблюдательные данные. Эксперимент предназначен для исследования характеристик транзиентных астрофизических явлений в широком диапазоне энергий (~10 кэВ–10 МэВ) и с высоким (до 2 мс) временны́м разрешением. Сцинтилляционный гамма-спектрометр Конус, разработанный и изготовленный в ФТИ им. А.Ф. Иоффе, установлен на борту космической обсерватории GGS-Wind (NASA, США), находящейся вблизи точки Лагранжа L1 системы Солнце-Земля, и оснащен двумя детекторами NaI(Tl) с эффективной площадью ~80–160 см<sup>2</sup> в зависимости от энергии падающего излучения и угла его падения к оси детектора. Детекторы работают независимо друг от друга в двух режимах наблюдений: фоновом и триггерном. Переход в триггерный режим происходит при статистически значимом превышении скорости счета над фоном на интервале 1 с или 140 мс в энергетическом диапазоне 50–200 кэВ. В фоновом режиме ведется непрерывный мониторинг в трёх широких энергетических каналах с временным разрешением 2.944 с. В триггерном режиме запись кривых блеска события ведется в тех же энергетических каналах с временным разрешением от 2 мс до 256 мс в интервале от -512 мс до 230 с относительно времени срабатывания триггера и измеряются многоканальные энергетические спектры в диапазоне энергий ~10 кэВ–10 МэВ.

Во **второй главе** описана выборка из 150 GRB с известным *z*, зарегистрированных в триггерном режие эксперимента Конус-*Винд* в период с февраля 1997 г по июнь 2016 г. [А5]. Приведены времена срабатывания триггера, *z*, статистика локализации источников всплесков по собственному излучению в жёстком рентгеновском и гамма-диапазонах, информация о наблюдениях GRB в других экспериментах.

На основе совместного анализа длительности GRB и жёсткости их излучения приведена классификация событий [11, 12] на всплески типа I (короткие/жесткие), источником которых, предположительно, является слияние компактных объектов, и типа II (длинные), вызванные, как предполагается, коллапсом ядер сверхмассивных звёзд. Из 150 событий 138 были отнесены к типу II, а 12 (8%) – к типу I. Отдельно описаны особенности классификации GRB 160410A и GRB 060614.

Красные смещения гамма-всплесков, зарегистрированных в эксперименте Конус-Винд, лежат в диапазоне  $0.1 \le z \le 5$ , со средним и медианным значением  $\sim 1.5$  и  $\sim 1.3$ , соответственно. Доля всплесков с известным z, зарегистрированных в эксперименте Конус-Винд, составляет  $\sim 0.4$ –0.5 в области z < 1 и уменьшается с увеличением z. Для всплесков типа I указанное соотношение составляет  $\sim 0.5$ .

Третья глава посвящена временному и спектральному анализу гаммавсплесков выборки [А5,А2,А3]. В разделе 3.2 описан анализ кривых блеска гамма-всплесков, заключающийся в вычислении полной длительности события  $T_{100}$ , времён накопления 50% ( $T_{50}$ ) и 90% ( $T_{90}$ ) отсчётов всплеска, а также спектральных задержек излучения, которые характеризует запаздывание более мягкого излучения по отношению более жёсткому. Приведена методика определения фона излучения, и обоснован выбор энергетического диапазона  $(\sim 80-1200 \text{ кэB})$ , наиболее подходящего для определения длительности собственного излучения гамма-всплесков в эксперименте Конус-*Винд*. В разделе 3.3 приведены результаты временного анализа, а также статистика длительностей и спектральных задержек излучения в системах отсчёта наблюдателя и источника. Обсуждается эквивалентность T<sub>100</sub> и T<sub>90</sub> как мер оценки длительности всплеска. Показано, что для большинства событий T<sub>100</sub> и T<sub>90</sub> являются сходными мерами оценки длительности, а для особенно ярких всплесков  $T_{100}$  более чувствительна к наличию слабых импульсов-предшественников или длинных, медленно спадающих «хвостов».

В разделе 3.4 дано описание методики спектрального анализа гаммавсплесков. Для каждого GRB было выбрано два временных интервала для спектрального анализа: ближайший к  $T_{100}$  для «интегрального» спектра, по которому определяются усреднённые за всплеск параметры, и более узкий, содержащий время пиковой скорости счёта, «пиковый» спектр. Спектры были аппроксимированы методом  $\chi^2$ -минимизации в пакете XSPEC [13]. Использовались две стандартные для описания гамма-всплесков модели: эмпирическая двухстепенная функция Банда [10] (BAND) и степенной закон с экспоненциальным обрезанием в области высоких энергий (CPL), параметризованные через пиковую энергию  $E_{\rm p}$ , максимум  $EF_E$ -спектра. В единственном случае (GRB 080413B), где локализация  $E_{\rm p}$  в спектральном диапазоне прибора оказалась невозможна, аппоксимация проведена простой степенной моделью (PL). Для нормировки спектральных моделей использовался падающий поток энергии (F) в диапазоне 10 кэВ–10 МэВ.

