На правах рукописи

Бельская Надежда Алексеевна

Влияние катионного распределения на магнитные свойства оксиборатов со структурой варвикита и людвигита

Специальность 1.3.8— «Физика конденсированного состояния»

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Федеральном государственном бюджетном учреждение науки Физико-техническом институте им. А.Ф. Иоффе Российской Академии Наук.

Научный руководитель:	Красилин Андрей Алексеевич доктор хим. наук, зав. лаб. новых неорганиче- ских материалов ФТИ им. А.Ф. Иоффе
Научный консультант:	Казак Наталья Валерьевна доктор физ. – мат. наук, в.н.с. лаб. физики магнитных явлений ИФ им. Л.В. Киренского
Официальные оппоненты:	Бубнова Римма Сергеевна, доктор хим. наук, профессор, г. н. с. Филиал НИЦ "Курчатовский институт" - ПИЯФ - ИХС,
	Вавилова Евгения Леонидовна, доктор физмат. наук, с. н. с. КФТИ им. Е.К. Завойского - обособлен- ное подразделение ФИЦ КазНЦ РАН,
Ведущая организация:	Федеральное государственное автономное образовательное учреждение высшего образо- вания "Крымский федеральный университет имени В.И. Верналского"

Защита состоится 27 марта 2025 г. в _____ часов на заседании диссертационного совета ФТИ 34.01.01 Федерального государственного бюджетного учреждения науки Физико-технического института им. А.Ф. Иоффе Российской Академии Наук по адресу: 194021, Санкт-Петербург, Политехническая ул., 26.

С диссертацией можно ознакомиться в библиотеке на сайте Физико-технического института им. А.Ф. Иоффе Российской Академии Наук, www.ioffe.ru.

Отзывы на автореферат в двух экземплярах, заверенные печатью учреждения, просьба направлять по адресу: 194021, Санкт-Петербург, Политехническая ул., 26, ученому секретарю диссертационного совета ФТИ 34.01.01.

Автореферат разослан «____» ____ 2025 года. Телефон для справок: +7 (812) 297-22-45.

Ученый секретарь диссертационного совета ФТИ 34.01.01

Калашникова А. М., PhD

Общая характеристика работы

Актуальность темы.

Поиск новых соединений с уникальными функциональными свойствами является важнейшим направлением в физике конденсированного состояния и, безусловно, необходим для развития науки и инновационных технологий. Новые магнитные материалы, способные конкурировать и превосходить современные аналоги, вызывают большой интерес благодаря своему потенциалу как для прикладного применения, так и с точки зрения фундаментальных исследований.

Оксибораты переходных металлов представляют собой богатый класс магнитных соединений, обладающих разнообразными, подчас уникальными физическими свойствами. Сильная взаимосвязь различных степеней свободы индуцирует появление коллективных эффектов: магнитное, орбитальное и зарядовое упорядочения и связанные с ними фазовые переходы. В некоторых случаях, особенности кристаллической структуры приводят к понижению размерности магнитной подсистемы, вплоть до появления фрустрированных топологий, когда формирование дальнего магнитного порядка оказывается невозможным.

В оксиборатах с общей формулой $Me_n^{2+}Me^{3+}BO_{3+n}$, где n = 1 и 2, анионная подсистема представлена жестким каркасом изолированных бор-кислородных треугольников и «свободными» атомами кислорода, не принадлежащими этой группе. Катионная подсистема состоит из кислородных октаэдров соединенных общими ребрами, которые формируют ленты (n = 1) и стенки (n = 2) разной формы (прямые и зигзагообразные). Для n = 1 основным структурным типом является варвикит, тогда как для n = 2 наблюдается широкий ряд полиморфных фаз (ортопинакиолит, халсит, такеучиит, людвигит). Особенностью оксиборатов является высокая чувствительность магнитной подсистемы к распределению металлических ионов по неэквивалентным кристаллографическим позициям. В ряду гетерометаллических систем $(Me^{2+} \neq Me^{3+})$ особое место, благодаря упорядоченному распределению катионов, отводится соединениям с дальним магнитным порядком. Задача исследования заключается в поиске таких соединений со структурами варвикита и людвигита.

Работа в этом направлении должна включать комплексный подход, основанный на применении множества экспериментальных и аналитических методов с целью выявления взаимосвязи между катионным распределением, локальной кристаллической структурой и магнитным поведением. Такой подход является ключом к пониманию механизмов формирования дальнего магнитного порядка, магнитной поляризации и других функционально важных характеристик. Это определяет **актуальность** настоящего исследования. В работе показано, что одним из путей управления катионным распределением в оксиборатах со структурами варвикита и людвигита является введение в кристаллическую структуру ян-теллеровских ионов ${\rm Mn}^{3+}$ или ${\rm Cu}^{2+}$. Упорядоченное распределение катионов в таком случае возникает по орбитальному механизму и приводит к установлению дальнего магнитного порядка при относительно высоких температурах.

Целью настоящей работы являлось установление взаимосвязи между кристаллической структурой, катионным распределением и магнитными свойствами в новых соединениях семейства оксиборатов в структурном ряду варвикит-ортопинакиолит-халсит-людвигит. Для достижения поставленной цели были поставлены задачи:

1. Методом спонтанной кристаллизации из растворов-расплавов на основе тримолибдата висмута синтезировать новые магнитные соединения в структурном ряду варвикит – ортопинакиолит - халсит $(Mn_{1-x}Mg_x)_nMnBO_{3+n}$ $(n = 1, 2; 0.0 < x \le 0.9)$ и людвигит Cu_2CrBO_5 .

2. Методом твердофазной реакции получить поликристаллические однофазные образцы $\rm Ni_2CrBO_5$ и $\rm Mg_2MnBO_5$ со структурой людвигита.

3. Исследовать кристаллическую структуру, установить распределение катионов по неэквивалентным кристаллографическим позициям и локальные искажения координационных октаэдров.

4. Определить параметры магнитной подсистемы в зависимости от температуры и внешнего магнитного поля.

5. Установить температуры магнитных переходов.

Научная новизна: В настоящей работе впервые синтезированы кристаллы новых магнитных оксиборатов в структурном ряду варвикитортопинакиолит-халсит-людвигит. Установлена взаимосвязь катионного каркаса в части распределения по неэквивалентным кристаллографическим позициям и локальных октаэдрических искажений с магнитным поведением.

1. Впервые изучены особенности кристаллообразования и определены условия устойчивого роста монокристаллов $Mn_{1-x}Mg_xMnBO_4$ (x = 0.5, 0.6, 0.7, 0.8), ($Mn_{1-x}Mg_x)_2MnBO_5$ (x = 0.8, 0.9) и Cu_2CrBO_5 в многокомпонентных растворах-расплавах на основе тримолибдата висмута.

