На правах рукописи

Офенгейм Дмитрий Дмитриевич

Модельно-независимый анализ эволюции нейтронных звёзд

01.03.02 – Астрофизика и звёздная астрономия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Санкт-Петербург – 2020

Работа выполнена в Федеральном государственном бюджетном учреждении науки Физико-технический институт им. А. Ф. Иоффе Российской академии наук.

Научный руководитель:	Яковлев Дмитрий Георгиевич д. фм. н., проф., члкорр. РАН заведующий сектором ФТИ им. А.Ф. Иоффе
Официальные оппоненты:	Попов Сергей Борисович д. фм. н., проф. РАН, ведущий научный сотрудник Государственный астрономический институт им. П.К. Штернберга МГУ
	Коломейцев Евгений Эдуардович к. фм. н. (PhD TU Dresden), ведущий научный сотрудник Объединённый институт ядерных исследова- ний
Ведущая организация:	Физический институт им. П.Н. Лебедева РАН

Защита состоится 11 июня 2020 г. в 14:00 на заседании диссертационного совета ФТИ 34.01.04 Физико-технического института им. А.Ф. Иоффе Российской академии наук по адресу: 194021, Санкт-Петербург, Политехническая ул., д. 26. E-mail: post@mail.ioffe.ru

С диссертацией можно ознакомиться в научной библиотеке Физико-технического института им. А.Ф. Иоффе РАН и на сайте http://www.ioffe.ru.

Автореферат разослан «____» ____ 2020 г.

Отзывы и замечания по автореферату в двух экземплярах, заверенные печатью, просьба высылать по вышеуказанному адресу на имя ученого секретаря диссертационного совета.

Ученый секретарь диссертационного совета, к. ф.-м. н.

Штернин П.С.

Общая характеристика работы

Актуальность темы исследования. Нейтронные звёзды — уникальные природные лаборатории по исследованию сверхплотного вещества в экстремальных условиях. Плотность вещества в этих звёздах превосходит стандартную плотность ядерной материи $\rho_0 = 2.8 \times 10^{14} \,\mathrm{r\,cm^{-3}}$ в несколько раз, а магнитное поле достигает значений ~ $10^{16} \,\mathrm{Fc}$ (см., например, [1]). Изучение вещества при таких условиях — один из вызовов современной физики: такую материю сложно исследовать как в лабораторных экспериментах, так и чисто теоретически [1, 2]. В частности:

- Уравнение состояния сверхплотного вещества до сих пор не удаётся рассчитать точно, несмотря на прогресс теории [3]. Например, не ясно, появляются ли в ядрах нейтронных звёзд гипероны и/или экзотические формы материи.
- Считается, что барионы в недрах нейтронных звёзд должны быть сверхтекучими [4], однако истинные зависимости критических температур барионов от плотности пока неизвестны.
- Нейтронные звёзды обладают очень сильными магнитными полями, однако микрофизика вещества в таких полях, как и эволюция полей, изучены неполно.

Наблюдения нейтронных звёзд дают дополнительную информацию об их устройстве. Например:

- Сравнение наблюдений нейтронных звёзд, для которых измерены температура поверхности и возраст, с предсказаниями теории остывания этих звёзд позволяет делать выводы о свойствах сверхтекучести внутри звёзд (см. [4] и ссылки там).
- Оценки магнитных полей пульсаров по наблюдениям их торможения дают информацию о магнитной и тепловой эволюции нейтронных звёзд (например, [5]).
- Наблюдаемые нагретые и быстровращающиеся нейтронные звёзды в маломассивных рентгеновских двойных системах должны быть устойчивы по отношению к излучению гравитационных волн, что не просто объяснить теоретически [6].

Теоретические модели сверхплотного вещества сложны. Их использование требует больших вычислительных ресурсов. Поэтому актуальны методы, позволяющие единым образом сопоставлять с наблюдениями свойства широкого круга моделей нейтронных звёзд. Такие методы называют универсальными, или модельно-независимыми. Например, такой метод существует для анализа нейтринного остывания нейтронных звёзд [7]. Важно разработать подобные методы для фотонной стадии остывания и для изучения других проявлений нейтронных звёзд.

Цели и задачи работы. Целью диссертации является разработка мето-

дов исследования фундаментальных свойств сверхплотного вещества и основных параметров нейтронных звёзд по наблюдательным данным для широкого круга современных теоретических моделей сверхплотного вещества. Поставленные задачи:

- Исследовать универсальные свойства остывания нейтронных звёзд с разными уравнениями состояния. Используя результаты, развить модельнонезависимый метод исследования остывания, в том числе на фотонной стадии, и применить его к анализу наблюдательных данных.
- Исследовать квазистационарные потоки вещества в ядре нейтронной звезды с магнитным полем с помощью недавно предложенного [8] самосогласованного метода.
- Рассчитать сдвиговую вязкость в коре нейтронной звезды с магнитным полем.
- Рассчитать и аппроксимировать универсальными выражениями объёмную вязкость вещества ядер нейтронных звёзд с гиперонами для современных уравнений состояния вещества. Применить результаты к расчёту окон неустойчивости г-мод колебаний нейтронных звёзд.

Научная новизна

- 1. Нейтринные светимости нейтронных звёзд за счёт ряда важных нейтринных процессов, а также теплоёмкости этих звёзд аппроксимированы аналитическими функциями массы и радиуса звезды, едиными для широкого класса уравнений состояния плотного вещества.
- 2. На основе аппроксимаций разработано аналитическое описание остывания нейтронных звёзд, единым образом описывающее нейтринную и фотонную стадии остывания.
- 3. Выполнен модельно-независимый анализ нескольких остывающих нейтронных звёзд. Наложены ограничения на свойства сверхтекучести нуклонов в недрах звезды RX J1856–3754. Уточнены аналогичные ограничения для звезды XMMU J1732–344 и пульсара в созвездии Парусов (пульсара Вела); на их примере исследована возможность использования теории остывания для одновременного ограничения массы и радиуса нейтронных звёзд.
- 4. Самосогласованный метод расчёта квазистационарных процессов в нейтронных звёздах с магнитным полем применён к расчёту течений вещества, вызываемых в ядре звезды осесимметричным полем. Показано, что эволюция сильных магнитных полей (в магнитарах) может определяться увлечением полей этими течениями.
- 5. Вычислены коэффициенты электронной сдвиговой вязкости в коре нейтронной звезды с сильным магнитным полем; исследована зависимость вязкости от свойств вещества коры и величины поля.
- 6. Рассчитаны скорости слабых безлептонных процессов и объемная вязкость в веществе ядер нейтронных звёзд с Л и Ξ⁻-гиперонами с учётом канала слабого взаимодействия за счёт обмена мезоном. Получены аппрок-

симации результатов, универсальные относительно уравнения состояния.