В разделе 3.5 приведены результаты спектрального анализа. Для каждого спектра указаны результаты аппроксимаций приемлемого качества (далее GOOD), для которых фотонный индекс в области низких энергий  $\alpha$  и  $E_{\rm p}$ ограничены (не являются верхними или нижними пределами). Для модели CPL значения  $\alpha$  распределены вокруг  $\approx -1.0$  как для интегрального, так и для пикового спектров. Индексы  $\alpha$  модели BAND распределены вокруг значений  $\approx -1.0$  и  $\approx -0.85$  для интегрального и пикового спектра, соответственно, а фотонные индексы в области высоких энергий  $\beta$  распределены вокруг значений  $\approx -2.50$  и  $\approx -2.35$  для интегрального и пикового спектра, соответственно. Для спектров, адекватно описываемых более чем одной моделью, была также определена «наилучшая» (BEST) модель. Критерием для предпочтения модели Банда, содержащей один дополнительный параметр, служило уменьшение статистики  $\chi^2$ :  $\chi^2_{CPL} - \chi^2_{BAND} > 6$ . Модель Банда наилучшим образом аппроксимирует 54 интегральных и 51 пиковый спектр, для остальных спектров BEST-моделью является CPL. Параметр E<sub>p</sub> для BESTмоделей находится в диапазоне от  $\approx 40$  кэВ до  $\approx 3.5$  МэВ (GRB 090510). Для обеих спектральных моделей распределения  $E_{\rm p}$  интегральных спектров достигают максимума при  $E_{\rm p,i} \sim 250$  кэВ, а для пиковых спектров – при  $E_{\rm p,p} \sim 300$  кэВ. Оценки параметра  $E_{\rm p}$  в космологической системе отсчёта всплеска,  $E_{\rm p,i,z} = (1+z) E_{\rm p,i}$  и  $E_{\rm p,p,z} = (1+z) E_{\rm p,p}$ , находятся в пределах от  $\approx 50$  кэВ до  $\approx 6.7$  МэВ (GRB 090510).

В разделе 3.6 рассмотрено распределение полученных временных и спектральных характеристик в плоскости жёсткость-длительность (рис. 1). Показано, что кластеризация гамма-всплесков на две группы (короткие/жёсткие и длинные/мягкие) при переходе в космологическую систему отсчета размывается, что может быть связано, в частности, с более широким диапазоном красных смещений всплесков типа II. Подчёркнуто, что к интерпретации данного распределения следует подходить с осторожностью, так как стандартный энергетический диапазон, используемый для определения длительности в эксперименте Конус-*Винд*, соответствует множеству индивидуальных, зависящих от *z* конкретного всплеска, диапазонов энергий в космологической системе отсчета, а форма и длительность гамма-всплеска в различных диапазонах могут существенно различаться.

В разделе 3.7 статистика спектральных параметров рассмотрена в контексте предсказаний синхротронной ударноволновой модели излучения гамма-всплесков (SSM, Synchrotron Shock Model [14]). Наблюдаемое отсутствие ярко выраженного пика распределения ( $\alpha - \beta$ ) может означать наличие разброса показателей степени излучающих электронов и/или существование различных режимов охлаждения в источниках всплесков. Сделана оценка доли всплесков, нарушающих «линию смерти» ( $\alpha = -2/3$ ) и предел охлаждения ( $\alpha = -3/2$ ) в SSM. Для BEST-моделей доверительные интервалы  $\alpha$  (на уровне 68%) для 8% интегральных и 21% пиковых спектров полностью



Рис. 1: Распределение жёсткость-длительность в системах отсчёта наблюдателя (слева) и источника всплеска (справа). Всплески типа I обозначены треугольниками, всплески типа II – окружностями. Цветом показано красное смещения всплесков.

попадают в область  $\alpha > -2/3$ , а доверительные интервалы  $\alpha$  для 5% интегральных и 2% пиковых спектров полностью попадают в область  $\alpha < -3/2$ .