2. Впервые методом твердофазного синтеза с использованием боратных прекурсоров удалось получить поликристаллические образцы оксиборатов Ni_2CrBO_5 и Mg_2MnBO_5 с высокой однородностью по составу.

3. Впервые установлены корреляции катионного распределения и магнитных свойств твердых растворов $Mn_{1-x}Mg_xMnBO_4$ (x = 0.5, 0.6, 0.7, 0.8) со структурой варвикита. Показано, что данная система является редким примером гетерометаллических варвикитов с дальним магнитным порядком. Определены параметры магнитной подсистемы, их концентрационная зависимость.

4. Впервые исследованы кристаллическая структура и магнитные свойства $(Mn_{1-x}Mg_x)_2MnBO_5$ со структурами ортопинакиолита (x = 0.8),

халсита (x = 0.9) и людвигита (x = 1.0). Установлены общие особенности катионного каркаса, изучено влияние катионного распределения на симметрию координационных октаэдров. Определены параметры магнитных состояний, установлено влияние на них эффектов катионного упорядочения.

5. Исследование кристаллической структуры и магнитных свойств Cu_2CrBO_5 впервые выполнено на монокристалле. Установлено катионное распределение, проведен анализ локальных октаэдрических искажений. Подтверждено формирование дальнего магнитного порядка при $T_N = 118$ К. Впервые обнаружен спин-ориентационный переход, связанный с эволюцией антиферромагнитной подсистемы в сильных магнитных полях.

6. Впервые установлено, что в Ni₂CrBO₅ реализуется катионное распределение нетипичное для семейства гетерометаллических людвигитов. Специфика данного соединения заключается в избирательном заполнении октаэдрической позиции M2 ионами Cr³⁺ и связанным с ним искажением координационного октаэдра. Путем измерения магнитных и термодинамических свойств установлена температура перехода в магнитоупорядоченное состояние $T_{\rm N} = 140$ K, которая является рекордно большой среди известных оксиборатов со структурой людвигита. Впервые проведены оценки косвенных обменных взаимодействий и установлены корреляции знака обменных взаимодействий и фактора заполнения неэквивалентных позиций.

Практическая значимость: исследование боратов и оксиборатов переходных металлов представляет большой практический интерес и связано с поиском новых магнитных материалов, а также материалов для нелинейной оптики и обладающих высокой электрохимической активностью. Улучшение функциональных характеристик таких соединений сводится к фундаментальной задаче понимания механизмов взаимосвязи трех основных подсистем вещества (фононной, магнитной и электронной). В этой связи, комплексный подход к исследованию кристаллической структуры и особенностей катионного каркаса и их влияния на магнитное состояние новых оксиборатов дает важную информацию об основных закономерностях формирования дальнего и ближнего магнитных порядков и влияния на них эффектов катионного распределения.

Информация об условиях кристаллообразования, характеристики магнитной и фононной подсистем, определенные в настоящем исследовании, могут быть использованы для прогнозирования и получения новых магнитных соединений. В ходе выполнения работы, данные о новых кристаллических структурах были депонированы в электронной базе данных неорганических кристаллических структур (Inorganic Crystal Structure Database, ICSD). Полученные результаты могут найти практическое применение при создании приборов магнитной записи, квантовых компьютеров, магнитных сенсоров.

Методология и методы исследования. Для выполнения настоящего исследования был использован широкий спектр экспериментальных и аналитических методик. Для синтеза монокристаллов оксиборатов применялся метод спонтанной кристаллизации из раствора-расплава. Монокристаллы были выращены в Институте физики СО РАН (ФИЦ КНЦ СО РАН). Поликристаллические образны были получены методом твердофазной реакции в ФТИ им. А.Ф. Иоффе. Кристаллическая структура и контроль качества образцов устанавливались методами рентгенофазового и рентгеноструктурного анализа с помощью дифрактометра ДРОН-8Н (ФТИ им. А.Ф. Иоффе), дифрактометра DX-2700BH HAOYUAN и автодифрактометра SMART APEX (ЦКП ФИЦ КНЦ СО РАН). Морфология и элементный состав новых соединений изучались методом сканирующей электронной микроскопии и энергодисперсионной рентгеновской спектроскопии с использованием электронного микроскопа FEI Quanta 200 (ФТИ им. А.Ф. Иоффе). Исследование температурной стабильности проведено методом дифференциальной сканирующей калориметрии (TG/DSC) с использованием анализатора Jupiter STA 449С (ИХХТ СО РАН, ФИЦ КНЦ СО РАН). Термодинамические свойства материалов были изучены через измерение намагниченности и теплоемкости в широком интервале температур и магнитных полей с помощью установки для измерения физических свойств PPMS-9 (Quantum Design), СКВИД магнетометра MPMS (Quantum Design) и вибрационного магнетометра (ФТИ им. А.Ф. Иоффе, ЦКП ФИЦ КНЦ СО РАН, ЦКП ФИ им. П.Н. Лебедева РАН).

Основные положения, выносимые на защиту:

- 1. В твердых растворах $Mn_{1-x}Mg_xMnBO_4$ (x = 0.5, 0.6, 0.7) со структурой варвикита упорядоченное распределение катионов по неэквивалентным кристаллографическим позициям стабилизирует дальний магнитный порядок и вызвано сильным электрон-фононным взаимодействием в присутствие ян-теллеровского иона Mn^{3+} . Антиферромагнитный порядок возникает при $T_N = 16, 14, 13$ К для x = 0.5, 0.6, 0.7, соответственно.
- 2. Основное магнитное состояние в оксиборатах $(Mn_{1-x}Mg_x)_2MnBO_5$ (x = 0.8, 0.9, 1.0) со структурами ортопинакиолита, халсита и людвигита реализуется через серию магнитных фазовых переходов и определяется общими особенностями катионного каркаса в части распределения катионов и локальных октаэдрических искажений.
- 3. В Cu₂CrBO₅ со структурой людвигита упорядоченное распределение ян-теллеровских ионов Cu²⁺ по неэквивалентным октаэдрическим позициям индуцирует дальний антиферромагнитный порядок при $T_{\rm N} = 118$ K.
- 4. В Ni₂CrBO₅ со структурой людвигита дальний магнитный порядок возникает при $T_{\rm N}=140~{\rm K}$ и вызван упорядоченным распределением ионов Ni²⁺ и Cr³⁺ по неэквивалентным позициям.