7. Найденная объёмная вязкость нейтронных звёзд с гиперонами использована для расчёта окон неустойчивости г-мод колебаний таких звёзд. Показано, что наличие гиперонов в ядрах наблюдаемых нагретых быстровращающихся нейтронных звёзд в маломассивных рентгеновских двойных системах помогает объяснить существование этих звёзд, если учесть канал обмена мезоном в слабых безлептонных процессах.

Научная и практическая значимость. Результаты диссертации могут использоваться в различных областях физики нейтронных звёзд.

Разработанный модельно-независимый метод анализа остывающих нейтронных звёзд значительно упрощает интерпретацию их наблюдений и открывает широкие возможности для исследования свойств сверхплотного вещества. Он позволяет делать выводы о параметрах сверхтекучести и уравнения состояния вещества в недрах наблюдаемых нейтронных звёзд, а также об их массах и радиусах.

Расчёт потоков вещества, обусловленных магнитным полем, важен для построения самосогласованной модели эволюции магнитного поля в ядре нейтронной звезды и свидетельствует о необходимости пересмотра общепринятой картины эволюции поля.

Сдвиговая вязкость электронов в замагниченной коре нейтронных звёзд и объёмная вязкость их гиперонных ядер важны для моделирования затухания колебаний звёзд, релаксации дифференциального вращения их недр, подавления неустойчивости колебаний звёзд относительно излучения гравитационных волн и других диссипативных явлений.

Достоверность полученных результатов. Результаты диссертации получены с помощью достоверных математических и вычислительных методов в рамках адекватных физических приближений с чётко сформулированными критериями применимости. Там, где возможно, выполнено сравнение с результатами предшествующих исследований.

Основные положения, выносимые на защиту:

- 1. Получение аппроксимаций нейтринной светимости и теплоёмкости нейтронных звёзд аналитическими функциями массы и радиуса звезды, пригодными для широкого класса уравнений состояния. Разработка единого аналитического модельно-независимого описания нейтринной и фотонной стадий остывания нейтронных звёзд.
- 2. Интерпретация наблюдений ряда остывающих нейтронных звёзд модельнонезависимым методом. Наложение ограничений на свойства сверхтекучести нуклонов в звёздах RX J1856–3754, XMMU J1732–344 и пульсара Вела; исследование возможности использовать теорию остывания для одновременного ограничения массы и радиуса нейтронных звёзд на примере последних двух звёзд.
- 3. Самосогласованный расчёт течений вещества в ядрах нейтронных звёзд с

осесимметричным магнитным полем. Демонстрация того, что увлечение магнитного поля этими потоками может вносить важный вклад в эволюцию звёзд с сильным полем (магнитаров).

- 4. Расчёт и анализ электронной сдвиговой вязкости в коре нейтронной звезды с сильным магнитным полем.
- Расчёт скоростей слабых безлептонных процессов и объемной вязкости в ядрах нейтронных звёзд с ∧ и Ξ⁻-гиперонами. Учёт канала слабого взаимодействия за счёт обмена виртуальным мезоном. Аппроксимация результатов универсальными формулами.
- 6. Применение полученной объёмной вязкости для расчёта окон неустойчивости г-мод колебаний нейтронных звёзд с гиперонными ядрами. Демонстрация того, что учёт канала слабого взаимодействия за счёт обмена мезоном может позволить добиться устойчивости г-мод колебаний нейтронных звёзд в маломассивных рентгеновских двойных системах.

Апробация работы и публикации. Результаты диссертации получены в период с 2015 по 2020 гг. и опубликованы в 11 статьях в международных рецензируемых журналах (10 статей — в журналах из списка ВАК). Основные результаты доложены на астрофизических семинарах ФТИ им. А.Ф. Иоффе, а также на всероссийских и международных конференциях: «ФизикА.СПб» (Санкт-Петербург, ФТИ им. А.Ф. Иоффе, 2015—2017, 2019), «Фундаментальные и прикладные космические исследования» (Москва, ИКИ РАН, 2015), «Астрофизика высоких энергий сегодня и завтра» (Москва, ИКИ РАН, 2016, 2017, 2019), «Physics of Neutron Stars» (St. Petersburg, Alferov University, 2017), «Modern Physics of Compact Stars and Relativistic Gravity» (Yerevan, Yerevan State University, 2017), «PHAROS WG2 meeting — Superfluids and superconductors in neutron stars: from laboratory to astrophysical observations» (Warsaw, N. Copernicus Astronomical Center, 2018), «PHAROS WG1+WG2 meeting "Neutron stars: the equation of state, superconductivity/superfluidity and transport coefficients"» (Coimbra, Coimbra University, 2018).

Личный вклад автора. Вклад автора в результаты, вынесенные на защиту, является определяющим. Опубликованные работы выполнены в соавторстве с научным руководителем, сотрудниками ФТИ им. А.Ф. Иоффе, Астрономического центра им. Н. Коперника (Варшава, Польша) и Института астрономии и астрофизики Тюбингенского университета (Тюбинген, Германия), однако подавляющая часть расчётов проведена автором лично.