В разделе 3.8 проведено сравнение спектральных параметров BESTмоделей с каталогами экспериментов BATSE 5B [15] и *Fermi*-GBM [16]. Обнаружено, что средние и медианные значения параметров, полученных в данной работе, для обеих спектральных моделей, CPL и BAND, как для интегрального, так и для пикового спектров согласуются со статистикой, приведённой в указанных каталогах, в пределах доверительных интервалов на уровне значимости 68%.

В разделе 3.9 приведены методика и результаты совместного анализа всплеска GRB 140801A по данным экспериментов Конус-*Винд* и *Fermi*-GBM. Установлено, что результаты временно́го и спектрального анализа данных согласуются, причём систематическая ошибка оценки эффективной площади в матрицах отклика детекторов двух экспериментов не превышает 5% [A3].

Четвёртая глава посвящена оценке энерговыделения гамма-всплесков [A5,A2,A3,A4]. По результатам временно́го и спектрального анализа определены полные потоки энергии S в интервале 10 кэВ–10 МэВ и пиковые потоки энергии  $F_p$  в том же диапазоне энергий на временных масштабах 1024 мс, 64 мс и «космологической» шкале (1 + z) 64 мс. Последняя позволяет компенсировать эффект космологического растяжения кривой блеска всплеска в системе отсчёта наблюдателя и оценивать пиковую светимость

всплеска на стандартной шкале 64 мс в космологической системе отсчёта. Параметры  $E_{\rm iso}$  и  $L_{\rm iso}$  были оценены, с учетом фотометрического расстояния  $D_L(z)$  и космологической k-коррекции, в болометрическом диапазоне энергий 1 кэВ–(1 + z) 10 МэВ в системе отсчёта источника. Среди всплесков исследуемой выборки можно отметить GRB 130427A – всплеск с наибольшим  $S = 2.86 \times 10^{-3}$  эрг см<sup>-2</sup> и GRB 090323, характеризующийся наибольшим  $E_{\rm iso} = 5.81 \times 10^{54}$  эрг. GRB 110918A [A1] является самым ярким, в терминах как пикового энергетического потока, так и изотропной пиковой светимости  $(F_{\rm p,64} = 9.02 \times 10^{-4}$  эрг см<sup>-2</sup> с<sup>-1</sup>;  $L_{\rm iso} = 4.65 \times 10^{54}$  эрг с<sup>-1</sup>).

Для 32 гамма-всплесков (30 типа II и двух типа I) получены оценки энерговыделения  $(E_{\gamma})$  и пиковой светимости  $(L_{\gamma})$  с учётом коллимации излучения. Для оценки фактора коллимации были использованы наиболее надежные оценки t<sub>iet</sub>, определённые по кривым блеска в видимом/инфракрасном диапазоне, либо в двух различных диапазонах (например, рентгеновском и радио), то есть максимально удовлетворяющие критерию ахроматичности излома. Для части событий в литературе приводится наиболее вероятный профиль плотности среды, окружающей источник всплеска, от которого зависит методика оценки угла коллимации  $\theta_{iet}$  [3, 17]: для 14 – гомогенная среда, схожая с межзвездной, и для 9 – неоднородная среда с градиентом плотности, характерным для звёздного ветра,  $n(r) \propto r^{-2}$ . Для остальных событий  $\theta_{\rm jet}$ были определены по обеим методикам. Оцененные углы  $\theta_{iet}$  находятся в диапазоне от 1.9° до 25.5°, а соответствующие факторы коллимации  $(1 - \cos \theta_{iet})$  – от  $5.5 \times 10^{-4}$  до 0.098. С учетом коллимации, самым ярким всплеском являет-ся GRB 090926A ( $E_{\gamma} \simeq 1.23 \times 10^{52}$  эрг,  $L_{\gamma} \simeq 5.50 \times 10^{51}$  эрг с<sup>-1</sup>,  $\theta_{\rm jet} \simeq 6.20^{\circ}$ ). Коррекция на коллимацию излучения сдвигает пик распределений энерговыделения на ~ 2.5 порядка величины, при этом ширина распределений на логарифмической шкале сужается на  $\lesssim 0.4$  порядка. Подчеркнуто, что истинное распределение энерговыделения, скорректированного на коллимацию излучения, может быть шире, чем наблюдаемое, в связи с трудностью измерения момента  $t_{iet}$  на поздних стадиях послесвечения и соответствующим уменьшением относительной доли всплесков с широкими углами коллимации в силу наблюдательной селекции.

