GaN - Gallium Nitride

Optical properties


Zinc Blende crystal structure
    Remarks Referens
Dielectric constant (static) 9.7 300 K Bougrov et al. (2001)
Dielectric constant (high frequency) 5.3  300 K  
Infrared refractive index ~=2.3 300 K  
Radiative recombination coefficient 1.1 x 10-8 cm3 s-1 300 K;
also see Recombination parameters
Muth et al. (1997)
Optical phonon energy 87.3 meV 300 K  

Wurtzite crystal structure
    Remarks Referens
Dielectric constant (static) 8.9
300 K Bougrov et al. (2001)
  10.4(3)
9.5(3)
E||c
Ec ;   high frequency dielectric constant assumed to be isotropic
Barker et al.(1973)
Dielectric constant (high frequency) 5.35
300 K
Bougrov et al. (2001)
  5.8(4)
5.35(20)
300 K, E||c
300 K, Ec
Manchon et al.(1970)
Barker et al.(1973)
Refractive index, n 2.29(5) 300 K
(extrapolated to 0 eV), Ec
interference method (the value for E||c is 1.5(2)% lower at 500 nm);
also see Energy dependence and long wavelength value
Ejder (1971)
Infrared refractive index ~=2.3 300 K
Radiative recombination coefficient 1.1 x 10-8 cm3 s-1. 300 K;
also see Recombination parameters
Muth et al. (1997)
Optical phonon energy 91.2 meV 300 K Bougrov et al. (2001)
phonon wavenumbers:   Remarks Referens
νA1(TO||) 533 cm-1 T=300K; Raman spectroscopy Manchon et al.(1970)
νE1(TO) 559 cm-1 T=300K; Raman spectroscopy Lemos et al.(1972)
νE1(LO) 746 cm-1 T=300K;
Kramers-Kronig analysis of infrared reflectivity
Barker & Ilegems (1973)
νA1(LO) 744 cm-1 T=300K;
Kramers-Kronig analysis of infrared reflectivity
Barker & Ilegems (1973)

Optical properties

GaN, Wurtzite sructure. Refractive index vs. photon energy at 300 K. Ec
Ejder (1971).
GaN, Wurtzite. Refractive index n versus wavelength on sapphire at 300 K
Yu et al. (1997)
GaN, Wurtzite sructure. Long-wavelength refractive index normalized to the 0 K value vs. temperature.
Ejder (1971).
GaN, Wurtzite. Reflectance R as a function of photon energy for single crystals (platelets).
T = 2 K
Dingle et al. (1971)
GaN, Wurtzite. Reflectance R as a function of photon energy for two temperatures:
T = 4.2 K;   295 K;
Bloomet al. (1974)
GaN, Wurtzite. The absorption coefficient versus photon energy for GaN layer grown on sapphire.
T = 293 K
Muth et al. (1997)
GaN, Wurtzite. The absorption coefficient versus photon energy for GaN layer grown on sapphire.
T = 77 K
Muthet al. (1997)
GaN, Wurtzite. Axial absorption spectra for several GaN single crystals (platelets) at low temperature.
T ~= 5 K,     Ec
Dingle et al. (1971)
GaN, Wurtzite. The absorption coefficient versus photon energy for GaN deposited on r-plane sapphire at different electron concentrations.
T= 300 K. n0 :
  1 - 2 x 1016 cm-3,
  2 - 2.8 x 1017 cm-3,
  3 - 5 x 1017 cm-3,
  4 - 2.3 x 1018 cm-3,
  5 - 2 x 1019 cm-3
Ambacheret al. (1996)
GaN, Wurtzite. The absorption coefficient versus photon energy (MOCVD on oplane sapphire).
T= 300 K;    n0 ~= 1017 cm-3.
Ambacheret al. (1996)
GaN, Wurtzite. The absorption coefficient versus electron concentration at photon energy Eph = 0.6 eV (free carrier absorption)
T= 300 K.   
Ambacheret al. (1996)
GaN, Wurtzite. The absorption coefficient versus wavelength. Electron concentration n0:
    1-6.3 x 1019 cm-3;
    2-2.9 x 1019 cm-3;
    3-1.8 x 1019 cm-3
Cunningham et al. (1972)
GaN, Wurtzite. Photoluminescence spectra for T = 2 K and T = 50 K.
Bulk-like sample with the thickness of 500 μm.
Monemar et al. (1996)
GaN, Zinc Blende(cubic). Photoluminescence spectra for cubic GaN grown on GaAs.
T =
1.8 K
Holst et al. (1989)