Структура и объем диссертации

Диссертация состоит из введения, 4 глав, заключения, списка обозначений, списка литературы и 5 приложений. Объём диссертации составляет 158 страниц, включая 48 рисунков и 9 таблиц. Список литературы включает 214 наименований.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

Глава 1 посвящена построению универсальных аппроксимаций нейтринной светимости и теплоёмкости нейтронных звёзд, применимых к широкому кругу моделей сверхплотного вещества. В *разделе 1.1* описано строение нейтронных звёзд и перечислены наблюдательные проявления этих звёзд, рассмотренные в диссертации. В *разделе 1.2* изложена постановка задачи об остывании изолированных нейтронных звёзд в приближении изотермичности их внутренних слоев. Влиянием магнитного поля на остывание пренебрегается. Такие звёзды охлаждаются, в основном, за счёт излучения нейтрино из их ядер и теплового электромагнитного излучения их поверхности. Через несколько десятилетий после рождения звезды при взрыве сверхновой её недра становятся изотермическими и характеризуются единой температурой \tilde{T} , сдвинутой по гравитационному красному смещению. Уравнение остывания звезды принимает вид

$$C(\widetilde{T})\frac{\mathrm{d}\widetilde{T}}{\mathrm{d}t} = -L^{\infty}_{\nu}(\widetilde{T}) - L^{\infty}_{\gamma}(\widetilde{T}).$$
(1)

Здесь C — теплоёмкость звезды, L_{ν}^{∞} и L_{γ}^{∞} — её нейтринная и фотонная светимости, определённые в системе отсчёта удалённого наблюдателя.

Рис. 1. Нейтринная светимость за счёт модифицированного урка-процесса как функция массы звезды для девяти уравнений состояния при $\widetilde{T} = 10^9$ К. Кривые — аппроксимация, символы — численный расчёт. Внизу — ошибки аппроксимации.

Связь светимости L^{∞}_{γ} с температурой \widetilde{T} определяется внешней теплоизолирующей оболочкой звезды. Свойства этих оболочек и аналитические аппроксимации зависимостей $L^{\infty}_{\gamma}(\widetilde{T})$ приведены в статьях [9, 10]. Величины L^{∞}_{ν} и C определяются свойствами ядра звезды.

В разделе 1.3 рассмотрены вклады в светимость за счёт прямого урка-процесса, модифицированного урка-процесса и тормозного излучения нейтринных пар при столкновениях нейтронов. Они аппроксимированы аналитическими выражениями вида $L_{\nu}^{\infty} = \Lambda(M, R)\tilde{T}^{n}$, где Mи R — масса и радиус нейтронной звезды, n = 6 для прямого урка-процесса, n = 8 для модифицированного урка-процесса и тормозного излучения. Использованы выражения для излучательных способностей этих процессов в несверхтеку-

чем веществе. Аналогично аппроксимированы парциальные вклады нейтронов, протонов и лептонов в теплоёмкость в виде $C = \Sigma(M, R)T$. В таком же виде получены аппроксимации полной теплоёмкости звезды и теплоёмкости без учёта вклада протонов (при сильной сверхтекучести протонов и нормальных нейтронах). Полученные аппроксимации позволяют рассчитывать светимость и теплоёмкость звезды по значениям М и R для существенно разных нуклонных уравнений состояния, описанных в разделе 1.3.2. Для примера на рисунке 1 дано сравнение подгонки и исходного расчета светимости L_{ν}^{∞} за счёт модифицированного урка-процесса. Каждая кривая и ряд однотипных символов соответствует одному уравнению состояния.

В разделе 1.4 приведена аппроксимация нейтринной светимости изотермической коры нейтронной звезды за счёт излучения нейтрино вырожденными электронами при столкновениях с атомными ядрами. В большинстве приложений этим вкладом в полную светимость L^{∞}_{ν} можно пренебречь.

В разделе 1.5 получено приближённое аналитическое решение уравнения остывания (1) для случаев, когда светимости удовлетворяют соотношениям $L_{\nu}^{\infty} \propto \widetilde{T}^n$ и $L_{\gamma}^{\infty} \propto \widetilde{T}^{\alpha}$ с постоянными значениями n и α . Такое приближение верно, например, для чисто железной ($\alpha \approx 2.2$) или чисто углеродной ($\alpha \approx 2.3$) теплоизолирующей оболочки. Получен закон остывания, единым образом описывающий нейтринную (когда $L^{\infty}_{\nu} \gg L^{\infty}_{\gamma}$, возраст звезды $t \lesssim 10^5$ лет) и фотонную (когда $L^{\infty}_{\gamma} \gg L^{\infty}_{\nu}$, возраст $t \gtrsim 10^5$ лет) стадии остывания. В пределе 6.66.4**⊠** 6.2 $\int_{00}^{\infty} \frac{1}{2} \int_{00}^{\infty} \frac{1}{2} \int_{0}^{\infty} \frac{1}$ BSk21

^{അമന്നമന്നന്നന്നെന്ന്}

4

5

6

3

 $M = 1.5 \,\mathrm{M}\odot$

R = 12.60 km

9

5.6

6.0

3.0

0.0

 δ [%]

малых возрастов звезды (на нейтринной стадии) это решение совпадает с хорошо известным законом $\widetilde{T} \propto t^{-1/(n-2)}$. На рисунке 2 показаны примеры кривых остывания нейтронной звезды с массой $1.5 M_{\odot}$ и уравнением состояния BSk21 [11] в виде зависимости наблюдаемой температуры поверхности T_s^{∞} от возраста звездыt. Результаты численного решения уравнения (1) показаны символами, расчёт по полученной аналитической формуле линиями. Ошибка аппроксимации не превосходит 7%. Использование такой аппроксимации существенно упрощает анализ остывания звёзд с возрастом $t \gtrsim$ 10⁵ лет.

В разделе 1.6 подведён итог результатам главы 1; они опубликованы в статьях [А1, А2].