В разделе 4.6 проведено сравнение оценок  $E_{iso}$  для 26 гамма-всплесков с известным z, зарегистрированных как в эксперименте Конус-*Винд*, так и в эксперименте *Fermi*-GBM [A3]. Установлено хорошее согласие и отсутствие систематических различий  $E_{iso}$ , вычисленного по данным двух приборов: для 24 из 26 GRB  $E_{iso}$  согласуется в пределах 25%. Наименьшие различия (<15%) наблюдаются для всплесков, интегральные спектры которых наилучшим образом аппроксимируются одной и той же спектральной моделью в обоих экспериментах.

<u>Пятая глава</u> посвящена исследованию влияния эффектов наблюдательной селекции на совокупности параметров гамма-всплесков, полученные в настоящей работе [A5]. Описана методика определения чувствительности срабатывания триггера Конус-*Винд* к собственному излучению гаммавсплесков с определёнными набором характеристик с учётом фоновой обстановки. На основании совместного анализа диаграммы  $F-E_{\rm p}$  и статистической значимости детектирования всплесков установлено, что отсутствие наблюдений ярких мягких событий в рассмотренной выборке, по-видимому, обусловлено свойствами популяции гамма-всплесков, а не эффектами селекции.

В результате анализа распределений параметров в космологической системе отсчета (рис. 2) установлено, что: область плоскости  $z-L_{\rm iso}$ , расположенная выше пороговой светимости, соответствующей «характеристическому»  $F_{\rm lim} \sim 1 \times 10^{-6}$  эрг см<sup>-2</sup> с<sup>-1</sup> в системе отсчета наблюдателя, может считаться свободной от эффектов инструментальной селекции; в плоскости  $z-E_{\rm iso}$  область, свободная от эффектов селекции, находится выше  $E_{\rm iso}$ , соответствующего  $S_{\rm lim} \sim 3 \times 10^{-6}$  эрг см<sup>-2</sup>; падение чувствительности триггера при приближении  $E_{\rm p}$  к нижней границе спектрального диапазона прибора выражается в отсутствии детектирований всплесков с  $E_{\rm p,z} \lesssim (1+z)^2 \cdot 25$  кэВ.



Рис. 2: Зависимость  $E_{iso}$ ,  $L_{iso}$  и  $E_p$  в космологической системе отсчёта от z гамма-всплесков, зарегистрированных в эксперименте Конус-*Винд*. GRB типа I обозначены треугольниками, GRB типа II – окружностями. Цвет символов соответствует логарифму статистической значимости всплеска в единицах  $\sigma$ . Штриховыми линиями обозначены пороговые значения энерговыделения и пиковой энергии, определяющие наблюдательную селекцию в космологической системе отсчёта.

В разделе 5.3 описана методика определения космологического предела наблюдаемости гамма-всплесков в триггерном режиме в эксперименте Конус-*Винд* как с учетом индивидуальных характеристик всплеска, так и с использованием характеристического порогового потока. Самым «далёким» горизонтом детектирования (~ 17, что соответствует возрасту Вселенной ~ 230 млн. лет) среди всплесков с известным z, зарегистрированных в эксперименте Конус-*Винд*, обладает сверхяркий GRB 110918А (измеренное z = 0.981).

В <u>шестой главе</u> с учетом эффектов селекции оценены параметры эволюции энерговыделения, функции изотропного энерговыделения и изотропной пиковой светимости, а также темп образования источников гаммавсплесков [A5]. Космологическая эволюция энерговыделения GRB, параметризованная как  $g(z) = (1 + z)^{\delta}$ , была оценена методом модифицированной  $\tau$ -статистики Эфрона и Петросяна [18]. Для  $L_{iso}$  и  $E_{iso}$  степенные индексы эволюции составляют  $\delta_L = 1.7^{+0.9}_{-0.9}$  и  $\delta_E = 1.1^{+1.5}_{-0.7}$ , при невысокой значимости корреляций  $L_{iso}$ -z и  $E_{iso}$ -z на уровне  $\leq 1.7\sigma$ . Кумулятивные распределения  $\psi(L')$  и  $\psi(E')$  для изоторопной энергии, поправленной на эволюцию  $(L' = L_{\rm iso}/g(z))$ и  $E' = E_{\rm iso}/g(z))$ , были оценены непараметрическим  $C^-$ -методом Линден-Белла [19] и аппроксимированы двумя функциями (рис. 3), степенным законом с изломом (BPL) и степенной функцией с экспоненциальным обрезанием (CutoffPL). Показано, что аппроксимации обеими функциями дают удовлетворительный результат, при этом  $\psi(L')$  лучше аппроксимируется моделью BPL ( $\Delta \chi^2 > 5$ ), а  $\psi(E')$  – моделью CutoffPL ( $\Delta \chi^2 > 16$ ). Таким образом, получены свидетельства в пользу экспоненциального обрезания функции изотропного энерговыделения гамма-всплесков на  $0.1 \le z \le 5$  с параметром  $E_{\rm cut} \gtrsim 10^{54}$  эрг и отсутствия такого обрезания у функции светимости вплоть до верхней границы исследованной выборки  $L_{\rm iso} \sim 5 \times 10^{54}$  эрг с<sup>-1</sup>. Качественно и количественно схожие результаты получены для кумулятивных распределений  $\psi(L_{\rm iso})$  и  $\psi(E_{\rm iso})$  для изоторопного энерговыделения и светимости без коррекции на эволюцию.



