На правах рукописи

Авдеев Иван Дмитриевич

ЭФФЕКТЫ МЕЖДОЛИННОГО СМЕШИВАНИЯ В НАНОСТРУКТУРАХ ИЗ ХАЛЬКОГЕНИДОВ СВИНЦА

Специальность:

01.04.02 – теоретическая физика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата физико-математических наук

Санкт-Петербург

2021

Работа выполнена в Федеральном государственном бюджетном учреждении науки Физико-техническом институте им. А.Ф. Иоффе Российской академии наук

Научный руководитель:

Нестоклон Михаил Олегович, доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук, старший научный сотрудник сектора теории квантовых когерентных явлений в твердом теле

Официальные оппоненты:

Манцевич Владимир Николаевич, доктор физико-математических наук, Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова», доцент кафедры физики полупроводников и криоэлектроники, ведущий научный сотрудник центра квантовых технологий

Иорш Иван Владимирович, доктор физико-математических наук, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО», профессор, руководитель международной научной лаборатории фотопроцессов в мезоскопических системах, главный научный сотрудник физического факультета

Ведущая организация:

федеральное государственное бюджетное учреждение высшего образования «Санкт-Петербургский государственный университет»

Защита состоится "___" ____ 2021 г. в _____ часов на заседании диссертационного совета 34.01.02 при ФТИ им. А.Ф. Иоффе по адресу: 194021, Санкт-Петербург, ул. Политехническая, д. 26.

С диссертацией можно ознакомиться в библиотеке ФТИ им. А.Ф. И
оффе и на сайте www.ioffe.ru

Отзывы об автореферате в двух экземплярах, заверенные печатью, просьба высылать по вышеуказанному адресу на имя ученого секретаря диссертационного совета.

Автореферат разослан "___" ____ 2021 г.

Ученый секретарь диссертационного совета

доктор физико-математических наук

Сорокин Л. М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность</u> теоретического исследования наноструктур из халькогенидов свинца PbX (X = S, Se, Te) обусловлена, с одной стороны, их уникальными электронными и оптическими свойствами, благодаря чему эти материалы нашли широкое применение в современной инфракрасной оптоэлектронике, а, с другой, — быстрым развитием экспериментальных методов синтеза и спектроскопии всевозможных наноструктур на их основе [1]. Особенностью халькогенидов свинца является то, что из-за узкой ширины запрещенной зоны, легкой массы носителей и большого боровского радиуса экситона в них ярко выражены эффекты размерного квантования, что позволяет эффективно управлять рабочей длиной волны приборов на их основе в широком диапазоне инфракрасного спектра. Это делает данные материалы перспективными не только для нового поколения устройств фотовольтаики [2] или квантовой оптики [3], но и для применения в таких необычных областях, как визуализация биологических тканей [4].

Халькогениды свинца являются прямозонными полупроводниками с хорошо изученными основными свойствами и сложной многодолинной зонной структурой. Дно зоны проводимости и потолок валентной зоны в них расположены в L точках зоны Бриллюэна, которые образуют четыре неэквивалентные анизотропные долины. Вблизи L долин закон дисперсии PbX во многом определяется спин-орбитальным взаимодействием на атомах свинца, что значительно ограничивает применимость расчетов из первых принципов [5] для исследования наноструктур на их основе и делает невозможным явное разделение спина и орбитального движения электрона. При этом в наноструктурах электроны из разных долин могут смешиваться друг с другом за счет рассеяния на границе, что приводит к долинному расщеплению их уровней размерного квантования. В достаточно больших наноструктурах долинное расщепление, как правило, пренебрежимо мало, однако с уменьшением размера до единиц нанометров его роль существенного возрастает, вплоть до того, что именно оно становится основным фактором, определяющим тонкую структуру уровней размерного квантования и экситона. Расчет величин долинных расщеплений является важной и трудной задачей, требующей учета микроскопической структуры рассматриваемых систем и, соответственно, использования атомистических методов расчета.

Целью работы является теоретическое исследование эффектов, связанных с междолинным рассеянием электронов и дырок в нанопроволоках и квантовых точках из халькогенидов свинца, а также разработка общих аналитических и численных методов, применимых для исследования наносистем из других многодолинных полупроводниковых материалов.

Научная новизна и практическая значимость работы состоит в том, что в ней впервые систематически исследована зависимость долинных расщеплений от размера, формы поверхности и точечной симметрии в нанопроволоках и квантовых точках из халькогенидов свинца. Изучено влияние поверхностных дефектов, пассивации и релаксации поверхности на величину долинных расщеплений. Впервые на основе метода эффективной массы построена аналитическая модель тонкой структуры экситона в квантовых точках из халькогенидов свинца с кубической симметрией. Эта модель учитывает долинное расщепление уровней размерного квантования, внутри- и междолинное кулоновское взаимодействие и анизотропию оптических переходов. Она позволила установить ключевую роль междолинного обменного взаимодействия в формировании спектров экситонного поглощения, в которых доминирует один «сверхъяркий», оптически активный триплет, отщепленный вверх по энергии на десятки мэВ. Наличие такого триплетного состояния приводит к асимметричному уширению пика люминесценции квантовых точек и большому Стоксову сдвигу, которые наблюдаются экспериментально. Предложенная модель квантовых точек с поверхностными дефектами позволяет объяснить наблюдаемые в эксперименте *g*-факторы и анизотропные расщепления спектров.