Достоверность полученных результатов обеспечивается комплексным подходом с применением широкого набора современных экспериментальных методов исследования и использованием сертифицированного научного оборудования мирового уровня. В частных случаях результаты находятся в согласии с результатами, полученными другими научными группами.

Апробация работы. Основные результаты работы были представлены в виде устных и стендовых докладов на всероссийских и международных конференциях. В том числе: XXV Международная конференция «Новое в магнетизме и магнитных материалах» (НМММ-2024) (Москва, Россия, 2024), 4th International Conference "Spin Physics, Spin Chemistry and Spin Technology 2023" (Казань, Россия, 2023), Евро-азиатский симпозиум по магнетизму EASTMAG-2022 (Казань, Россия, 2022), «International Conference "Functional Materials", ICFM-2021» (Алушта, Крым, 2021), Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества, СПФКС (Екатеринбург, Россия, 2021), Конкурс-конференция молодых ученых, аспирантов и студентов ФИЦ КНЦ СО РАН (Красноярск, Россия, 2021), Междисциплинарная конференция молодых учёных ФИЦ КНЦ СО РАН (KMУ-XXIII) (Kpachospck, Россия, 2020), «Non-Ambient Diffraction And Nanomaterials, NADM-4» (Санкт-Петербург, Россия, 2020), Евро-азиатский симпозиум по магнетизму EASTMAG-2019 (Екатеринбург, Россия, 2019), Конкурс-конференция молодых ученых, аспирантов и студентов ФИЦ КНЦ СО РАН (Красноярск, Россия, 2019), Двадцать пятая Всероссийская научная конференция студентов-физиков и молодых учёных, ВНКСФ-25 (Севастополь, Россия, 2019), XXIII Международная конференция Новое в Магнетизме и Магнитных Материалах, HMMM XXIII (Москва, Россия, 2018).

Личный вклад. Синтез монокристаллов и поликристаллических образцов для исследования проведен лично автором или при его непосредственном участии. Комплекс исследований, выполненных лично соискателем, включает также обработку и анализ всего набора экспериментальных данных, а также интерпретацию результатов.

Публикации. Основные результаты по теме диссертации изложены в 14 печатных изданиях, 5 из которых изданы в периодических научных журналах, индексируемых Web of Science и Scopus, 8— в тезисах докладов. На момент представления работы наукометрические показатели автора составляли: индекс Хирша 5, число цитирований 74, число опубликованных статей 25, тезисов докладов 13.

Объем и структура работы. Диссертация состоит из введения, 6 глав, заключения и 2 приложений. Полный объем диссертации составляет 174 страницы, включая 67 рисунков и 42 таблицы. Список литературы содержит 243 наименований.

Содержание работы

Во **введении** обоснована актуальность исследований, проводимых в рамках диссертационной работы, сформулированы цель и задачи, изложена научная новизна. Охарактеризованы степень достоверности и апробация результатов, обозначен личный вклад автора.

В **первой главе** представлен обзор научной литературы по основным структурным типам оксиборатов, дано кристаллохимическое описание,

изложены перспективные функциональные свойства соединений со структурами варвикита, ортопинакиолита, халсита и людвигита. Рассмотрены основные характеристики катионного каркаса и эффекты беспорядка в неупорядоченных магнетиках со структурой варвикита и людвигита. Приведено описание спин-стекольного состояния и спиновых лестниц в данных соединениях. Представлены основные термодинамические свойства исследуемого структурного ряда. Дано обоснование выбора объектов исследования.

Во второй главе приводится

Рис. 1 — Диаграмма фазовых состояний системы MgO-Mn₂O₃-B₂O₃, как функция температуры начала кристаллообразования T от r/s (ур. 1).

описание экспериментальных и аналитических методик, используемых в работе. Особое внимание уделено методикам получения моно- и поликристаллических образцов.

Третья глава посвящена описанию технологии выращивания монокристаллов и получения поликристаллических образцов, их физико-химической характеризации методами рентгеновской дифракции, сканирующей электронной микроскопии, энергодисперсионной рентгеновской спектроскопии и дифференциальной сканирующей калориметрии. Выращивание монокристаллов проводилось методом спонтанной кристаллизации из раствора-расплава. Комплексный растворитель содержал тримолибдат висмута (Bi₂Mo₃O₁₂) в качестве основного компонента с добавками Na₂O, B₂O₃ или Na₂B₄O₇.

При синтезе монокристаллов марганецсодержащих оксиборатов раствор-расплавная система имела вид:

$$(100 - n) \operatorname{macc.\%}(Bi_2 M o_3 O_{12} + q N a_2 O + p B_2 O_3) + + n \operatorname{macc.\%}(s M g O + r M n_2 O_3 + 0.5 B_2 O_3),$$

$$(1)$$

где n – массовый процент кристаллообразующих окислов, $q,\,p,\,s,\,r$ -весовые коэффициенты.

Установлено, что ключевым параметром, определяющим условия кристаллообразования различных структурных фаз, является отношение компонентов системы Mn_2O_3 и MgO (r/s). В достаточно широком диапазоне концентраций MgO $(0.4 < r/s \leq 1.0)$ высокотемпературной кристаллизующейся фазой является фаза варвикита. Температурный интервал насыщения составил не менее 50° С (Рис. 1). В результате получена серия твердых растворов $(Mn_{1-x}Mg_x)MnBO_4$ (x = 0.5, 0.6, 0.7, 0.8). С увеличением содержания MgO происходит последовательный переход к структурному типу ортопинакиолит Mg_{1.6}Mn_{1.4}BO₅ (r/s = 0.36) и далее к типу халсит Mg_{1.8}Mn_{1.2}BO₅ (r/s = 0.33).

Монокристаллы со структурами варвикита и ортопинакиолита представляли собой черные непрозрачные призмы, сильно вытянутые вдоль одного из направлений (вставки к Рис. 1). Морфология кристаллов со структурой халсита представляла собой черные непрозрачные пластинки.

Монокристаллы Cu₂CrBO₅ со структурой людвигита выращены в раствор-расплавной системе:

94.4 mas.%
$$(Bi_2O_3 + 1.39MoO_3 + 0.5Na_2O + 4B_2O_3 + 1.1CuO) + 5.6 mas.\% (2CuO + 0.5Cr_2O_3 + 0.5B_2O_3)$$
 (2)

и имели вид темных (в тонком слое – зелено-коричневых) мелких вытянутых призм с максимальным размером в длину до 1.4 мм.