В главе 2 на основе результатов главы 1 усовершенствован метод модельно-

независимого анализа остывания нейтронных звёзд, предложенный в [7]. В разделе 2.1 описаны имеющиеся данные наблюдений остывания изолированных нейтронных звёзд со слабым магнитным полем. В разделе 2.2 изложена суть модельно-независимого анализа остывания. Он основан на парадигме "минимального" остывания [12, 13], согласно которой наблюдаемые остывающие нейтронные звёзды имеют нуклонные ядра с запрещённым прямым урка-процессом. Тогда двумя основными регуляторами остывания становятся: масса $\Delta M_{\rm acc}$ аккрецированного вещества в теплоизолирующей оболочке и сверхтекучесть нуклонов в ядре звезды. Стандартным называется сценарий остывания, при котором нуклоны нормальны. Тогда скорость остывания звезды на нейтринной стадии $dT/dt = -\ell_{\rm SC}$, где $\ell_{\rm SC} = L_{\nu}^{\infty}/C$ отвечает так называемой стандартной «нейтринной свече» [7] — звезде, нейтринная светимость которой определяется модифицированным урка-процессом, а теплоемкость — всеми частицами ядра. Аппроксимации из главы 1 представляют $\ell_{\rm SC}$ в виде функции массы M и радиуса R звезды. Метод, предложенный в [7], учитывает влияние сверхтекучести на скорость нейтринного остывания ℓ введением безразмерного фактора нейтринного остывания $f_{\ell} = \ell/\ell_{\rm SC}$. В разделе 2.2 введён аналогичный безразмерный фактор фотонного остывания $f_C = (L_{\gamma}^{\infty}/C)_{\rm SC}/(L_{\gamma}^{\infty}/C) = C/C_{\rm SC}$, фактически определяющийся влиянием сверхтекучести на теплоёмкость. Данный метод позволяет исследовать остывание нейтронных звёзд, не задаваясь моделями уравнения состояния и сверхтекучести, и, следовательно, является модельно-независимым. В разделе 2.2 исследованы пределы изменения и свойства факторов f_{ℓ} и f_{C} на современном уровне знаний о сверхтекучести в ядре звезды. В частности, $f_{\ell} < 1$ указывает на синглетную сверхтекучесть протонов и нормальные нейтроны в ядре звезды,
а $f_\ell > 1$ и $f_C \lesssim 0.7$ — на триплетную сверхтекучесть нейтронов. Показано, что сценарии остывания нейтронных звёзд обычно можно характеризовать парами чисел (f_C, f_ℓ) .

В разделе 2.3 исследовано остывание девяти нейтронных звёзд: пульсаров J0205+6449, B0531+21, J1119–6127, J1357–6429, B0833–45 (пульсар Вела), B1706–44, J0538+2817 и B2334+61 и RX J0822–4300. Эти звёзды находятся на нейтринной стадии; их остывание не зависит от фактора f_C . Для каждой звезды построены области значений $\Delta M_{\rm acc}$ и f_ℓ , при которых кривая остывания соответствует наблюдаемым температуре и возрасту (данные взяты из [14]; модель оболочки – из [9]). Если теоретически допустить диапазон 0.01 < f_ℓ < 100, то для некоторых из этих звёзд (PSR J0205+6449, PSR J1357–6429, Вела, PSR B1706–44, PSR B2334+61) удаётся ограничить сверху $\Delta M_{\rm acc}$.

В разделе 2.4 проведено подробное исследование остывания пульсара Вела. На основе детального анализа его рентгеновского спектра (Д.А. Зюзин, [АЗ]) вычислена зависимость f_{ℓ} от предполагаемых массы и радиуса пульсара (при заданной массе $\Delta M_{\rm acc}$). На рисунке 3 цветом показана такая зависимость для железной теплоизолирующей оболочки [9]. Белыми контурами изображены границы доверительных областей для M и R пульсара Вела на уровнях

Рис. 3. Фактор нейтринного охлаждения f_{ℓ} для пульсара Вела как функция его массы и радиуса для железной теплоизолирующей оболочки. Чёрные контуры — линии постоянных значений f_{ℓ} , белые — доверительные области для массы и радиуса Велы, полученные из спектрального анализа. Подробнее см. текст.

достоверности 50%, 68% и 90%, полученные в ходе спектрального анализа. Как видно, при любых предположениях о массе и радиусе пульсара скорость его остывания во много раз выше стандартной нейтринной свечи. Если максимальное теоретически допустимое значение f_ℓ окажется существенно ниже 100 (например, $\max f_{\ell} = 30$), то область масс и радиусов, в которой фактор остывания более высок, придется исключить. Таким образом, показана принципиальная возможность использовать теорию остывания для уточнения совместных ограничений на М и R нейтронных звёзд, полученных путём спектрального анализа.

Аналогичный вывод сделан в [15] при исследовании остывания звезды XMMU J1732–344. В разделе 2.5 анализ её остывания уточнён. Для этого введён в рассмотрение фактор $f_{\ell p}$, определяемый согласно выражению $\ell = f_{\ell p}\ell_{\rm SC} + \ell_{nn}$, где ℓ_{nn} — функция остывания звезды с полностью сверхтекучими протонами и нормальными нейтронами. Как и $\ell_{\rm SC}$, величина ℓ_{nn} представима в виде функции M и R с помощью результатов главы 1. Как и для пульсара Вела, была вычислена зависимость $f_{\ell p}$ от предполагаемой массы и радиуса XMMU J1732–344. Поскольку фактор $f_{\ell p}$ имеет нижнюю теоретическую границу (мал, но конечен), удалось наложить ограничения — более строгие, чем в [15], — на массу и радиус XMMU J1732–344 и на массу $\Delta M_{\rm acc}$ в её теплоизолирующей оболочке.

В разделе 2.6 исследовано остывание нейтронной звезды RX J1856–3754. Использована интерпретация её рентгеновского спектра с помощью тонкой водородной атмосферы над твёрдой железной поверхностью [16]. Согласованность моделей атмосферы и теплоизолирующей оболочки требует, чтобы последняя была полностью железной. Возраст RX J1856–3754 принят равным $t \approx (3 - 5) \times 10^5$ лет [5]. Эта звезда уже завершила нейтринную стадию остывания; её охлаждение определяется обоими факторами f_{ℓ} и f_C . Чтобы определить их значения, использован аналитический закон остывания из раздела 1.5. Результат показан на диаграмме $f_{\ell} - f_C$ (рисунок 4) полосой между чёрными линиями. На этой же диаграмме схематически показаны области А—Е, запрещённые по разным теоретическим соображениям, перечисленным в разделе 2.2 (серая тонировка), и область, соответствующая нейтронным звёздам с нормальными нейтронами и сверхтекучими протонами (одинарная штриховка). Чёрный кружок — стандартное остывание $f_C = f_{\ell} = 1$. Двойной штриховкой показано множество точек (f_C, f_{ℓ}), одновременно разрешённых теоретически

10

Рис. 4. Факторы остывания для звезды RX J1856–3754. Полоса между сплошными линиями — область, согласующаяся с наблюдаемыми значениями $T_{\rm s}^{\infty}$ и t для этой звезды. Серые области A—Е запрещены теоретическими соображениями. Двойная штриховка — реалистичные сценарии остывания RX J1856–3754. Одинарной штриховкой схематически показана область, соответствующая несверхтекучим нейтронам в ядре звезды. Детали см. в тексте.