Основные положения, выносимые на защиту:

- Величина долинных расщеплений в нанопроволоках из халькогенидов свинца контролируется формой их поперечного сечения, устойчива к небольшим возмущениям поверхности и может достигать сотен мэВ.
- 2. В нанопроволоках из халькогенидов свинца при отсутствии центра инверсии могут наблюдаться гигантские, вплоть до единиц эВ·Å, ли-

нейные по волновому вектору спиновые расщепления подзон размерного квантования.

- 3. Тонкая структура экситона в квантовых точках из халькогенидов свинца определяется обменным кулоновским взаимодействием, формирующим «сверхъяркий», симметричный по долинному индексу триплет, и междолинным смешиванием, которое снимает вырождение экситонных состояний и перераспределяет силу осциллятора между разрешенными по симметрии переходами.
- Учёт поверхностных дефектов позволяет объяснить экспериментальные данные по g-факторам и анизотропным расщеплениям спектров низкотемпературной магнитофотолюминесценции квантовых точек из сульфида свинца.

Апробация работы. Результаты диссертационного исследования были представлены на XIII и XIV Российских конференциях по физике полупроводников (Екатеринбург, 2017; Новосибирск 2019), на международном симпозиуме «Nanostructures: Physics and Technology» (Санкт-Петербург, 2016), на международной зимней школе ФТИ им А.Ф. Иоффе (Зеленогорск, 2016, 2017), на международной молодежной конференции «ФизикА.СПб» (Санкт-Петербург, 2015), тезисы докладов были приняты на конференции PNCSPA (Санкт-Петербург, 2020) и Faraday Discussions (York, UK, 2020). Результаты работы неоднократно обсуждались на низкоразмерном и чайном семинарах ФТИ им. А.Ф. Иоффе, на рабочих семинарах в университете Дортмунда в Германии, институте физики Ханоя во Вьетнаме и на семинаре лаборатории Оптики спина им. И. Н. Уральцева в СПБГу.

<u>Публикации.</u> По результатам исследований опубликовано 9 работ в рецензируемых журналах.

Структуры и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка литературы. Она содержит 142 страницы текста, включая 33 рисунка. Список цитируемой литературы содержит 137 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во **Введении** сформулирована цель и научная новизна диссертационного исследования, обоснованы его актуальность и значимость, а также перечислены основные положения, выносимые на защиту.

Первая глава диссертации посвящена методу сильной связи и симметрийному анализу с использованием теории представлений групп. В ней подробно описан используемый в работе $sp^3d^5s^*$ вариант метода сильной связи [6], метод расчета Фурье образа и экситонных состоянийю Также здесь содержится ряд оригинальных результатов и алгоритмов, позволяющих эффективно вычислять преобразования одно- и двухчастичных состояний наноструктур при операциях симметрии.

В §1.1 изложен основной формализм метода сильной связи: явный вид волновых функций, построение гамильтониана, схема его параметризации и основные параметры халькогенидов свинца. Также здесь зафиксирован явный вид L долин, используемый в диссертации при анализе симметрии, и подгоночные параметры $\mathbf{k} \cdot \mathbf{p}$ теории. В конце параграфа описан способ учета внешних полей, расчета оптических матричных элементов, в том числе с учетом диэлектрического контраста [А5; А6], и преобразования Фурье.

В §1.2 подробно изложен расчет кулоновских матричных элементов на волновых функциях метода сильной связи в рамках метода конфигурационного взаимодействия [7]. Данный подход является стандартным для эмпирических атомистических методов, таких как метод сильной связи [8] или псевдопотенциала [9], и основан на предположении, что одночастичные волновые функции в них являются решениями уравнения Хартри-Фока многоэлектронной системы. При этом он имеет ряд ограничений и требует использования приближений, например, в методе сильной связи неизвестен явный вид левдиновских орбиталей, и необходима отдельная оценка внутриатомных кулоновских интегралов. Эта и другие проблемы и пути их решения также обсуждаются в параграфе. В частности, показано, что в халькогенидах свинца внутриатомными вкладами можно с хорошей точностью пренебречь, а в качестве диэлектрической функции – использовать постоянное значение $\varepsilon(r) \equiv \varepsilon_{\rm bulk}^{\rm out}$, соответствующее высокочастотной диэлектрической проницаемости объемного кристалла.