Применение комплексного растворителя на основе $\rm Bi_2Mo_3O_{12}$ с добавками $\rm Na_2O$ позволило вырастить монокристаллы высокого кристаллического совершенства, как следует из анализа данных монокристальной дифракции, и размерами достаточными для проведения ориентационных исследований физических характеристик. Последнее открывает перспективы изучения анизотропии магнитных, магнитоэлектрических, транспортных и оптических свойств полученных соединений.

Поликристаллические образцы Ni₂CrBO₅ и Mg₂MnBO₅ со структурой людвигита были получены методом твердофазной реакции. Использование предварительно синтезированных боратных прекурсоров CrBO₃ со структурой кальцита и Mn₂BO₄ со структурой варвикита, привело к уменьшению количества компонентов твердофазной системы и получению фазово-чистых поликристаллических соединений.

Оригинальные результаты исследований, изложенные в Главе 3, опубликованы в работах [1—6].

В четвертой главе дано описание кристаллической структуры и термодинамических свойств оксиборатов $(Mn_{1-x}Mg_x)_nMnBO_{3+n}$ $(n = 1, 2; 0.0 < x \leq 1.0)$ в структурном ряду варвикит – ортопинакиолит – халсит – людвигит.

Рис. 2 — Кристаллические структуры оксиборатов со структурами варвикита ($Mn_{1-x}Mg_x$) $MnBO_4$ (a), ортопинакиолита $Mg_{1.6}Mn_{1.4}BO_5$ (б), халсита $Mg_{1.8}Mn_{1.2}BO_5$ (в) и людвигита Mg_2MnBO_5 (г). Неэквивалентные кристаллографические позиции обозначены согласно общепринятой нумерации для людвигитов.

Установлено, что соединения ($Mn_{1-x}Mg_x$)MnBO₄ (0.0 < $x \leq 0.8$) формируют изоморфный ряд твердых растворов и кристаллизуются в моноклинно искаженной структуре варвикита, пространственная группа $P2_1/n(14)$ для x = 0.0, 0.5, 0.6, 0.7 и $P2_1/a(14)$ для x = 0.8. Металлические ионы находятся в октаэдрическом кислородном окружении и занимают две кристалографически неэквивалентные позиции М1 и М2 (4*e* согласно классификации Вайкоффа).

Кристаллическая структура может рассматриваться состоящей из лент (*ribbons*), образованных соединенными по ребру октаэдрами в последовательности M2-M1-M1-M2. Ленты соединяются вершинными атомами кислорода и ВО₃-треугольниками, чтобы сформировать трехмерный каркас (Рис. 2 а)). С ростом концентрации замещающего иона объем элементарной ячейки монотонно уменьшается. Анализ валентных

Рис. 3 – а) Зависимость фактора заполнения атомами магния кристаллографической позиции M2 от концентрации магния в твердых растворах $(Mn_{1-x}Mg_x)MnBO_4$ (x = 0.0 - 0.8). Заполненные символы – экспериментальные данные, полученные в настоящем исследовании. Прямая линия зависимость, соответствующая случаю избирательного заполнения позиции М2. б) Валентные состояния металлических ионов в кристаллографических позициях M1 и M2. На вставке: атомное окружение ионов Mn³⁺ в кристаллографической позиции М1.

состояний методом BVS и локальных октаэдрических искажений через расчет главной компоненты тензора градиента электрического поля (V_{zz}) позволил заключить, что в твердых растворах $(Mn_{1-r}Mg_r)MnBO_4$ $(0.0 < x \leq 0.8)$ реализуется избирательное замещение Mg²⁺ \longrightarrow Mn²⁺

Рис. 4 Полевые зависимости намагниченности монокристалла Mg_{0.6}Mn_{1.4}BO₄, измеренные в магнитном поле, приложенном параллельно оси с. Вставка: производные намагниченности $\partial M / \partial H$ от H.

в кристаллографической позиции М2. Полученный вывод является неожиданным, учитывая выраженную склонность оксиборатов данного семейства к катионно-MV беспорядку. Упорядоченное катионное распределение и, соответственно, целочисленное разделение заряда типа $M1(Me^{3+})-M2(Me^{2+})$ (Рис. 3 б)), вероятно, связано с присутствием иона Mn³⁺ в позиции M1. Знак и величина $V_{zz} \approx -0.40 \text{ e}/\text{\AA}^3$ указывает на сильное искажение координационного октаэдра М1О₆, которое характеризуется аксиальным удлинением и одновременным сжатием в экваториальной плоскости. Наблюдаемая деформация является следствием эффекта Яна-Теллера. Упорядочение локальных

деформаций происходит путем укладывания длинных осей октаэдров $M1O_6$ в двойные цепочки (вставка к Рис. 3 б)). Таким образом, твёрдые растворы $(Mn_{1-x}Mg_x)MnBO_4$ представляют редкий случай упорядоченного катионного распределения в семействе варвикитов, которое является следствием электрон-фононного взаимодействия.

В твёрлых растворах $(Mn_{1-x}Mg_x)MnBO_4$ в измерениях температурных и полевых зависимостей намагниченности в твердых $(Mn_{1-x}Mg_x)MnBO_4$ растворах формирование установлено антиферромагнитного состояния, которое проявляется максимумом намагниченности на кривых M(T)при $T_{\rm N}$ = 16 K, 14 K, 13 K для x = 0.5, 0.6, 0.7, соответственно, и спин-ориентационным переходом на кривых M(H). Спин-ориентационный переход по типу спин-флоп перехода обнаружен при ориентации внешнего поля вдоль с-оси как изменение угла наклона кривой намагничивания и в виде аномального максимума на производной

Рис. 5 — Температурные зависимости теплоемкости $(Mn_{1-x}Mg_x)MnBO_4, x = 0.5, 0.6, 0.7 (H = 0 Oe).$ Нижняя вставка: область магнитного перехода в увеличенном масштабе. Верхняя вставка: зависимость теплоемкости C/T от T.

 $\partial M/\partial H$ при H_{SF} (4.2 K) = 61 кЭ (вставка к Рис. 4). Сглаженная аномалия может свидетельствовать о том, что внешнее магнитное поле направлено под углом к оси антиферромагнетизма. При ориентации внешнего поля перпендикулярно *с*-оси намагниченность демонстрирует линейный рост с нулевой остаточной намагниченностью, свидетельствующей об антиферромагнитном расположении магнитных моментов. При температурах выше 150 К магнитная восприимчивость подчиняется закону Кюри-Вейсса с отрицательной температурой Вейсса θ , указывающей на доминирование антиферромагнитных взаимодействий. Эффективный магнитный момент μ_{eff} уменьшается в согласии с диамагнитным замещением. Переход из парамагнитного в магнитоупорядоченное состояние сопровождается аномалией λ -типа на температурных зависимостях теплоемкости C(T) (Рис. 5).

