

## **МИНОБРНАУКИ РОССИИ**

федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого» (ФГАОУ ВО «СПбПУ»)

ИНН 7804040077, ОГРН 1027802505279, ОКПО 02068574

Политехническая ул., 29, Санкт-Петербург, 195251 тел.: +7(812)297 2095, факс: +7(812)552 6080

office@spbstu.ru

20.12.2022 № 02-21-4-559

Проректор по научно-организационной деятельности д.т.н. Ю.С. Клочков «20» декабря 2022 г.

## ОТЗЫВ

ведущей организации — федерального государственного автономного образовательного учреждения высшего образования «Санкт-Петербургский политехнический университет Петра Великого» — на диссертационную работу Бреева Ильи Дмитриевича на тему «Спин-оптические и спин-деформационные свойства вакансионных центров в гексагональном карбиде кремния и гетероструктурах на его основе», представленную на соискание ученой степени кандидата физико-математических наук по специальности 01.03.08 — физика конденсированного состояния.

Актуальность работы. Диссертационная работа Бреева Ильи Дмитриевича посвящена изучению вакансионных центров кремния в карбиде кремния и его гетероструктурах методами оптической спектроскопии и оптически детектируемого магнитного резонанса. Эти объекты рассматриваются международным научным сообществом в качестве перспективных материалов для применения в квантовых технологиях. Исследуемые в работе свойства вакансионных центров кремния, такие как зависимость спиновой структуры центров от механических деформаций и температуры, структура возбужденного состояния, особенности поляризации излучения, представляют интерес для применения в квантовой сенсорике, вычислениях и криптографии. Таким образом, диссертационное исследование является, несомненно, своевременным и актуальным.

<u>Структура диссертации.</u> Диссертация Бреева И.Д. хорошо структурирована, состоит из введения, пяти глав, заключения и списка литературы (128 источников). Во введении сформулирована цель диссертационной работы и связанные с ней задачи,

обоснована её актуальность, научная новизна и значимость, сформулированы положения, выносимые на защиту, а также указан личный вклад соискателя и апробация работы.

В первой главе представлен литературный обзор объектов исследования и используемых в диссертации экспериментальных методов для изучения спин-оптических и спин-деформационных свойств  $V_{Si}$  центров в карбиде кремния. Описано современное состояние исследований  $V_{Si}$  центров в карбиде кремния, история их обнаружения, кристаллическая и спиновая структура. В конце главы показана схема экспериментальной установки, используемой в работе.

Вторая глава посвящена исследованию распределения механических напряжений на интерфейсе AlN/SiC в гетероструктурах AlN/4H-SiC и AlN/6H-SiC спектроскопией комбинационного рассеяния света. Проведён анализ экспериментальных данных и сделаны выводы об источниках возникновения механических напряжений.

В третьей главе экспериментально показано влияние механических напряжений в кристаллах SiC на спиновые свойства  $V_{Si}$  центров, а именно на величину расщепления в нулевом поле в основном и возбужденном состояниях, построена теоретическая модель связи этих параметров.

В четвертой главе изложены результаты оптических исследований 6H-SiC с  $V_{Si}$  центрами. Исследуются поляризационные зависимости спектров фотолюминесценции и оптически детектируемого магнитного резонанса при комнатной температуре и температуре жидкого гелия.

Пятая глава посвящена исследованию температурного поведение  $V_{Si}$  центров в 6H-SiC методами спектроскопии анти-пересечения уровней, оптически детектируемого магнитного резонанса и электронного парамагнитного резонанса, проведен анализ времен спин-спиновой релаксации при разных температурах.

**Новизна исследований и полученных результатов.** С точки зрения научной новизны, следует отметить следующие наиболее значимые результаты:

- 1. На интерфейсе гетероструктур AlN/4H-SiC и AlN/6H-SiC получено распределение механических напряжений с субмикронным пространственным разрешением, обнаружены механические напряжения на интерфейсе вплоть до 1 ГПа, предложена модель их образования.
- 2. В карбиде кремния политипов 4H-SiC и 6H-SiC установлена зависимость расщепления спиновой системы  $V_{Si}$  центров от статических механических напряжений в нулевом магнитном поле, предложена теоретическая модель связи спинового гамильтониана с механическими напряжениями.
- 3. Для политипа 6H-SiC установлена поляризация излучения  $V_{Si}$  центров и направление преимущественного излучения. Сделаны теоретические выводы о структуре возбужденного состояния и порядке расположения спиновых подуровней для разных  $V_{Si}$  центров.

4. В политипе 6H-SiC обнаружено критическое температурное поведение  $V_{Si}$  центров V3 вблизи критической температуры  $T_c$ =16 K, описаны предполагаемые причины подобного поведения. Продемонстрирована возможность когерентного контроля  $V_{Si}$  центров V3 в 6H-SiC при температуре ниже критической.

Обоснованность и достоверность научных положений и выводов. Достоверность полученных результатов достигается путем применения современных, надежных и зарекомендовавших себя экспериментальных методов измерений с использованием высокоточного оборудования. Достоверность подтверждается соответствием полученных результатов с исследованиями, описанными в литературных источниках, а также высокой степенью согласования экспериментальных данных с теоретическими предсказаниями и расчётами.

<u>Научная и практическая значимость.</u> Полученные результаты раскрывают потенциал для использования  $V_{Si}$  центров в карбиде кремния политипов 4H-SiC и 6H-SiC в качестве кубитов и квантовых сенсоров.

- 1. Полученные распределения механических напряжений на интерфейсе гетероструктур AlN/4H-SiC и AlN/6H-SiC можно применить для улучшения качества монокристаллов AlN, выращенных на подложках SiC.
- 2. Исследованная зависимость  $V_{Si}$  центров от механических напряжений позволит учесть дрейф их спиновых свойств при промышленном производстве, а также сделает возможным использование механических напряжений для управления и настройки спинового состояния  $V_{Si}$  центров.
- 3. Исследования оптических свойств центров, позволяют определить структуру возбужденного состояния, что важно для установления полной картины оптического цикла накачки и релаксации и выбора наиболее подходящих спиновых центров для использования в планарных фотонных кристаллах.
- 4. Критическое температурное поведение  $V_{Si}$  центров в 6H-SiC-является одним из ключевых факторов для определения механизма оптического выстраивания спиновых подуровней и структуры спинового состояния.

Рекомендации по использованию результатов работы. Полученные в рассматриваемой диссертации результаты могут быть использованы в научных и прикладных исследованиях, проводимых в Физико-техническом институте им. А.Ф. Иоффе РАН, Казанском физико-техническом институте РАН, Нижегородском Государственном университете, Институте физики полупроводников СО РАН, Институте физики твердого тела РАН, Физический институт имени П. Н. Лебедева РАН, Институте физических проблем РАН, Казанском федеральном университете.

**Замечания по диссертационной работе.** По диссертации имеются следующие вопросы и замечания:

- 1. Во второй главе диссертации приводятся результаты записи спектров комбинационного рассеяния света на торце гетероструктур AlN/4H-SiC и AlN/6H-SiC по оси нормали к интерфейсу, а затем показаны расчеты компонент тензора напряжений и деформации. Однако не указано в каких точках на торцах гетероструктур были записаны данные профили сдвигов пиков комбинационного рассеяния.
- 2. Во второй главе диссертации сказано, что нет возможности построить зависимость компонент тензора напряжений в слое 6H-SiC из-за отсутствия в литературе полного набора констант фонон-деформационных потенциалов. Но при этом в третьей главе была представлена зависимость расщепления спиновых подуровней вакансионных центров кремния в 6H-SiC от механических деформаций, неясно, как она была получена.
- 3. На Рис. 4.2 (а)-(б) на спектрах фотолюминесценции отсутствует шкала интенсивности, что затрудняет подтверждение вывода, что вакансионные центры кремния V3 в 6H-SiC излучает свет предпочтительно вдоль оси с.

Указанные замечания не влияют на общую положительную оценку и не снижают научной и практической ценности диссертации.

<u>Апробация работы.</u> Диссертационная работа И.Д. Бреева выполнена на высоком и современном научном уровне и является весомым вкладом в развитие физики конденсированного состояния. Основные результаты этой работы опубликованы в ведущих реферируемых российских и зарубежных высокорейтинговых научных журналах (пјр Quantum Information, Applied Physics Letters, Journal of Applied Physics, Письма в Журнал Экспериментальной и Теоретической Физики, Физика и Техника Полупроводников, Physical Review B), доложены на многих международных и российских конференциях, семинарах.

Заключение. Рассматриваемая диссертационная работа посвящена актуальной теме, соискателем проведен значительный объем исследовательской работы, продемонстрировано полное соответствие приемов и методов исследований поставленной в работе цели, полученные в работе результаты обладают необходимой новизной и значимостью.

Автореферат полностью отражает содержание диссертации, защищаемые положения и выводы. Представленная диссертация соответствует всем требованиям, предъявляемым к диссертациям на соискание ученой степени кандидата физикоматематических наук. Её автор, Бреев Илья Дмитриевич, заслуживает присуждения ученой

степени кандидата физико-математических наук по специальности 01.03.08 – физика конденсированного состояния.

Отзыв составил:

Профессор кафедры физики ФГАОУ ВО «СПбПУ Петра Великого»

д. ф.-м.н.

Ф.С. Насрединов

Тел: +7 (812) 552-77-90 E-mail: nasfas@mail.ru

Доклад И.Д. Бреева, отражающий основные результаты диссертации, был заслушан на заседании кафедры физики ФГАОУ ВО «СПбПУ Петра Великого» 7 декабря 2022 г, протокол № 3.

Заведующий кафедрой физики ФГАОУ ВО «СПбПУ Петра Великого», д.ф.-м.н., доцент

тел.: (812) 552-77-90

Е.Г. Апушкинский

Секретарь, к.ф.-м.н., доцент

В.В. Мизина

<u>Сведения о ведущей организации.</u> Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого» 195251 Санкт-Петербург, ул. Политехническая, д.29.

Тел: +7 (812) 775-05-30 E-mail: office@spbstu.ru