§1.4 посвящен симметрийному анализу. Здесь приведены конкретные выражения для вычисления преобразований волновых функций метода сильной связи $\psi = \sum C \phi$ при операциях симметрии [A2]

$$gC = e^{-i\boldsymbol{k\tau}} (\dot{P} \otimes D) C , \qquad (1)$$

где $g = (R|\tau)$ — элемент пространственной группы, C — коэффициенты разложения волновой функции по базисным левдиновским орбиталям ϕ , а матрицы \tilde{P} и D определяют перестановку атомов с учетом фаз и поворот базисных орбиталей. Приведен быстрый способ вычисления матрицы \tilde{P} за линейно-логарифмическое по числу атомов время (существенно для больших наноструктур). Также приведено краткое обоснование формул

$$g |a\rangle = |b\rangle D_{ba}(g) , \quad g |\bar{i}\rangle = |\bar{j}\rangle F_{ji}^*(g) , \quad g |ia\rangle = |jb\rangle F_{ji}^*(g) D_{ba}(g) , \quad (2)$$

определяющих закон преобразования состояний системы с одним лишним электроном в зоне проводимости $|a\rangle$, одним отсутствующим электроном в валентной зоне $|\bar{i}\rangle$ и однократно возбужденных состояний в виде слэтеровских определителей $|ia\rangle$, где D и F — матрицы преобразований соответствующих одночастичных состояний.

Еще один оригинальный результат, представленный в §1.4, это схема приведения состояний с заданной симметрией к каноническому виду. Она состоит в нахождении унитарной матрицы V, связывающей два эквивалентных неприводимых представления конечной группы G: $\forall g \in G : VD(g)V^{-1} = T(g)$, где T(g) — матрица преобразования рассматриваемых состояний, а D(g) — матрица преобразования канонических базисных функций из таблиц Костера [10]. Данная процедура позволяет избавиться от случайных фаз, возникающих в результате численной диагонализации гамильтониана, и тем самым позволяет непосредственно извлекать из численного расчета такие параметры, как оптические матричные элементы между состояниями с заданной симметрией.

Вторая глава посвящена исследованию электронной структуры и долинного расщепления уровней размерного квантования в нанопроволоках из селенида свинца. В §2.1 приведен краткий обзор современного состояния экспериментальных и теоретических исследований нанопроволок из халькогенидов свинца. На рубеже 2000-х годов была продемонстрирована возможность создания различных одномерных структур из PbX, от сложных разветвленных, собранных из отдельных нанокристаллов [11], до высококачественных однородных нанопроволок и наностолбиков. С тех пор интерес к подобным структурам не ослабевает, так как в них, по сравнению с квантовыми точками, наблюдается более эффективная многоэкситонная генерация и подавленный темп Оже рекомбинации, что делает их особенно перспективными для создания устройств фотовольтаики [12].

Рис. 1: Микроскопическая структура [111] нанопроволок (выделены ярким цветом) с разной точечной симметрией на фоне элементарной ячейки идеального объемного кристалла. Справа показана зона Бриллюэна, волновые векторы L долин $k_0 \parallel [111], k_1 \parallel [\bar{1}\bar{1}1], k_2 \parallel [1\bar{1}\bar{1}], k_3 \parallel [\bar{1}1\bar{1}]$ и три вектора b_k , каждый из которых задает одномерную зону Бриллюэна нанопроволок.

В §2.2 описана четырехзонная $k \cdot p$ модель зонной структуры халькогенидов свинца и рассмотрено размерное квантование в цилиндрических нанопроволоках. В рамках этой модели четыре анизотропные L долины считаются независимыми, а энергии уровней размерного квантования в них зависят от угла между осью нанопроволоки и рассматриваемой долиной. Это приводит к дополнительному анизотропному расщеплению уровней размерного квантования [13]. Для анализа симметрии $k \cdot p$ модель была расширена для учета долинного индекса состояний, в результате чего были установлены симметрия и структура расщепления состояний долинных мультиплетов уровней размерного квантования в нанопроволоках с

Рис. 2: Константы линейного по волновому вектору спинового расщепления в цилиндрических нанопроволоках с осью вдоль [111] и точечной группой D_3 . На вставке показана дисперсия подзон размерного квантования вблизи точки экстремума в нанопроволоке с $D \approx 30$ Å. Константы $\alpha(D)$ для дублета Γ_4 из продольной долины L_0 , отщепленного вверх по энергии, показаны оранжевым цветов, для дублета $\Gamma_5 \oplus \Gamma_6$ — черным.

различной точечной симметрией.

В §2.3 описаны результаты расчета цилиндрических нанопроволок с осью, направленной вдоль [111] [А1; А2]. В первой части раздела описана микроскопическая симметрия рассмотренных нанопроволок с точечной симметрией D_{3d}, D_3 и C_{2h} , которые схематически показаны на рис. 1 слева. В обратном пространстве одномерная зона Бриллюэна нанопроволок задается вектором \boldsymbol{b}_k , расположение которого внутри зоны Бриллюэна объемного кристалла показано на рис. 1 справа. Так как между проекциями L долин на ось [111] расположено два вектора \boldsymbol{b}_k , то состояния из всех четырех L долин эквивалентны относительно группы трансляций нанопроволоки и могут смешиваться друг с другом, при этом они обладают разной массой размерного квантования. Это позволяет исследовать одновременно анизотропное и долинное расщепления и вычислить явно корреляцию величины расщепления и подмешивания состояний из продольной долины L_0 . Еще один важный результат, полученный в этом разделе — обнаружение гигантских линейных по волновому вектору спиновых расщеплений подзон размерного квантования $\Delta E(k_z) = \alpha k_z$ в нанопроволоках без центра инверсии (группа D_3) вблизи точки экстремума $k_z = 0$, совпадающей с проекциями L долин. Показано, что константы α , расчет которых приведен на рис. 2, могут достигать единиц эВ·Å, что обусловлено сильным спин-орбитальным взаимодействием на атомах Pb. Ожидается, что похожие расщепления могут быть вызваны не только смещением оси, но и другими нарушениями инверсионной симметрии.