Оксибораты $Mg_{1.6}Mn_{1.4}BO_5$ и Mg_2MnBO_5 обладают ромбической симметрией (пр.гр. Pbam(55)) и изоструктурны, соответственно, минералам ортопинакиолит и людвигит. Оксиборат $Mg_{1.8}Mn_{1.2}BO_5$ обладает моноклинной симметрией (пр. гр. P2/m(10)) и имеет структуру халсита. Среди параметров элементарной ячейки выделяется параметр ~ 3 Å, на основании чего, наряду с варвикитами, исследуемые соединения можно отнести к семейству боратов «обойного типа 3 Å» (3 Å fiber axis wallpaper structures)

Рис. 6 — а) Зависимость параметра решетки ~ 3 Å от концентрации ионов Mg в оксиборатах ($Mn_{1-x}Mg_x$)_nMnBO_{3+n} (n = 1 и 2). Пунктиром показаны линейные аппроксимации. б) Зависимость среднего межионного расстояния $\langle Mn^{3+} - O \rangle$ в октаэдрах M1O₆ (Mn₂BO₄), M5O₆ (Mg_{1.8}Mn_{1.2}BO₅ и Mg_{1.6}Mn_{1.4}BO₅) от величины главной компоненты тензора ГЭП. Вставка: октаэдрическое окружение иона Mn³⁺ в позиции M5 в структуре халсита.

(Рис. 6 а)). Для n = 2 линейная зависимость параметра 3 Å от концентрации магния имеет заметно больший угол наклона, отражая склонность соединений ($Mn_{1-x}Mg_x$)₂ $MnBO_5$ ($0.8 \le x \le 1.0$) к формированию каркасных кристаллических структур в виде слоев кислородных октаэдров, расположенных в плоскости *bc*, соединенных друг с другом вдоль *a*-оси посредством бор-кислородных треугольников и октаэдрических позиций в межслоевом пространстве (Рис. 2 б)-г)).

Тщательный анализ кристаллических структур, содержащих множество неэквивалентных позиций по металлу, бору и кислороду, позволил выделить ряд общих особенностей катионного каркаса в части распределения и локального искажения координационных октаэдров. Октаэдры M1O₆, M3O₆ и M7O₆ соединенные общим атомом кислорода с углом связи ~120° формируют триаду M3-M1-M3 (структуры халсита и людвигита) и M3-M1-M7 (структура ортопинакиолита) с наибольшим межионным расстоянием (> 3 Å). Нечетные позиции M1, M3, M7 заняты преимущественно атомами магния. Октаэдры M2O₆ M4O₆, M6O₆ соединенные общими ребрами формируют стенки шириной N = 3 (людвигит), 5 (ортопинакиолит), ∞ (халсит), распространяющиеся вдоль короткого кристаллографического направления (Рис. 2 б)-г)). Внутри стенки металлические ионы разделены межионным расстоянием менее 3 Å. Валентное состояние ионов марганца в данных позициях нецелочисленное и близко к Mn^{2.5+}. Доля таких состояний прогрессивно растет с уменьшением содержания магния.

В боратах со структурой ортопинакиолита и халсита сильное электронфононное взаимодействие обнаруживается через присутствие катионно-упорядоченной нечетной позиции M5, занятой исключительно ионами Mn³⁺,

Рис. 7 — Температурные зависимости намагниченности монокристаллов Mg_{1.6}Mn_{1.4}BO₅ (а) и Mg_{1.8}Mn_{1.2}BO₅ (б) в полях *H* = 500 Э и 5 кЭ, соответственно. Н∥ и Н⊥ соответствуют ориентации внешнего магнитного поля параллельно и перпендикулярно иголке и плоскости пластины, соответственно. Заполненные и пустые символы обозначают режимы измерения FC и ZFC. Вставки слева: области магнитных переходов в увеличенном масштабе. Вставка справа: обратная магнитная восприимчивость, прямая линия – аппроксимация законом Кюри-Вейсса.

а также проявляется в изменении локальной симметрии других координационных октаэдров, частично занятых ионами Mn^{3+} . Экспериментально это проявляется в значительном аксиальном удлинении октаэдра $M5O_6$, большой по модулю и отрицательной по знаку величине главной компоненты тензора градиента электрического поля V_{zz} (вставка к Рис. 6 б)).

Кривые M(T) всех исследуемых оксиборатов демонстрируют серию аномалий, связанных с трансформацией магнитных подсистем. Переход в антиферромагнитно – упорядоченное состояние ниже $T_1 = 90$ К проявляется в виде слабоинтенсивного пика, за которым следует резкий рост магнитного мо-

Рис. 8 — Температурные зависимости намагниченности Mg_2MnBO_5 $(H = 10 \ \Im)$. Заполненные (FC) и пустые (ZFC) символы обозначают режимы измерения. Верхняя вставка: температурная зависимость χ $(H = 10 \ \Im$ и 600 \Im). Нижняя вставка: $\chi^{-1}(T)$, прямая линия – аппроксимация законом Кюри-Вейсса.

мента при $T_2 = 33$ К в Mg_{1.6}Mn_{1.4}BO₅ и изменение угла наклона в Mg_{1.8}Mn_{1.2}BO₅ (Рис. 7). Наконец, при $T_3 = 6$ - 8 К намагниченность снова проходит через максимум. С ростом концентрации магния, аномалии

Рис. 9 — Зависимость C_p/T от температуры для монокристаллов $Mg_{1.6}Mn_{1.4}BO_5$ (а) и $Mg_{1.8}Mn_{1.2}BO_5$ (б) (H = 0 и 90 кЭ). На вставках приведены температурные зависимости теплоемкости и решеточный вклад в теплоемкость, полученный по модели Дебая-Эйнштейна.

смещаются в область низких температур и проявляются при $T_1 = 40$ К и $T_2 = 29$ К (H = 10 Э) на кривых намагниченности оксибората Mg₂MnBO₅ (Рис. 8). Внешнее поле оказывает значительное влияние на магнитный переход при T_2 , вызывая увеличение его интенсивности и смещение в область малых температур ($T_2 = 27$ К для H = 600 Э). Отрицательная температура Вейсса $\theta \approx -50$ К (x = 0.8, 0.9) и -19 К (x = 1.0) указывает на преобладание антиферромагнитных обменных взаимодействий. Уменьшение величины эффективного магнитного момента с ростом концентрации магния укладывается в представления о диамагнитном разбавлении. Отметим, что Mg_{1.6}Mn_{1.4}BO₅ со структурой ортопинакиолита демонстрирует выраженную магнитную анизотропию, ранее наблюдавшуюся в людвигитах.