Рис. 3: Функции светимости и энерговыделения и темп образования источников гаммавсплесков по данным эксперимента Конус-Винд. Слева: кумулятивные функции светимости (красная гистограмма) и энерговыделения (зелёная гистограмма). Показаны наилучшие аппроксимации моделями BPL и CutoffPL для  $\psi(L')$  и  $\psi(E')$ , соответственно. Справа: сравнение темпа образования источников гамма-всплесков со скоростью звездообразования. GRBFR вычислен по четырём наборам данных:  $z-L_{\rm iso}$  (красные окружности), z-L'(красные круги),  $z-E_{\rm iso}$  (зеленые квадраты без заливки) и z-E' (зелёные квадраты с заливкой). Серыми точками и сплошной чёрной линией обозначена скорость звездообразования (ссылки в работе [A5]).

С использованием  $C^-$ -методики было оценено кумулятивное распределение красных смещений  $\psi(z)$  и GRBFR  $\rho(z) = d\psi/dz (1+z) (dV(z)/dz)^{-1}$ , где dV(z)/dz – сопутствующий дифференциальный объём. В отсутствие подробных данных о коллимации излучения оценить нормировку  $\rho(z)$  не представляется возможным, но можно провести качественное сравнение GRBFR со скоростью звездообразования (SFR), рис. 3. В нормировке, при которой GRBFR и SFR совпадают в области максимума SFR ( $(1 + z) \sim 3.5$ ), оценка  $\rho(z)$  по данным на плоскости z-L' (скорректированным на эволюцию светимости), превышает SFR при z < 1 и следует SFR на бо́льших красных смещениях. Оценка  $\rho(z)$  по данным на плоскостях  $z-E_{iso}$  и z-E' демонстрирует схожее поведение. Из четырёх рассмотренных вариантов  $\rho(z)$ , только один, полученный по данным на плоскости  $z-L_{iso}$ , то есть без коррекции на эволюцию светимости, следует SFR во всём диапазоне  $0.1 \le z \le 5$ .

В <u>седьмой главе</u> рассмотрены корреляции жёсткости и энергетики в космологической системе отсчета [A5,A1]. Значимость корреляций оценена ранговым коэффициентом Спирмана  $\rho_S$ , а для определения параметров линейной регрессии в двойной логарифмической шкале минимизировалась статистика [20], позволяющая учитывать ошибки обеих величин и внутреннюю дисперсию корреляции  $\sigma_{int}$ . Показано, что при переходе из системы отсчёта наблюдателя в космологическую систему отсчёта корреляция жёсткости и энергетики усиливается ( $\Delta \rho_S \geq 0.1$ ) как в соотношении Амати ( $E_{iso}-E_{p,i,z}$ ), так и соотношении Йонетоку ( $L_{iso}-E_{p,p,z}$ ), причём наклон линейной регрессии меняется незначительно. Индексы соотношений Амати и Йонетоку (рис. 4) для всплесков типа II очень близки: 0.47 ( $\rho_S=0.70$ , 138 всплесков) и 0.49 ( $\rho_S=0.73$ , 137 всплесков), соответственно.



Рис. 4: Корреляции жёсткость–энергетика. Слева приведены данные для соотношения Амати, справа – для соотношения Йонетоку. Гамма-всплески типа I обозначены треугольниками, типа II – окружностями. Цветом показан логарифм значимости детектирования всплеска в единицах стандартного отклонения. Пунктирной линией показана линейная регрессия, вычисленная при  $\sigma_{\rm int} = 0$  для подвыборки всплесков типа II, всплески типа I показаны для информации. Сплошными и штриховыми линиями показаны интервалы предсказаний на уровне 68% и 90%, соответственно.