В §2.4 изложены результаты расчета ограненных нанопроволок с осью, направленной вдоль [110], которое является максимально удобным для теоретического исследования долинного расщепления. Вдоль него волновые векторы долин L_2, L_3 , см. рис. 1, проецируются в Γ точку одномерной зоны Бриллюэна, а L_0, L_1 — на ее границу. В результате междолинное рассеяние происходит только внутри этих пар, что позволяет однозначно сопоставить энергию расщепления с амплитудой того или иного процесса рассеяния и количественно описать влияние формы поверхности (сечения) нанопроволок на долинное расщепление [А3]. Также в разделе проанализированы нанопроволоки с несимморфной пространственной группой, в которых состояния из долин L_0, L_1 оказываются вырождены из-за симметрии к инверсии времени, а состояния из долин L_2, L_3 могут смешиваться только с соседними уровнями размерного квантования.

Пример расчета энергий долинного расщепления для состояний из долин L_0 , L_1 приведен на рис. 3 как функция формы поверхности нанопроволок. Здесь показаны четыре типа нанопроволок с точечной симметрией I, Ia: D_{2h} (максимальная симметрия в направлении [110]), II и III: C_{2v} и разной формой сечения. Форма сечения нанопроволок меняется от прямоугольной, поверхность которой состоит из атомных плоскостей {001} и {110}, до ромбической, ограниченной плоскостями {111}, как показано на рис. 3. Установлено, что

Рис. 3: Зависимость долинного расщепления мультиплета L_0, L_1 от формы поверхности нанопроволок с осью вдоль [110].

долинные расщепления крайне чувствительны к форме поверхности и достигают максимальных значений в нанопроволоках с прямоугольным сечением. В ромбических нанопроволоках долинные расщепления оказываются значительно подавлены, так как грани {111} перпендикулярны

волновым векторам L долин, что препятствует междолинному рассеянию. Также показано, что величина и характер долинных расщеплений устойчивы к небольшому возмущению поверхности нанопроволок: к релаксации, пассивации и протяженным поверхностным дефектам, моделируемым как лишний или отсутствующий атом в их элементарной ячейке.

Третья глава диссертации посвящена моделированию квантовых точек (КТ) из сульфида свинца методом сильной связи.

В начале главы приведен краткий обзор современного состояния исследования КТ из PbX. В §3.2 описаны микроскопическая структура и форма поверхности моделируемых КТ, которая была выбрана в виде куба, усеченного куба, кубоктаэдра, усеченного и правильного октаэдра и контролировалась пропорцией граней $\{001\}$ и $\{111\}$ на поверхности. Это, согласно современным экспериментальным и теоретическим данным [14], соответствует наиболее естественной форме таких КТ. Рассмотрение точечной симметрии КТ было ограничено группой T_d , что, с одной стороны,

Рис. 4: Долинные расщепления в квантовых точках из PbS с точечной симметрией T_d . Цвет и форма символов соответствует форме КТ, иллюстрация которых приведена снизу.

не ограничивает возможности симметрийного анализа, так как группа объемного кристалла $O_h = C_i \times T_d$, а, с другой, — позволяет соблюсти условие электронейтральности КТ и значительно упрощает расчет.

В §3.3 описаны результаты расчета методом сильной связи одночастичных состояний в КТ из PbS [A8]. Как следует из симметрийного анализа, в КТ с группой T_d состояния долинного мультиплета основного уровня размерного квантования в каждой из зон образуют базис представления $\Gamma_6 \oplus \Gamma_7 \oplus \Gamma_8$, то есть разбиваются на два псевдоспиновых дублета и один квадруплет. Расчет преобразования волновых функций при зеркальном повороте S_{4z} позволяет различить дублеты Γ_6 и Γ_7 и сопоставить разности $E_{78} = E_{\Gamma_7} - E_{\Gamma_8}$ и $E_{86} = E_{\Gamma_8} - E_{\Gamma_6}$ с величинами долинных расщепле-

ний. В качестве энергии уровней размерного квантования была выбрана энергия квадруплета E_{Γ_8} . Результат расчета долинных расщеплений приведен на рис. 4 как функция эффективного диаметра $D_{\rm eff}=\sqrt[3]{6V_{\rm QD}/\pi}$ для кубических, кубоктаэдрических и октаэдрических КТ. Поверхность кубических КТ состоит из атомных плоскостей $\{001\}$, в них долинные расщепления максимальны. Кубоктаэдрические КТ ограничены комбинацией атомных плоскостей $\{001\}$ и $\{111\}$, а октаэдрические — только $\{111\}$, амплитуда междолинного рассеяния на которых минимальна. Расчет энергий уровней размерного квантования показал, что, во-первых, величина $E(D) \equiv E_{\Gamma_8}(D)$ практически не зависит от формы поверхности, а, вовторых, с хорошей точностью воспроизводится в $k \cdot p$ теории.