Для изучения фазового характера магнитных переходов были выполнены измерения теплоемкости, которые обнаружили температурные аномалии при T_1 при T_2 . При T_3 (Рис. 9) в обоих кристаллах имеет место куполообразная аномалия теплоемкости, интенсивность которой подавляется внешним магнитным полем. Температуры Дебая, найденные путем аппроксимации решеточного вклада в теплоемкость с использованием модели Дебая-Эйнштейна $T_D = 551\pm20$ К (Mg_{1.6}Mn_{1.4}BO₅) и 564±20 К (Mg_{1.8}Mn_{1.2}BO₅) и близки к полученным ранее для людвигитов (Рис. 9).

В отсутствие прямых исследований магнитной структуры оксиборатов $(Mn_{1-x}Mg_x)_2MnBO_5$ (x = 0.8, 0.9, 1.0) с помощью рассеяния нейтронов и опираясь на анализ кристаллических структур, можно предположить, что повышение температуры магнитного фазового перехода при T_1 в $Mg_{1.6}Mn_{1.4}BO_5$ и $Mg_{1.8}Mn_{1.2}BO_5$ по сравнению с Mg_2MnBO_5 вызвано возрастающей ролью упорядочивающих обменных взаимодействий через октаэдрическую позицию M5, занятую исключительно ионами Mn^{3+} . Данной позиции отводится важная роль в установлении обменной связи между

ионами, принадлежащими соседним октаэдрическим слоям. Катионное упорядочение в данной позиции может вызвать понижение степени фрустрирующих обменных взаимодействий. В тоже время, кристаллическая структура людвигита не содержит катионно-упорядоченных позиций, каждая катионная позиция занята смесью атомов магния и марганца.

Суммируя экспериментальные данные, можно заключить, что магнитные свойства марганецсодержащих оксиборатов необходимо рассматривать в тесной связи с их кристаллической структурой. Влияние катионного распределения на магнитные свойства заключается в том, что упорядоченное распределение катионов приводит к установлению дальнего антиферромагнитного порядка. Одним из механизмов упорядоченного распределения катионов является сильное электрон-фононное взаимодействие, связанное с присутствием ян-теллеровского иона Mn^{3+} .

Основные результаты исследований, представленные в Главе 4, опубликованы в работах [1; 4; 5]

В <u>пятой главе</u> приведено подробное описание кристаллической структуры Cu_2CrBO_5 и его магнитных свойств.

Оксиборат Cu₂CrBO₅ кристаллизуется в моноклинной симметрии, пространственная группа $P2_1/c(14)$, и обладает структурой людвигита. Специфика кристаллической структуры заключается в упорядоченном распределении катионов по четырем неэквивалентным октаэдрическим позициям: M1(Cu²⁺), M2(Cu²⁺), M3(Cu²⁺), M4(Cr³⁺) (позиции 2d, 2a, 4e, 4e по Вайкоффу). В соответствии с теоремой Яна-Теллера, локальное кислородное окружение ионов Cu²⁺ представлено сильно искаженными октаэдрами Cu1O₆, Cu2O₆, Cu3O₆ с большой и отрицательной величиной $V_{zz} = -0.359, -0.547, -0.519 \text{ e/Å}^3$, соответственно. Избирательное заполнение атомами хрома приводит к тому, что распределение длин связей в октаэдре M4O₆ носит регулярный характер ($V_{zz} = -0.026 \text{ e/Å}^3$).

На Рис. 10 а) приведена температурная зависимость намагниченности Cu₂CrBO₅ измеренная в поле 1 кЭ. Интенсивный максимум при $T_{\rm N} = 118$ K указывает на установление магнитного порядка. Ниже $T_{\rm N}$ намагниченность имеет сложную форму: плато в интервале температур T = 50 - 80 K и резкий спад ниже 50 К. Аппроксимация высокотемпературной части магнитной восприимчивости законом Кюри-Вейсса дает удовлетворительный результат лишь при достаточно высоких температурах, при T < 250 K развиваются сильные антиферромагнитные корреляции, которые проявляются как отклонение вниз от линейной зависимости $\chi^{-1}(T)$. Экспериментально определены значения температуры Вейсса $\theta = -23.3$ К и константы Кюри-Вейсса C = 1.70 Гс·см²/моль·К. Редукция магнитного момента ($\mu_{eff} = 3.69 \ \mu_B/ф.ед.$) по сравнению с ожидаемым в приближении спинового магнетизма (4.72 $\mu_B/ф.ед.$), вероятно, связана с сохранением значительной части магнитных корреляций ближнего порядка.

Рис. 10 — Намагниченность Cu₂CrBO₅ как функция температуры в поле H = 1 кЭ. Стрелка указывает начало магнитного перехода. Вставка: температурная зависимость обратной магнитной восприимчивости. Прямая линяя – аппроксимация законом Кюри-Вейсса. б) Полевые зависимости намагниченности Cu₂CrBO₅. Вставка: производные намагниченности $\partial M/\partial H(H)$.

Для определения параметров магнитной подсистемы были выполнены измерения полевых зависимостей намагниченности в широком интервале температур (T = 4.2 - 100 K). В полях H > 60 к \Im кривые M(H) значительно отклоняются от линейного хода, что качественно указывает на трансформацию антиферромагнитной подсистемы (Рис. 10 б)). Производные кривых намагничивания $\partial M/\partial H$ приведены на вставке к Рис. 10 б), на которых отчетливо видны особенности в виде максимумов при $H_{\rm SF}$ (60 K) \approx 90 к \Im . С ростом температуры переход смещается в область слабых полей и может быть классифицирован как спин-ориентационный переход.

Упорядоченное распределение ионов Cu²⁺ по позициям приводит к тому, что длинные оси октаэдров Cu1O₆, Cu2O₆, Cu3O₆ укладываются вдоль *a*-оси и соединение октаэдров происходит через атомы кислорода в экваториальных плоскостях. В результате, возникает копланарное распределение атомов меди Cu3-Cu2-Cu3, разделенных весьма коротким расстоянием ($d_1 = 2.9915(8)$ Å). Магнитоактивной орбиталью является $d_{x^2-y^2}$, располагающаяся в базальной плоскости и по правилам Гуденафа – Канамори – Андерсона ожидается, что перекрытие этих орбиталей меди с p_x , p_y орбиталями кислорода приведет к антиферромагнитной (~120°) Cu1-O-Cu3 и ферромагнитной (~90°) Cu2-O-Cu3 косвенной связи. Усиление роли магнитных корреляций экспериментально проявляется в отклонении температурной зависимости магнитной восприимчивости от парамагнитного поведения.