Поскольку граница соотношений Амати и Йонетоку в области мягких и ярких всплесков определяется событиями с высокой значимостью детектирования, и отсутствие детектирований ярких мягких всплесков в эксперименте Конус-*Винд* не является следствием эффектов селекции, отсутствие всплесков ниже указанной границы обусловлено свойствами самих гамма-всплесков. В то же время, выбросы в соотношениях Амати и Йонетоку для всплесков типа II лежат в области относительно жёстких и неярких событий. Большинство из них были зарегистрированы на низком уровне значимости и можно ожидать, что с увеличением чувствительности наблюдений в гамма-диапазоне и ростом количества измеренных красных смещений верхняя граница соотношений будет размываться вследствие возрастания числа детектирований неярких всплесков с высоким отношением жёсткости излучения к энерговыделению.

Показано, что учёт коллимации излучения для 30 гамма-всплесков типа II не приводит ни к повышению статистической значимости корреляций, ни к уменьшению внутренней дисперсии соотношений. В контексте данной подвыборки рассмотрена энергетика GRB 110918А, и получено свидетельство в пользу корректности косвенной оценки  $t_{jet}$  в работе [A1] и предположения о том, что сильная коллимация излучения ( $\theta_{jet} \sim 1.6^{\circ}$ ) является одним из ключевых факторов в механизме генерации необычайно яркого потока  $\gamma$ излучения во всплеске GRB 110918А. Наконец, два гамма-всплеска типа I с известными углами коллимации лежат выше соотношения  $E_{p,i,z} - E_{\gamma}$  для подвыборки всплесков типа II и внутри интервала предсказаний на уровне 68% соотношения  $E_{p,p,z}-L_{\gamma}$ .

В заключении приведены основные результаты работы:

- 1. Сформирована выборка гамма-всплесков с надёжными оценками красных смещений, зарегистрированных в триггерном режиме эксперимента Конус-Винд. Проведена классификация гамма-всплесков по критерию жёсткость-длительность, 12 событий отнесены к типу I (короткиежёсткие), а 138 – к типу II (длинные) [А5].
- 2. В результате анализа кривых блеска гамма-всплесков определены их полные длительности  $T_{100}$ , длительности  $T_{90}$  и  $T_{50}$  и спектральные задержки излучения. В ходе спектрального анализа определены параметры излучения гамма-всплесков для моделей Банда и СРL. Выбраны модели, наилучшим образом описывающие интегральный и пиковый спектры каждого всплеска. Проведён совместный временной и спектральный анализ данных GRB 140801A, одновременно зарегистрированного в экспериментах Конус-*Винд* и *Fermi*-GBM, подтверждена согласованность методик анализа данных двух экспериментов [A5,A2,A3].
- 3. Исследованы распределения жёсткость-длительность в системах отсчёта наблюдателя и источника гамма-всплеска. Показано, что при переходе в космологическую систему отсчёта наблюдается размытие границ кластеров всплесков типа I и типа II за счёт большего разброса красных смещений всплесков типа II [A5].
- 4. Определены полные и пиковые потоки энергии гамма-всплесков в системе отсчёта наблюдателя. С учётом красного смещения и k-коррекции получены оценки E<sub>iso</sub> и L<sub>iso</sub> в болометрическом диапазоне 1 кэB–(1 + z) 10 МэВ в космологической системе отсчёта. Для 32 GRB проведена оценка энерговыделения с учётом коллимации излучения. Коррекция на коллимацию излучения сдвигает пик распределений энерговыделения на

 $\sim 2.5$  порядка величины, при этом ширина распределений на логарифмической шкале сужается на  $\lesssim 0.4$  порядка [A5].

- 5. Проведено сравнение энергетики для выборки из 26 гамма-всплесков, зарегистрированных в триггерном режиме как в эксперименте Конус-Винд, так и в эксперименте Fermi-GBM. Установлено, что для >90% всплесков выборки разница в оценке  $E_{\rm iso}$  двумя экспериментами не превышает 25%. В случае использования одинаковой модели для аппроксимации интегрального спектра данное различие составляет <15% [A4].
- 6. Установлено, что отсутствие детектирований ярких ( $F \gtrsim 5 \times 10^{-6}$  эрг см<sup>-2</sup> с<sup>-1</sup>) всплесков с мягким ( $E_{\rm p} \lesssim 100$  кэВ) спектром обусловлено свойствами популяции самих гамма-всплесков, а не инструментальными эффектами селекции. Установлено, что область плоскости  $z-L_{\rm iso}$  выше  $L_{\rm iso,lim}$ , соответствующей наблюдаемому потоку энергии  $F_{\rm lim} \sim 1 \times 10^{-6}$  эрг см<sup>-2</sup> с<sup>-1</sup>, может считаться свободной от эффектов инструментальной селекции. В плоскости  $z-E_{\rm iso}$  область, свободная от эффектов селекции, находится выше  $E_{\rm iso,lim}$ , соответствующего  $S_{\rm lim} \sim 3 \times 10^{-6}$  эрг см<sup>-2</sup>. Действие эффектов селекции на плоскости  $z-E_{\rm p,z}$  ограничивается областью  $E_{\rm p,z} \lesssim (1+z)^2 \cdot 25$  кэВ. Оценен космологический предел наблюдаемости GRB в триггерном режиме в эксперименте Конус-Винд. Наиболее удалённый горизонт детектирования для всплесков выборки,  $z_{\rm max} \approx 17$ , соответствует сверхяркому GRB 110918A (измеренное z = 0.981) [A5].
- 7. С учетом эффектов селекции оценены степенные индексы космологической эволюции  $L_{\rm iso}$  ( $\delta_L = 1.7^{+0.9}_{-0.9}$ ) и  $E_{\rm iso}$  ( $\delta_E = 1.1^{+1.5}_{-0.7}$ ), при невысокой, на уровне  $\lesssim 1.7\sigma$ , значимости корреляций  $L_{\rm iso}$ -z и  $E_{\rm iso}$ -z. Оценены кумулятивные функции светимости и энерговыделения гамма-всплесков. На независимой выборке получены свидетельства в пользу экспоненциального завала функции изотропного энерговыделения гамма-всплесков с параметром обрезания  $E_{\rm cut} \gtrsim 10^{54}$  эрг и отсутствия такого обрезания у функции светимости вплоть до верхней границы исследованной выборки  $L_{\rm iso} \sim 5 \times 10^{54}$  эрг с<sup>-1</sup> [A5].
- 8. С учетом эффектов селекции оценён космологический темп образования источников гамма-всплесков. На независимой выборке получены свидетельства в пользу избытка GRBFR относительно скорости звездообразования в области малых красных смещений (*z* < 1) [A5].
- 9. Установлено, что значимость корреляций жёсткости и энерговыделения GRB усиливается с переходом из системы отсчёта наблюдателя в космологическую систему отсчёта. Показано, что граница соотношений Амати и Йонетоку в области относительно мягких всплесков типа II с высоким энерговыделением обусловлена собственными свойствами излучения гамма-всплесков, в то время как граница в области относительно жёстких GRB с низким энерговыделением обусловлена, в значительной мере, эффектами селекции. Установлено, что поправка на коллимацию излучения не приводит ни к повышению значимости корреляций, ни к уменьшению их внутренней дисперсии. Показано, что уникальная яркость GRB 110918А обусловлена исключительно сильной коллимацией излучения.

10. Установлено, что соотношения Амати и Йонетоку для подвыборки из 12 всплесков типа I характеризуются меньшим наклоном, чем для подвыборки всплесков типа II. Параметры двух гамма-всплесков типа I с известными углами коллимации хорошо согласуются с коллимированной версией соотношения Йонетоку и лежат вне коллимированной версии соотношения Амати для всплесков типа II [A5,A1].

## Список работ, опубликованных по теме диссертации

- A1. D. D. Frederiks, ..., A. E. Tsvetkova et al. The Ultraluminous GRB 110918A // Astrophys. J. 2013. Vol. 779. р. 151 (интерпретация свойств GRB 110918А была проведена на основании данных о гамма-всплесках с известным красным смещением, подготовленных соискателем);
- A2. A. A. Volnova, ..., A. E. Tsvetkova et al. GRB 051008: a long, spectrally hard dust-obscured GRB in a Lyman-break galaxy at  $z \approx 2.8$  // Mon. Not. R. Astron. Soc. 2014. Vol. 442, p. 2586 (соискатель, совместно с Д. Д. Фредериксом, провёл подготовку и анализ данных эксперимента Конус-Винд);
- A3. V. M. Lipunov, ..., A. E. Tsvetkova et al. The optical identification of events with poorly defined locations: the case of the *Fermi* GBM GRB 140801A // Mon. Not. R. Astron. Soc. 2016. Vol. 455, p. 712 (соискатель, совместно с Д. Д. Фредериксом, провёл подготовку и анализ данных гамма-всплеска, полученных в эксперименте Конус-Винд, также осуществил анализ данных Fermi-GBM, подготовленных В. Пелассой, и совместный анализ данных экспериментов Конус-Винд и *Fermi*-GBM);
- А4. J.-L. Atteia, ..., А. Е. Tsvetkova et al. The Maximum Isotropic Energy of Gamma-Ray Bursts // Astrophys. J. 2017. Vol. 837 р. 119 (соискатель осуществил подготовку данных эксперимента Конус-Винд для 69 ярких длинных гамма-всплесков с известным красным смещением и, совместно с Ж.-Л. Аттейей и Д. Д. Фредериксом, провёл сравнение энергетики 26 общих с Fermi-GBM всплесков, полученной по данным двух экспериментов);
- A5. A. Tsvetkova, D. Frederiks, S. Golenetskii et al. The Konus-*Wind* Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode // Astrophys. J. 2017. Vol. 850 p. 161 (основной вклад в работу).