и согласующихся с наблюдениями RX J1856–3754. Как видно, для объяснения остывания этой звезды нужно предположить, что её остывание на нейтринной стадии протекало заметно быстрее, чем в стандартном сценарии, например за счёт сверхтекучести нейтронов в её ядре.

В разделе 2.7 представлен анализ обновлённых наблюдательных данных по остыванию пульсара J0633+0632, который, в зависимости от массы $\Delta M_{\rm acc}$ в теплоизолирующей оболочке, может находиться как на нейтринной, так и на фотонной стадии остывания. В разделе 2.8 подведён итог результатам главы 2; они опубликованы в статьях [A1, A2, A4, A5, A3, A6].

Глава 3 посвящена исследованию процессов в нейтронных звёздах с магнитным полем. Во вводном *разделе 3.1* дана общая характеристика двух рассмотренных задач: вычисле-

ние квазистационарных течений вещества, вызванных магнитным полем в ядре звезды (по методу из [8]), и расчёт сдвиговой вязкости в замагниченной коре звезды.

В *разделе 3.2* описана постановка задачи о квазистационарной эволюции магнитного поля в несверхтекучем и несверхпроводящем ядре звезды, состоящем из нейтронов, протонов и электронов. Использованы уравнения нерелятивистской магнитной гидродинамики (МГД) с учётом основных механизмов диссипации: трения между частицами разных сортов и неравновесных урка-процессов. Уравнения линеаризованы по возмущениям среды относительно гидростатического равновесия в отсутствие магнитного поля и записаны в квазистационарном приближении [8]. Согласно последнему, течения среды подстроиваются под мгновенную конфигурацию магнитного поля. Это позволяет пренебречь производными по времени в уравнениях Эйлера и неразрывности для частиц каждого сорта, однако в законе Фарадея производную по времени от магнитного поля следует сохранить.

В *разделе 3.3* реализована самосогласованная схема [8] решения задачи в ядре звезды с осесимметричным полем. Движения вещества удобно разложить на общий поток барионов со скоростью U_b и диффузионные потоки частиц каждого сорта a = n, p, e со скоростями w_a . Для этих величин получены явные выражения. Выписаны уравнения эволюции функций полоидального магнитного

Рис. 5. Слева: пример модели магнитного поля **B**. Белым показаны силовые линии поля, цвет — отношение величины поля в данной точке к наибольшему значению поля в звезде $B_{\rm max} = 5 \times 10^{15}$ Гс. В центре: полоидальная компонента скорости $\boldsymbol{U}_b^{(p)}$ общего потока барионов для данной модели поля. Справа: диффузионная скорость протонов \boldsymbol{w}_p в ядре звезды. Цвет — величины скоростей в логарифмическом масштабе, стрелки указывают направление скоростей в данной точке. Область коры звезды не показана. Температура $\tilde{T} = 2 \times 10^8$ К.

потока Ψ и полоидального электрического тока I (например, [17]).

В разделе 3.4 полученные формулы применены для расчёта возмущений химических потенциалов и потоков частиц всех сортов в типичной нейтронной звезде ($M = 1.4 M_{\odot}$, уравнение состояния HHJ [18]) с двумя моделями полоидального магнитного поля в ядре звезды. Для одной из них полученная картина потоков показана на рисунке 5. Важное свойство решения: скорость потока барионов U_b значительно превосходит диффузионные скорости частиц. Для обеих моделей поля наблюдается иерархия скоростей $U_b \sim (10-30) w_{p,e} \sim$ $(100-300)w_n$, причём $w_e \sim w_p$. Анализ показал, что подобная иерархия выполняется для широкого класса конфигураций магнитного поля в широком диапазоне температур. Следовательно, частицы всех сортов движутся под действием магнитного поля почти как единое целое. Это противоречит обычно принимаемому утверждению, что нейтроны в ядре звезды практически неподвижны (см. [19] и ссылки там). В конце раздела 3.4 показано, что наличие общего потока вещества в ядре звезды может приводить к новому механизму эволюции магнитного поля в ядре звезды за счёт увлечения поля этим потоком с характерным временем эволюции $\tau_U = B/|\operatorname{rot}(\boldsymbol{U}_b \times \boldsymbol{B})|$. Для звезды с несверхтекучим ядром

$$\tau_U \sim (10^4 - 10^5) \,\text{Jet} \times \left(\widetilde{T}_8 / B_{15}\right)^2,$$
(2)

где $\widetilde{T}_8 = \widetilde{T}/(10^8\,{
m K}),$ а B_{15} — характерное значение поля в ядре в единицах

 10^{15} Гс. В ядрах магнитаров (нейтронных звёзд со сверхсильным полем) магнитное поле может достигать ~ 10^{16} Гс, а температура может составлять несколько сотен млн. К [20], что приводит к оценке $\tau_U \sim 10^3$ лет. Это заметно меньше характерного возраста магнитаров ~ 10^4 лет. Значит, увлечение магнитного поля потоками вещества в ядрах магнитаров может заметно влиять на их магнитную и тепловую эволюцию.

В разделе 3.5 вычислена электронная сдвиговая вязкость в замагниченной коре звезды. Эта вязкость в основном определяется столкновениями электронов с атомными ядрами [21]. Вычисления проведены для сильно вырожденных электронов произвольной степени релятивизма. Интеграл столкновений в уравнении Больцмана брался в приближении времени релаксации, причём эффективное время релаксации взято из расчётов [21] на основе более глубокого подхода. Сдвиговая вязкость в присутствии магнитного поля описывается пятью коэффициентами вязкости [22]: продольной вязкостью η_0 , совпадающей с вязкостью немагнитной среды, двумя поперечными вязкости сильно зависят от магнитного поля. Исследована зависимость коэффициентов вязкости от параметров вещества и силы магнитного поля.

В *разделе 3.6* дана сводка результатов третьей главы, кратко обсуждены их возможные приложения. Материалы главы опубликованы [А7, А8, А9].

Глава 4 посвящена расчёту объёмной вязкости ζ в нейтронных звёздах с гиперонными ядрами и её роли в подавлении неустойчивости r-мод колебаний таких звёзд по отношению к излучению гравитационных волн. Во вводном разделе 4.1 описано понятие окна неустойчивости этих колебаний на диаграмме частота вращения звезды u — температура недр \widetilde{T} и изложена суть парадокса r-мод колебаний нейтронных звёзд [6]. Он заключается в том, что многие нейтронные звёзды в маломассивных рентгеновских двойных системах (LMXB) лежат на этой диаграмме внутри окон неустойчивости, рассчитанных для звёзд с нуклонными ядрами с учётом простейших механизмов диссипации. Однако объяснить наблюдение столь большого числа звёзд с частотами и температурами в окнах неустойчивости трудно. Для решения данного парадокса привлекают дополнительные механизмы диссипации — в частности, объёмную вязкость за счёт слабых безлептонных процессов, протекающих в гиперонных ядрах нейтронных звёзд. В разделе 4.2 описаны модели гиперонных уравнений состояния использованные для расчёта вязкости. Рассмотрены современные уравнения состояния, в которых первыми появляются Λ и Ξ^- -гипероны.

В разделе 4.3 в рамках несверхтекучей нерелятивистской гидродинамики рассчитана связь между объёмной вязкостью ζ и суммарной скоростью всех слабых безлептонных процессов λ при гармоническом колебании среды с частотой ω . Она имеет вид

$$\zeta = 2\zeta_{\max}\lambda_{\max}\lambda / \left(\lambda_{\max}^2 + \lambda^2\right),\tag{3}$$

где $\zeta_{\rm max}$ — максимально достижимая объёмная вязкость при данной частоте

 ω и плотности среды ρ , а λ_{\max} — скорость слабых процессов, при которой достигается максимум ζ при данных ρ и ω . Величины ζ_{\max} и λ_{\max} определяются уравнением состояния и не зависят от того, какие слабые безлептонные процессы протекают в веществе. Зависимости $\zeta_{\max}(\rho, \omega)$ и $\lambda_{\max}(\rho, \omega)$ аппроксимированы формулами, которые качественно воспроизводят поведение этих функций, универсальное для разных моделей уравнения состояния.

В разделе 4.4 вычислены скорости слабых безлептонных процессов, протекающих в ядре звезды с Λ и Ξ^- -гиперонами. Таких процессов пять: $np \leftrightarrow \Lambda p$, $nn \leftrightarrow \Lambda n$, $n\Lambda \leftrightarrow \Lambda\Lambda$, $\Lambda n \leftrightarrow \Xi^- p$ и $n\Xi^- \leftrightarrow \Lambda\Xi^-$. Последние три ранее не исследовались в контексте нейтронных звёзд. При расчёте скоростей этих процессов использована модель слабого неупругого взаимодействия барионов за счёт обмена мезоном. Подтверждён результат работы [23], где показано, что слабые безлептонные процессы в нейтронных звёздах идут за счёт обмена мезоном во много раз эффективнее, чем за счёт контактного обмена W-бозоном (последний в основном используется в литературе, посвящённой подавлению неустойчивости г-мод объёмной вязкостью, например, [24]). Выражение для скорости процесса $12 \leftrightarrow 34$ имеет вид

$$\lambda_{12\leftrightarrow34} \approx \frac{5.1 \times 10^{45}}{\text{эрг см}^3 \text{ c}} \frac{q_{12\leftrightarrow34}^{(\text{max})} - q_{12\leftrightarrow34}^{(\text{min})}}{1 \text{ \Gamma} \text{эB}} T_8^2 \Theta\left(q_{12\leftrightarrow34}^{(\text{max})} - q_{12\leftrightarrow34}^{(\text{min})}\right) \mathcal{W}_{12\leftrightarrow34}.$$
(4)

Здесь $T_8 = T/(10^8 \text{ K})$ — локальная температура среды, $q_{12\leftrightarrow 34}^{(\text{max})} = \min\{p_{\text{F1}} + p_{\text{F3}}, p_{\text{F2}} + p_{\text{F4}}\}, q_{12\leftrightarrow 34}^{(\text{min})} = \max\{|p_{\text{F1}} - p_{\text{F3}}|, |p_{\text{F2}} - p_{\text{F4}}|\} (p_{\text{Fi}} - \text{импульс Ферми частиц сорта } i), <math>\Theta(x)$ — функция Хевисайда, а $\mathcal{W}_{12\leftrightarrow 34}$ — усреднённый по углам квадрат матричного элемента процесса $12 \leftrightarrow 34$. Эта безразмерная величина не зависит от температуры и слабо зависит от плотности среды. Для всех процессов, кроме $n\Lambda \leftrightarrow \Lambda\Lambda$, её можно считать константой, значение которой, однако, сильно зависит от модели уравнения состояния. Согласно расчётам, $\mathcal{W}_{np\leftrightarrow\Lambda p}$ и $\mathcal{W}_{\Lambda n\leftrightarrow\Xi^- p}$ находятся в пределах $\sim 0.5 - 1.5$, $\mathcal{W}_{nn\leftrightarrow\Lambda n} \sim 0.3 - 0.6$, $\mathcal{W}_{n\Xi^-\leftrightarrow\Lambda\Xi^-} \sim 0.04 - 0.10$, а $\mathcal{W}_{n\Lambda\leftrightarrow\Lambda\Lambda}$ с ростом плотности увеличивается от $\sim 0.05 - 0.1$ до $\sim 0.2 - 0.3$. Зависимости $\lambda_{12\leftrightarrow 34}(\rho, T)$ аппроксимированы выражениями, универсальными относительно уравнения состояния.

В разделе 4.5 вычисленная вязкость ζ применена для расчёта окон неустойчивости г-мод (согласно методу из [24]). Пример такого расчёта показан на рисунке 6. Чёрные кривые изображают границы окон неустойчивости для заданных масс звёзд (указаны на рисунке); устойчивая область частот и температур для данной звезды находится снизу от соответствующей кривой. Для данного сценария вклад в суммарную скорость слабых процессов вносит только процесс $n\Lambda \leftrightarrow \Lambda\Lambda$. Это качественно соответствует предположению о сильной сверхтекучести заряженных барионов и умеренной сверхтекучести нейтральных барионов в ядре звезды. При добавлении в λ вкладов других процессов границы окон неустойчивости будут сдвигаться в область низких температур. В сравнении с предыдущими расчётами (например, [24]), полученные области устойчивости сдвинуты к низким температурам. Так происходит благодаря учёту канала слабого взаимодействия за счёт обмена мезоном (который не рассмотрен в [24]). Сделанный расчёт показывает, что предположение о наличии гиперонов в нейтронных звёздах в LMXB может позволить добиться устойчивости г-мод колебаний этих звёзд и объяснить наблюдения.

В разделах 4.6 и 4.7 обсуждены упрощения, сделанные при вычислениях, и перечислены результаты главы 4. Материалы главы опубликованы в статьях [A10, A11].

В Заключении кратко перечислены основные результаты диссертации:

Рис. 6. Окна неустойчивости для нейтронных звёзд с уравнением состояния FSU2H в случае, когда все процессы, кроме $n\Lambda \leftrightarrow \Lambda\Lambda$, подавлены. Данные наблюдений взяты из работ, указанных в диссертации. Подробности см. в тексте.

- 1. Получены аппроксимации парциальных вкладов нейтронов, протонов и лептонов в интегральную теплоёмкость нейтронной звезды, а также полной теплоёмкости несверхтекучей звезды и звезды с сильной протонной сверхтекучестью. Аппроксимированы вклады в нейтринную светимость нейтронных звёзд за счёт прямого и модифицированного урка-процессов, а также за счёт тормозного излучения нейтрино при столкновениях нейтронов. Аппроксимации имеют вид функций массы звезды, её радиуса и внутренней температуры. Они универсальны для широкого класса моделей нуклонных уравнений состояния в ядре звезды. На их основе предложено аналитическое модельно-независимое решение задачи остывания нейтронных звёзд, единое для нейтринной и фотонной стадий остывания.
- 2. Проведен модельно-независимый анализ остывания 12 нейтронных звёзд с измеренными температурами поверхности и возрастами. В нескольких случаях получены ограничения на свойства сверхтекучести нуклонов в недрах звёзд и на массу аккрецированного вещества в их теплоизолирующих оболочках. Анализ рентгеновского спектра звезды XMMU J1732–344 и пульсара Вела позволил изучить возможность использования теории остывания для наложения ограничений на массы и радиусы нейтронных звёзд.
- 3. Выполнен самосогласованный расчёт квазистационарных потоков вещества, возникающих в нуклонном ядре нейтронной звезды с осесимметричным магнитным полем. Показано, что скорости общего потока вещества

многократно превосходят диффузионные скорости частиц разных сортов, что требует пересмотра распространённой в литературе картины эволюции магнитного поля в ядре звезды. Показано, что увлечение магнитного поля потоком вещества в ядре может вносить существенный вклад в эволюцию поля магнитаров.

- 4. Рассчитана электронная сдвиговая вязкость за счёт рассеяния электронов на атомных ядрах в коре нейтронной звезды с сильным магнитным полем. Исследовано поведение коэффициентов сдвиговой вязкости в зависимости от силы магнитного поля и свойств вещества коры.
- 5. Рассчитаны скорости слабых безлептонных процессов и объемная вязкость в веществе ядер нейтронных звёзд с Λ и Ξ[−]-гиперонами с учетом канала обмена одним виртуальным мезоном. Результаты аппроксимированы аналитическими формулами, позволяющими легко оценивать объёмную вязкость для широкого класса уравнений состояния нуклонно-гиперонного вещества.
- 6. Изучены окна неустойчивости г-мод колебаний нейтронных звёзд с гиперонными ядрами с учётом обмена мезоном в слабых безлептонных реакциях. Результаты сопоставлены с данными наблюдений нейтронных звёзд в маломассивных рентгеновских двойных системах. Показана потенциальная важность рассмотренного канала реакций для объяснения наблюдений этих источников.

Список публикаций

- A1. Neutrino luminosities and heat capacities of neutron stars in analytic form / D. D. Ofengeim, M. Fortin, P. Haensel et al. // Phys. Rev. D. -2017. -Vol. 96, no. 4. P. 043002.
- A2. Ofengeim D. D., Yakovlev D. G. Analytic description of neutron star cooling // Mon. Not. R. Astron. Soc. 2017. Vol. 467, no. 3. P. 3598-3603.
- A3. Ofengeim D. D., Zyuzin D. A. Thermal Spectrum and Neutrino Cooling Rate of the Vela Pulsar // Particles. 2018. Vol. 1, no. 1. P. 194-202.
- A4. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory / D. D. Ofengeim, A. D. Kaminker, D. Klochkov et al. // Mon. Not. R. Astron. Soc. 2015. Vol. 454. P. 2668-2676.
- A5. Of engeim D. D., Yakovlev D. G. Cooling status of three neutron stars // J. Phys. Conf. Ser. -2017.- Vol. 932. - P. 012049.
- A6. XMM-Newton observations of a gamma-ray pulsar J0633+0632: pulsations, cooling and large-scale emission / A. Danilenko, A. Karpova, D. Ofengeim et al. // Mon. Not. R. Astron. Soc. 2020. Vol. 493, no. 2. P. 1874-1887.
- A7. Ofengeim D. D., Gusakov M. E., Kantor E. M. Quasistationary fluid motions in magnetized neutron stars // J. Phys. Conf. Ser. 2018. Vol. 1038. P. 012009.

- A8. Ofengeim D. D., Gusakov M. E. Fast magnetic field evolution in neutron stars: The key role of magnetically induced fluid motions in the core // Phys. Rev. D. − 2018. − Vol. 98, no. 4. − P. 043007.
- A9. Ofengeim D. D., Yakovlev D. G. Shear viscosity in magnetized neutron star crust // EPL (Europhysics Letters). 2015. Vol. 112, no. 5. P. 59001.
- A10. Bulk viscosity in neutron stars with hyperon cores / D. D. Ofengeim, M. E. Gusakov, P. Haensel, M. Fortin // Phys. Rev. D. - 2019. - Vol. 100, no. 10. - P. 103017.
- A11. R-mode stabilization in neutron stars with hyperon cores / D. D. Ofengeim, M. E. Gusakov, P. Haensel, M. Fortin // J. Phys. Conf. Ser. - 2019. - Vol. 1400. - P. 022029.

Цитированная литература

- 1. Haensel P., Potekhin A. Y., Yakovlev D. G. Neutron Stars. 1. Equation of State and Structure. Springer, New York, 2007.
- 2. Lattimer J. M., Prakash M. The equation of state of hot, dense matter and neutron stars // Phys. Rep. $-2016.-Vol.\ 621.-P.\ 127-164.$
- 3. Burgio F. G., Fantina A. F. Nuclear Equation of State for Compact Stars and Supernovae // The Physics and Astrophysics of Neutron Stars / Ed. by L. Rezzolla, P. Pizzochero, D. I. Jones et al. — Springer, Cham, 2018. — P. 255.
- 4. Stellar superfluids / D. Page, J. M. Lattimer, M. Prakash, A. W. Steiner // Novel Superfluids, vol. 2 / Ed. by K. H. Bennemann, J. B. Ketterson. — Oxford University Press, Oxford, 2015. — P. 505–579.
- 5. Unifying the observational diversity of isolated neutron stars via magnetothermal evolution models / D. Viganò, N. Rea, J. A. Pons et al. // Mon. Not. R. Astron. Soc. - 2013. - Vol. 434. - P. 123-141.
- 6. Haskell B. R-modes in neutron stars: Theory and observations // International Journal of Modern Physics E. 2015. Vol. 24, no. 9. P. 1541007.
- 7. Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant / D. G. Yakovlev, W. C. G. Ho, P. S. Shternin et al. // Mon. Not. R. Astron. Soc. 2011. Vol. 411. P. 1977–1988.
- 8. Gusakov M. E., Kantor E. M., Ofengeim D. D. Evolution of the magnetic field in neutron stars // Phys. Rev. D. 2017. Vol. 96. P. 103012.
- Thermal Structure and Cooling of Superfluid Neutron Stars with Accreted Magnetized Envelopes / A. Y. Potekhin, D. G. Yakovlev, G. Chabrier, O. Y. Gnedin // Astrophys. J. - 2003. - Vol. 594. - P. 404-418.
- 10. Beznogov M. V., Potekhin A. Y., Yakovlev D. G. Diffusive heat blanketing envelopes of neutron stars // MNRAS. 2016. Vol. 459. P. 1569–1579.
- 11. Analytical representations of unified equations of state for neutron-star matter / A. Y. Potekhin, A. F. Fantina, N. Chamel et al. // Astron. Astrophys. 2013. Vol. 560. P. A48.

- 12. Minimal Cooling of Neutron Stars: A New Paradigm / D. Page, J. M. Lattimer, M. Prakash, A. W. Steiner // Astrophys. J. Suppl. Ser. - 2004. - Vol. 155. - P. 623-650.
- 13. Enhanced cooling of neutron stars via Cooper-pairing neutrino emission / M. E. Gusakov, A. D. Kaminker, D. G. Yakovlev, O. Y. Gnedin // Astron. Astrophys. - 2004. - Vol. 423. - P. 1063-1071.
- Beznogov M. V., Yakovlev D. G. Statistical theory of thermal evolution of neutron stars // Mon. Not. R. Astron. Soc. - 2015. - Vol. 447. - P. 1598-1609.
- 15. The neutron star in HESS J1731-347: Central compact objects as laboratories to study the equation of state of superdense matter / D. Klochkov, V. Suleimanov, G. Pühlhofer et al. // Astron. Astrophys. 2015. Vol. 573. P. A53.
- 16. Thin magnetic hydrogen atmospheres and the neutron star RX J1856.5 3754 / W. C. G. Ho, D. L. Kaplan, P. Chang et al. // Astrophys. Space Sci. – 2007. – Vol. 308. – P. 279–286.
- Goedbloed J. P., Keppens R., Poedts S. Advanced Magnetohydrodynamics. Cambridge University Press, Cambridge, UK, 2010.
- 18. Heiselberg H., Hjorth-Jensen M. Phases of dense matter in neutron stars // Phys. Rep. 2000. Vol. 328, no. 5-6. P. 237-327.
- The relevance of ambipolar diffusion for neutron star evolution / A. Passamonti, T. Akgün, J. A. Pons, J. A. Miralles // Mon. Not. R. Astron. Soc. 2017. Vol. 465. P. 3416–3428.
- 20. Potekhin A. Y., Chabrier G. Magnetic neutron star cooling and microphysics // Astron. Astrophys. - 2018. - Vol. 609. - P. A74.
- 21. Chugunov A. I., Yakovlev D. G. Shear Viscosity and Oscillations of Neutron Star Crust // Astron. Rep. 2005. Vol. 49. P. 724-738.
- 22. Лифшиц Е. М., Питаевский Л. П. Физическая кинетика. М.: Наука, 1979. Серия: "Теоретическая физика", том Х.
- 23. van Dalen E. N., Dieperink A. E. Bulk viscosity in neutron stars from hyperons // Phys. Rev. C. - 2004. - Vol. 69. - P. 025802.
- 24. Nayyar M., Owen B. J. R-modes of accreting hyperon stars as persistent sources of gravitational waves // Phys. Rev. D. -2006. Vol. 73. P. 084001.