Основные результаты исследований, представленных в Главе 5, опубликованы в работе [3].

Шестая глава посвящена описанию кристаллической структуры и магнитного поведения Ni₂CrBO₅.

Рис. 11 — Температурные зависимости намагниченности Ni_2CrBO_5 , H = 1 кЭ. Верхняя вставка: куполообразная аномалия намагниченности. Нижняя вставка: увеличенные участки кривых M(T) вблизи магнитного перехода.

Оксиборат Ni₂CrBO₅ кристаллизуется в ромбической симметрии (Пр.гр. *Pbama*(55)) и обладает структурой людвигита. Октаэдрические позиции М1 и М3 заполнены ионами Ni²⁺ (100%), M2 – ионами Cr^{3+} (91%), M4 является смешанной и заполнена ионами Ni^{2+} (47%) и Cr³⁺ (53%). Применительно к изоструктурным гетерометаллическим оксиборатам этот результат является неожиданным по части распределения трехвалентных ионов и означает стремление ионов Cr³⁺ локализоваться в триаде М4-М2-М4 с наименьшим межионным расстоянием $(d_{M2-M4} = 2.7516(18) \text{ Å}).$ Локальная координация металличе-

ских ионов представлена двумя сильно искаженными октаэдрами, М1O₆ $(V_{zz} = 0.161 \text{ e/Å}^3)$ и М3O₆ (0.217 e/Å^3) , и двумя слабо искаженными, М2O₆ (-0.024 e/Å^3) и М4O₆ (-0.059 e/Å^3) . Этот результат в целом согласуется с данными для других ромбических оксиборатов семейства людвигитов, за исключением октаэдра М2O₆, аксиальное удлинение которого возникает вследствие специфического распределением ионов Cr^{3+} .

Температурная зависимость намагниченности Ni₂CrBO₅, измеренная в режиме ZFC, демонстрирует максимум при $T_{\rm N} = 140$ K, свидетельствующий о наступлении магнитного порядка (Рис. 11). Быстрый рост намагниченности в режимах FC, FH указывает на растущий ферромагнитный вклад и согласуется с наблюдением петли гистерезиса на кривых M(H) при $T < T_{\rm N}$. При низких температурах намагниченность проходит через максимум вблизи ~30 К. В системе доминируют антиферромагнитные взаимодействия, как следует из анализа высокотемпературной части магнитной восприимчивости ($\theta = -73$ K). Магнитный момент $\mu_{eff} = 5.37 \ \mu_B/\phi$.ед. близок к таковому, ожидаемому для спинового магнетизма. Указание на фазовый переход также получено в измерениях температурной зависимости теплоемкости (Рис. 12). Аномалия λ -типа при $T_{\rm N} = 134$ K свидетельствует о фазовом переходе второго рода из парамагнитной в магнитоупорядоченную фазу. Под действием магнитного поля аномалия сглаживается и слегка смещается в сторону высоких температур, что может быть связано с наличием ферромагнитных обменных взаимодействий, стабилизированных внешним магнитным полем (нижняя вставка к рис. 12). Температура Дебая определенная из подгонки решёточного вклада в приближении

Дебая-Эйнштейна $T_D = (394 \pm 20)$ К. Магнитный вклад показывает максимумы при T_N и 34 К (верхняя вставка к рис. 12), последний из которых совпадает с куполообразной анома-

Дж/моль

150

125

100

лией на кривой M(T) и может быть связан с упорядочением одной или нескольких магнитных подрешеток. Оценки интегралов косвенных обменных взаимодействий показали, что упорядоченное распределение ионов Cr³⁺ в позиции M2 вызывает изменение знака парных обменных взаимодействий на антиферромагнитные.

Основные результаты исследований, представленные в Главе 6, опубликованы в работе [2].

В заключении приведены основные результаты работы, которые заключаются в следующем:

1. Установлено, что раствор-

С_р, Дж/моль∙К Решет. T, K age 10575 .91100 95 50 25 140 160<u>Т, К</u> 0 50 100 150 200 250 300 T.KРис. 12Зависимость $C_{\rm p}(T)$ Ni₂CrBO₅ (символы)

50 100 150 200

μ₀Н=0 Э

µ₀Н=90 кЭ́

и решеточный вклад в теплоемкость (линия). Верхняя вставка: аномальный вклад удельной теплоемкости $\Delta C_{\rm p}$. Нижняя вставка: увеличенный масштаб области λ -аномалии.

расплавный метод на основе комплексного растворителя Bi₂O₃-MoO₃, с добавками Na₂O, B₂O₃ и Na₂B₄O₇, позволяет выращивать монокристаллы оксиборатов $(Mn_{1-x}Mg_x)_n MnBO_{3+n}$, x = 0.5 - 0.8 (n = 1), x = 0.8, 0.9 (n = 2) и Cu₂CrBO₅ высокого кристаллического совершенства и линейных размеров, достаточных для проведения ориентационных исследований физических свойств.

2. Уменьшение числа компонент твердофазной системы за счет использования прекурсоров CrBO3 и Mn2BO4 позволило получить фазово-однородные поликристаллические образцы Ni₂CrBO₅ и Mg₂MnBO₅ со структурой людвигита.

3. Установлено, что с ростом концентрации магния в системе $(Mn_{1-x}Mg_x)_n MnBO_{3+n}$ происходит последовательный переход от структурного типа варвикит ($n = 1, 0.0 < x \leq 0.8$) к структурным типам ортопинакиолит, халсит и людвигит (n = 2, x = 0.8, 0.9, 1.0). В твердых растворах со структурой варвикита имеет место избирательное замещение $\mathrm{Mn}^{2+} \to \mathrm{Mg}^{2+}$ в кристаллографической позиции M2. Упорядоченное распределение катионов впервые наблюдается в гетерометаллических варвикитах и связывается с сильным электрон-фононным взаимодействием, вызванным присутствием ионов Mn^{3+} в позиции M1.

4. Обнаружено формирование дальнего антиферромагнитного порядка в твердых растворах $Mn_{1-x}Mg_xMnBO_4$ при $T_N = 16, 14$ и 13 К для x = 0.5, 0.6 и 0.7, соответственно. При низких температурах полевые зависимости намагниченности демонстрируют ряд особенностей, связанных

с трансформацией антиферромагнитной подсистемы в магнитном поле (спин-флоп переходы).