# Литература, цитируемая в автореферате

- 1. Metzger M. R., Djorgovski S. G., Kulkarni S. R. et al. Spectral constraints on the redshift of the optical counterpart to the  $\gamma$ -ray burst of 8 May 1997 // Nature. 1997. Vol. 387. P. 878–880.
- 2. Waxman E., Kulkarni S. R., Frail D. A. Implications of the Radio Afterglow from the Gamma-Ray Burst of 1997 May 8 // Astrophys. J. 1998. Vol. 497. P. 288–293.
- 3. Sari R., Piran T., Halpern J. P. Jets in Gamma-Ray Bursts // Astrophys. J. 1999. Vol. 519. P. L17–L20.

- 4. Frail D. A., Kulkarni S. R., Sari R. et al. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir // Astrophys. J. 2001. Vol. 562. P. L55-L58.
- 5. Amati L., Frontera F., Tavani M. et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts // Astron. Astrophys. 2002. Vol. 390. P. 81–89.
- Yonetoku D., Murakami T., Nakamura T. et al. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation // Astrophys. J. – 2004. – Vol. 609. – P. 935– 951.
- 7. Ghirlanda G., Ghisellini G., Lazzati D. The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their  $\nu F_{\nu}$  Spectrum // Astrophys. J. 2004. Vol. 616. P. 331-338.
- 8. Atteia J.-L. Gamma-ray bursts: towards a standard candle luminosity // Astron. Astrophys. 1997. Vol. 328. P. L21–L24.
- 9. Aptekar R. L., Frederiks D. D., Golenetskii S. V. et al. Konus-W Gamma-Ray Burst Experiment for the GGS Wind Spacecraft // Space Sci. Rev. 1995. Vol. 71. P. 265-272.
- Band D., Matteson J., Ford L. et al. BATSE observations of gamma-ray burst spectra. I Spectral diversity // Astrophys. J. - 1993. - Vol. 413. - P. 281-292.
- 11. Zhang B., Zhang B.-B., Virgili F. J. et al. Discerning the Physical Origins of Cosmological Gammaray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs // Astrophys. J. - 2009. - Vol. 703. - P. 1696-1724.
- 12. Svinkin D. S., Frederiks D. D., Aptekar R. L. et al. The Second Konus-Wind Catalog of Short Gamma-Ray Bursts // Astrophys. J. Suppl. 2016. Vol. 224. P. 10.
- Arnaud K. A. XSPEC: The First Ten Years // Astronomical Data Analysis Software and Systems V / Ed. by G. H. Jacoby, J. Barnes. Vol. 101 of Astronomical Society of the Pacific Conference Series. 1996. P. 17.
- 14. Preece R. D., Briggs M. S., Mallozzi R. S. et al. The Synchrotron Shock Model Confronts a "Line of Death" in the BATSE Gamma-Ray Burst Data // Astrophys. J. 1998. Vol. 506. P. L23-L26.
- 15. Goldstein A., Preece R. D., Mallozzi R. S. et al. The BATSE 5B Gamma-Ray Burst Spectral Catalog // Astrophys. J. Suppl. 2013. Vol. 208. P. 21.
- 16. Gruber D., Goldstein A., Weller von Ahlefeld V. et al. The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years of Data // Astrophys. J. Suppl. 2014. Vol. 211. P. 12.
- 17. Li Z.-Y., Chevalier R. A. Wind-Interaction Models for the Early Afterglows of Gamma-Ray Bursts: The Case of GRB 021004 // Astrophys. J. - 2003. - Vol. 589. - P. L69–L72.
- 18. Efron B., Petrosian V. A simple test of independence for truncated data with applications to redshift surveys // Astrophys. J. 1992. Vol. 399. P. 345-352.
- 19. Lynden-Bell D. A method of allowing for known observational selection in small samples applied to 3CR quasars // Mon. Not. R. Astron. Soc. 1971. Vol. 155. P. 95.
- 20. Tremaine S., Gebhardt K., Bender R. et al. The Slope of the Black Hole Mass versus Velocity Dispersion Correlation // Astrophys. J. 2002. Vol. 574. P. 740-753.