§3.4 посвящен расчету тонкой структуры экситона в КТ из PbS методом сильной связи. В §3.4.1 обоснован выбор диэлектрической функции в КТ и обсуждаются другие используемые в расчете приближения: і) из-за симметрии зон не учитывается диэлектрический контраст между КТ и ее окружением, іі) оценка показывает, что внутриатомные кулоновские интегралы влияют на тонкую структуру экситона незначительно и ими можно пренебречь, ііі) в КТ из PbS реализуется режим сильного размерного квантования (энергия

Рис. 5: Константы прямого J и обменного кулоновского взаимодействия в КТ из PbS. Расчет в рамках $k \cdot p$ теории приведен сплошными желтыми линиями.

связи экситона мала) и для расчета тонкой структуры экситона достаточно учитывать только состояния основных уровней размерного квантования. В результате гамильтониан конфигурационного взаимодействия имеет размерность 64×64 , а тонкая структура экситона разбивается на 27 энергетических уровней, симметрия которых определяется произведением неприводимых представлений электронных и дырочных состояний ($\Gamma_6 \oplus \Gamma_7 \oplus \Gamma_8$) $\times (\Gamma_6 \oplus \Gamma_7 \oplus \Gamma_8) = 3\Gamma_1 \oplus 3\Gamma_2 \oplus 5\Gamma_3 \oplus 8\Gamma_4 \oplus 8\Gamma_5$, среди которых восемь триплетов Γ_5 могут быть оптически активны. Анализ тонкой структуры экситона в рамках обобщенной $k \cdot p$ модели показал, что, несмотря на большое число уровней, ее формирует два основных механизма: междолинное смешивание и дальнодействующее обменное кулоновское взаимодействие. Последнее, в свою очередь, с хорошей точностью описывается одной константой. В §3.4.2 описана процедура, позволяющая извлечь константы прямого J и обменного K кулоновского взаимодействия непосредственно из атомистического расчета [A7]. Эти константы, показанные на рис. 5, практически не зависят от формы поверхности КТ и хорошо описываются аналитическими выражениями.

В §3.4.3 приведено сравнение результатов расчета с экспериментом [А4], в котором наблюдалось асимметричное тепловое уширение пика фотолюминесценции одиночных квантовых точек со структурой ядро/оболочка PbS/CdS, связанное с тепловым заселением состояний тонкой структуры экситона. Экспериментальные спектры показаны на рис. 6 красными линиями, теоретические кривые с учетом тонкой структуры экситона и без нее — сплошными синими и

Рис. 6: Спектры фотолюминесценции одиночной квантовой точки из PbS при разной температуре.

прерывистыми светло-синими. Уровни энергии и силы осцилляторов оптически активных состояний тонкой структуры экситона показаны вертикальными синими линиями. Помимо больших (десятки мэВ) расщеплений между верхним и нижним по энергии уровнями тонкой структуры экситона в КТ из PbS, верхний по энергии оптически активный триплет в них обладает наибольшей силой осциллятора и доминирует в спектрах оптического поглощения.

В §3.5 изложена модель квантовых точек из PbS с поверхностными дефектами, которая во многом мотивирована экспериментом по низкотемпературной магнитофотолюминесценции одиночных КТ из PbS [A9]. В нем измерялись три величины: энергия пика люминесценции E_{PL} , *g*факторы и анизотропное расщепление пиков люминесценции ΔE_{XY} в линейных поляризациях, которые показаны на рис. 7 со шкалой погрешности. Наблюдаемая в эксперименте зависимость g от E_{PL} не однородна, а величины ΔE_{XY} составляют несколько десятых долей мэВ.

Для описания экспериментальных данных была выдвинута гипотеза, что разброс *g*факторов и анизотропные расщепления могут быть обусловлены поверхностными дефектами, возникающими, например, в результате реакции ионного обмена при росте оболочки из CdS. Для проверки гипотезы был сделан расчет большого количества (десятки тысяч) квантовых точек с различными формами поверх-

Рис. 7: Энергии пика фотолюминесценции E_{PL} , *g*-факторы и величина анизотропного расщепления ΔE_{XY} одиночных квантовых точек из PbS. Экспериментальные данные показаны со шкалой погрешности, результат моделирования — без нее.

ности и случайными конфигурациями поверхностных дефектов. Среди них удалось найти несколько таких, которые достаточно хорошо описывают эксперимент. Рассчитанные для этих КТ E_{PL} , g и ΔE_{XY} приведены на рис. 7 без шкалы погрешностей. Поверхностные дефекты понижают кубическую симметрию КТ, приводят к анизотропным расщеплениям и разбросу g-факторов. Более сильная анизотропия формы КТ была исключена из рассмотрения. Расчеты показывают, что даже один удаленный или добавленный слой атомов к одной из ее граней приводит к гораздо большим анизотропным расщеплениям. Кроме того, наблюдаемые g-факторы при низкотемпературной фотолюминесценции оказываются крайне чувствительны к форме поверхности КТ, так как структура нижних по энергии экситонных состояний практически полностью определяется междолинным смешиванием, вплоть до того, что они могут оказаться парой дублетов или набором синглетов.

Четвертая глава посвящена выводу аналитической модели тонкой структуры экситона в квантовых точках из халькогенидов свинца.

В §4.1.1, следуя работе [15], рассмотрено размерное квантование в сферических КТ из PbX в рамках изотропной $k \cdot p$ модели, приведены дис-

персионные уравнения и явный вид волновых функций электрона в КТ с учетом долинного индекса $\mathcal{E}_{\mu} = (|\mu, \uparrow_{\mu}\rangle, |\mu, \downarrow_{\mu}\rangle)$. В §4.1.2 описана процедура симметризации базиса «псевдоспин-долина», образующего базис неприводимой звезды волнового вектора L долины. Здесь представлен явный вид матриц $S^{c(v)}$, позволяющих перейти от него к комбинациям долинных состояний

$$\left(\boldsymbol{\mathcal{E}}_{0}^{c(v)}, \boldsymbol{\mathcal{E}}_{1}^{c(v)}, \boldsymbol{\mathcal{E}}_{2}^{c(v)}, \boldsymbol{\mathcal{E}}_{3}^{c(v)}\right) S^{c(v)} = \left(\boldsymbol{\mathcal{E}}_{\Gamma_{6}}^{c(v)}, \boldsymbol{\mathcal{E}}_{\Gamma_{7}}^{c(v)}, \boldsymbol{\mathcal{E}}_{\Gamma_{8}}^{c(v)}\right),$$
(3)

преобразующимся по неприводимым представлениям Γ_6, Γ_7 и Γ_8 группы T_d , и учесть долинное расщепление в $k \cdot p$ модели

$$\hat{H}_{\rm KW}^{c(v)} + \hat{H}_{\rm VM}^{c(v)} \equiv \hat{H}_1^{c(v)} = S^{c(v)} \{ \mathbb{1}_2 E_{\Gamma_6}^{c(v)}, \mathbb{1}_2 E_{\Gamma_7}^{c(v)}, \mathbb{1}_4 E_{\Gamma_8}^{c(v)} \} S^{c(v)\dagger} , \quad (4)$$

где $\hat{H}^{c(v)}_{\rm KW}\equiv E^{c(v)}_{\Gamma_8}$, а $\hat{H}^{c(v)}_{\rm VM}$ описывает долинное расщепление.

В §4.2 описан расчет кулоновского взаимодействия. В нем, как и в методе сильной связи, использовалось электрон-электронное представление и метод конфигурационного взаимодействия, а в качестве одночастичных состояний — собственные функции $k \cdot p$ модели в базисе «псевдоспиндолина». В §4.2.1 и §4.2.2 рассмотрено прямое и обменное кулоновское взаимодействие и приведены аналитические выражения для констант J и *К*. Показано, что в диапазоне диаметров от ≈ 6 нм до 20 нм (при больших диаметрах режим сильного размерного квантования нарушается) они с хорошей точностью пропорциональны 1/D. В $k \cdot p$ теории прямое кулоновское взаимодействие сводится к диагональной матрице и приводит к сдвигу экситонных уровней как целого, в то время как обменное взаимодействие вносит вклад в их тонкую структуру и устроено значительно сложнее. Обменное взаимодействие действует в подпространстве прямых возбуждений (электрон и дырка в одной долине) и приводит к расщеплению экситонных уровней. В §4.2.2 выделено два равных по величине типа обменных матричных элементов: внутри- и междолинные, описывающие взаимодействие прямых электрон-дырочных пар из окрестности одной или разных L долин. В §4.2.3 получена поправка, позволяющая учесть анизотропию обмена.

В §4.2.4 представлен и проанализирован полный гамильтониан, описывающий тонкую структуру экситона в КТ из PbS

$$\hat{H}_X = \hat{H}_{\rm KW}^{vc} + \hat{H}_{\rm VM}^{vc} - \hat{V}_{\rm dir} + \hat{V}_{\rm exch} , \qquad (5)$$

где $\hat{H}_{\rm VM}^{vc} + \hat{H}_{\rm VM}^{vc} = \mathbb{1}_8 \otimes \hat{H}_1^c - \hat{H}_1^v \otimes \mathbb{1}_8$, $\hat{V}_{\rm dir} = \mathbb{1}_{64} J$ описывает прямое кулоновское взаимодействие и $\hat{V}_{\rm exch}$ – дальнодействующее обменное. Этот гамильтониан позволяет детально сопоставить расчеты в рамках $k \cdot p$ модели и метода сильной связи, так как энергии одночастичных состояний можно взять из численного расчета, а параметры кулоновского взаимодействия – рассчитать аналитически или подобрать для их наилучшего согласия. Также он дает возможность проследить за эволюцией спектров оптического поглощения и положениями экситонных уровней при плавном «включении» долинного расщепления.

Рис. 8: Схема формирования тонкой структуры экситона в квантовых точках из халькогенидов свинца при последовательном учете прямого кулоновского взаимодействия, внутридолинного обменного, междолинного обменного и междолинного смешивания. Справа показан типичный спектр поглощения, состоящий из нескольких пиков, в котором главный пик расположен выше всех по энергии.

Для феноменологического анализа тонкой структуры экситона в КТ из PbS в §4.2.4 рассмотрен явный вид слагаемого \hat{V}_{exch} , описывающего обменное взаимодействие, при согласованной ориентации псевдоспинов в каждой из L долин вдоль кристаллографической оси z (возможно только в полностью изотропном приближении). В этом случае матрицу \hat{V}_{exch} в базисе прямых возбуждений можно представить в виде прямого произведения $K \cdot \mathbb{1}_{4 \times 4} \otimes \hat{\Xi}$, в которое входит множитель K > 0, матрица $\mathbb{1}_{4 \times 4}$, состоящая полностью из единиц, и матрица $\hat{\Xi}$ с собственными числами (0, 2, 2, 2)/3. У матрицы из единиц одно из собственных чисел — 4,

соответствующее симметричной комбинации долин, а остальные — 0, соответствующие антисимметричным. Это приводит к тому, что без учета долинного расщепления в тонкой структуре экситона в КТ из PbX имеется ровно один «сверхъяркий» триплет, отщепленный вверх по энергии, а все остальные состояния вырождены и являются темными. Учет долинного расщепления полностью снимает вырождение всех 27 уровней и перераспределяет силу осциллятора «сверхъяркого» триплета между остальными разрешенными по симметрии переходами, однако качественно не меняет структуру спектров: в них, как правило, один из триплетов обладает существенно большей силой осциллятора, чем остальные. Такая схема формирования тонкой структуры экситона в КТ из PbX была получена в работе [A7] и показана на рис. 8.

В заключении обобщены основные результаты работы:

- Предложен способ расчета оптических матричных элементов с учетом диэлектрического контраста на интерфейсе между нанокристаллом и диэлектрической матрицей в рамках метода сильной связи.
- Разработан быстрый способ расчета преобразования волновых функций в методе сильной связи при поворотах и процедура, позволяющая привести базис неприводимого представления точечной группы к каноническому виду.
- Показано, что в нанопроволоках без центра инверсии могут наблюдаться гигантские, линейные по волновому вектору спиновые расщепления, константы которых достигают единиц эВ·Å.
- 4. Показано, что долинные расщепления в нанопроволоках из селенида свинца могут достигать сотен мэВ, зависят от точечной симметрии и контролируются формой поверхности нанопроволок. Также показано, что долинные расщепления устойчивы к небольшим возмущениям поверхности нанопроволок.
- Сделан расчет энергий размерного квантования, долинных расщеплений и констант кулоновского взаимодействия в ограненных квантовых точках из PbS. Показано, что в них, как и в нанопроволоках,

долинное расщепление сильно зависит от формы поверхности, при этом остальные величины с хорошей точностью могут быть рассчитаны в рамках изотропной *k* · *p* модели.

- 6. Показано, что анизотропные расщепления и разброс g-факторов, наблюдаюемые в эксперименте по низкотемпературной фотолюминесценции квантовых точек из PbS в магнитном поле, могут быть обусловлены поверхностными атомными дефектами.
- Построена модель тонкой структуры экситона в квантовых точках из PbS с учетом внутри- и междолинного кулоновского взаимодействия и долинных расщеплений, которые в ней являются внешними параметрами.
- 8. Показано, что в квантовых точках из PbX междолинное дальнодействующее обменное кулоновское взаимодействие приводит к формированию «сверхъяркого», симметричного по долинному индексу оптически активного триплета, который отщеплен вверх по энергии и доминирует в спектрах оптического поглощения.

Основные результаты работы изложены в публикациях:

- [A1] Avdeev I. D., Nestoklon M. O. Electronic Structure of PbSe Nanowires // J. Phys.: Conf. Ser. – 2016. – Vol. 769. – P. 012074.
- [A2] Valley and spin splittings in PbSe nanowires / I. D. Avdeev, A. N. Poddubny, S. V. Goupalov, M. O. Nestoklon // Phys. Rev. B. – 2017. – Vol. 96, issue 8. – P. 085310.
- [A3] Avdeev I. D. Shape effect on the valley splitting in lead selenide nanowires // Phys. Rev. B. – 2019. – Vol. 99, issue 19. – P. 195303.
- [A4] Intrinsic Exciton Photophysics of PbS Quantum Dots Revealed by Low-Temperature Single Nanocrystal Spectroscopy / Z. Hu, Y. Kim, S. Krishnamurthy, I. D. Avdeev, M. O. Nestoklon, A. Singh, A. V. Malko, S. V. Goupalov, et al. // Nano Lett. – 2019. – Vol. 19, no. 12. – P. 8519.
- [A5] Tight-binding calculations of the optical properties of Si nanocrystals in a SiO2 matrix / M. O. Nestoklon, I. D. Avdeev, A. V. Belolipetskiy, I. Sychugov, F. Pevere, J. Linnros, I. N. Yassievich // Faraday Discussions. – 2020. – Vol. 222. – P. 258.

- [A6] Absorption of Si, Ge, and SiGe alloy nanocrystals embedded in SiO2 matrix / I. D. Avdeev, A. V. Belolipetsky, N. N. Ha, M. O. Nestoklon, I. N. Yassievich // J. Appl. Phys. – 2020. – Vol. 127, no. 11. – P. 114301.
- [A7] Avdeev I. D., Nestoklon M. O., Goupalov S. V. Exciton Fine Structure in Lead Chalcogenide Quantum Dots: Valley Mixing and Crucial Role of Intervalley Electron–Hole Exchange // Nano Lett. – 2020. – Vol. 20, no. 12. – P. 8897.
- [A8] Nestoklon M., Avdeev I. D., Goupalov S. V. Theory of excitonic states in lead salt quantum dots // Quantum Sensing and Nano Electronics and Photonics XVII. Vol. 11288 / ed. by M. Razeghi, J. S. Lewis, G. A. Khodaparast, P. Khalili. International Society for Optics, Photonics. SPIE, 2020. P. 144.
- [A9] Interplay of Bright Triplet and Dark Excitons Revealed by Magneto-Photoluminescence of Individual PbS/CdS Quantum Dots / Y. Kim, Z. Hu, I. D. Avdeev, A. Singh, A. Singh, V. Chandrasekaran, M. O. Nestoklon, S. V. Goupalov, et al. // Small. 2021. Vol. 17, no. 13. P. 2006977.

Список литературы

- [1] Зимин С. П., Горлачев Е. С. Наноструктурированные халькогениды свинца. — Ярославль: ЯрГУ : Ярославский государственный университет им. П. Г. Демидова, 2011. — ISBN 978-5-8397-0861-7.
- [2] Bilayer PbS Quantum Dots for High-Performance Photodetectors / Z. Ren, J. Sun, H. Li, P. Mao, Y. Wei, X. Zhong, J. Hu, S. Yang, J. Wang // Adv. Mater. – 2017. – Vol. 29, no. 33. – P. 1702055.
- [3] Single Photon Counting from Individual Nanocrystals in the Infrared / R. E. Correa, E. A. Dauler, G. Nair, S. H. Pan, D. Rosenberg, A. J. Kerman, R. J. Molnar, X. Hu, et al. // Nano Lett. – 2012. – Vol. 12, no. 6. – P. 2953.
- [4] Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging / A. Zebibula, N. Alifu, L. Xia, C. Sun, X. Yu, D. Xue, L. Liu, G. Li, J. Qian // Advanced Functional Materials. – 2017. – Vol. 28, no. 9. – P. 1703451.
- [5] Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients / A. Svane, N. E. Christensen, M. Cardona, A. N. Chantis, M. van Schilfgaarde, T. Kotani // Phys. Rev. B. – 2010. – Vol. 81, issue 24. – P. 245120.

- [6] Poddubny A. N., Nestoklon M. O., Goupalov S. V. Anomalous suppression of valley splittings in lead salt nanocrystals without inversion center // Phys. Rev. B. – 2012. – Vol. 86, issue 3. – P. 035324.
- [7] Toward a systematic molecular orbital theory for excited states / J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch // J. Phys. Chem. – 1992. – Vol. 96, no. 1. – P. 135.
- [8] Theory of excitonic exchange splitting and optical Stokes shift in silicon nanocrystallites: Application to porous silicon / E. Martin, C. Delerue, G. Allan, M. Lannoo // Phys. Rev. B. – 1994. – Vol. 50, issue 24. – P. 18258.
- [9] An J. M., Franceschetti A., Zunger A. The Excitonic Exchange Splitting and Radiative Lifetime in PbSe Quantum Dots // Nano Lett. – 2007. – Vol. 7, no. 7. – P. 2129.
- [10] The Properties of the Thirty-Two Point Groups / G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz. – M.I.T. Press, Cambridge, 1963.
- [11] Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles / K.-S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray // J. Am. Chem. Soc. – 2005. – Vol. 127, no. 19. – P. 7140.
- [12] Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120% / N. J. L. K. Davis, M. L. Böhm, M. Tabachnyk, F. Wisnivesky-Rocca-Rivarola, T. C. Jellicoe, C. Ducati, B. Ehrler, N. C. Greenham // Nat. Commun. 2015. Vol. 6. P. 8259.
- [13] Electronic states and optical properties of PbSe nanorods and nanowires / A. C. Bartnik, A. L. Efros, W.-K. Koh, C. B. Murray, F. W. Wise // Phys. Rev. B. - 2010. - Vol. 82, issue 19. - P. 195313.
- [14] Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid / D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, L.-W. Wang // Science. – 2014. – ISSN 0036-8075.
- [15] Kang I., Wise F. W. Electronic structure and optical properties of PbS and PbSe quantum dots // J. Opt. Soc. Am. B. – 1997. – Vol. 14, no. 7. – P. 1632.