5. Установлено, что в структурах ортопинакиолита (Mg_{1.6}Mn_{1.4}BO₅), халсита (Mg_{1.8}Mn_{1.2}BO₅) и людвигита (Mg₂MnBO₅) формируется катионный каркас, построенный из октаэдров нечетных и четных кристаллографических позициях. Первый включает связанные по вершинам октаэдры M1O₆, M3O₆, M7O₆, преимущественно занятые ионами магния. Второй состоит из связанных общими ребрами октаэдров M2O₆, M4O₆, M6O₆, содержащих ионы марганца в смешанно валентном состоянии. Октаэдры в четных позициях формируют стенки разной ширины: триады в людвигите (N = 3), пентады в ортопинакиолите (N = 5) и бесконечные стенки в халсите ($N = \infty$). Стенки распространятся вдоль короткого кристаллографического направления (~ 3 Å). В отличие от людвигита, структуры ортопинакиолита и халсита содержат октаэдрическую позицию M5, заполненную ионами Mn³⁺.

6. Оксибораты (Mn_{1-x}Mg_x)₂MnBO₅ со структурами ортопинакиолита (x = 0.8), халсита (x = 0.9) и людвигита (x = 1.0) демонстрируют серию магнитных переходов при охлаждении. Термодинамические характеристики свидетельствует об установлении магнитного порядка при T₁ = 90 K (x = 0.8 и x = 0.9) и 40 K (x = 1.0). Повышение температуры магнитного перехода связывается с возрастающей ролью обменных взаимодействий через позицию M5, заполненную исключительно ионами Mn³⁺. Магнитные переходы при T₂ = 33 (x = 0.8), 44 (x = 0.9) и 29 K (x = 1.0), а также при T₃ = 8 (x = 0.8) и 6 K (x = 0.9), вероятно, связаны с последующим упорядочением одной или нескольких магнитных подрешеток.

7. Обнаружено упорядоченное распределение катионов по неэквивалентным кристаллографическим позициям и вызванное им изменение локальной симметрии координационных октаэдров в Cu₂CrBO₅: ионы Cu²⁺ занимают позиции M1, M2, M3; ионы Cr³⁺ - позицию M4. Установлено, что при $T_{\rm N} = 118$ K происходит переход в магнитоупорядоченное состояние. Спин-ориентационный переход на кривых намагничивания в интервале 50 < T < 100 K связывается с эволюцией антиферромагнитной подсистемы во внешнем поле.

8. Установлено нетипичное для людвигитов катионное распределение в Ni₂CrBO₅: ионы Cr³⁺ почти полностью занимают позицию M2 и частично позицию M4, ионы Ni²⁺ занимают M1 и M3. Специфическое распределение катионов вызывает изменение симметрии координационных октаэдров, занятых ионами Cr³⁺ и проявляется в значительных тетрагональных искажениях. Обнаружен фазовый переход второго рода из парамагнитного состояния в магнитоупорядоченную фазу при $T_{\rm N}=140~{\rm K}.$

БЛАГОДАРНОСТИ

Автор выражает глубокую благодарность и искреннюю признательность научному консультанту – в.н.с ИФ СО РАН д.ф. - м.н. *Казак Н. В.* за неоценимую помощь в исследовательской деятельности и мудрое научное руководство и научному руководителю – в.н.с. ФТИ им. А.Ф. Иоффе д. х. н. *Красилину А. А.* за обсуждение результатов, интерес к работе и полезные замечания при её выполнении.

Автор благодарит друга и наставника к.ф. - м.н. *Мошкину Е. М.* за поддержку, внимание и переданный опыт синтеза объектов исследования.

Автор также выражает благодарность дорогим коллегам и соавторам из лаборатории новых неорганических материалов ФТИ им. А.Ф. Иоффе, а также лаборатории радиоспектроскопии и спиновой электроники и лаборатории физики магнитных явлений ИФ СО РАН за полезные советы и интересные дискуссии при обсуждении совместных результатов, а также за помощь в проведении широкого круга исследований.

Автор сердечно благодарит Утюшева А. Д. за бесконечное терпение, опору и поддержку на всех этапах работы над диссертационным исследованием, а также дорогих родителей Бельского А. М. и Бельскую И. В. за неоценимую поддержку и безусловную любовь.

Публикации автора по теме диссертации

- 1. Структурное разнообразие и фазовые переходы в боратах со смешанной валентностью $Mg_{2-x}Mn_{1+x}BO_5$ (0.0 < $x \le 0.4$) [Текст] / Н. А. Бельская [и др.] // Письма в ЖЭТФ. — 2024. — Дек. — Т. 120, вып. 7. — С. 530—538. — (BAK, Scopus, Web of Science).
- Synthesis, crystal structure, and magnetic properties of Ni₂CrBO₅ [Текст] / N. A. Belskaya [et al.] // J. Magn. Magn. Mater. — 2024. — Aug. — Vol. 604. — Р. 172298. — (Scopus, Web of Science).
- Growth Conditions and the Structural and Magnetic Properties of Cu₂MBO₅ (M = Cr, Fe, Mn) Oxyborates with a Ludwigite Structure [Teкct] / E. M. Moshkina [et al.] // J. Exp. Theor. Phys. — 2023. — Jan. — Vol. 136, no. 1. — P. 17—25. — (BAK, Scopus, Web of Science).
- 4. Antiferromagnetism of the cation-ordered warwickite system $Mn_{2-x}Mg_{x}BO_{4}$ (x = 0.5, 0.6 and 0.7) [Tekct] / N. V. Kazak [et al.] // J. Magn. Magn. Mater. 2020. Aug. Vol. 507. P. 166820. (Scopus, Web of Science).
- 5. Раствор-расплавный синтез и структурные свойства твердых растворов Мп_{2-*x*}Mg_{*x*}BO₄ [Текст] / С. Н. Софронова [и др.] // Фундаментальные проблемы современного материаловедения. — 2019. — Т. 16, № 1. — С. 36—40. — (ВАК).

6. Crystal formation of Cu-Mn-containing oxides and oxyborates in bismuth-boron fluxes diluted by MoO₃ and Na₂CO₃ [Texcr] / E. Moshkina [et al.] // J. Cryst. Growth. — 2018. — Dec. — Vol. 503. — P. 1—8. — (Scopus, Web of Science).

Бельская Надежда Алексеевна

Влияние катионного распределения на магнитные свойства оксиборатов со структурой варвикита и людвигита

Автореф. дис. на соискание ученой степени канд. физ.-мат. наук

Подписано в печать _____. Заказ № _____ Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография _____