Breakdown field  ≈10^{5}V cm^{1} 
Mobility electrons  ≤3900 cm^{2} V^{1}s^{1} 
Mobility holes  ≤1900 cm^{2} V^{1}s^{1} 
Diffusion coefficient electrons  ≤100 cm^{2} s^{1} 
Diffusion coefficient holes  ≤50 cm^{2} s^{1} 
Electron thermal velocity  3.1·10^{5}m s^{1} 
Hole thermal velocity  1.9·10^{5}m s^{1} 
Electron mobility versus temperature for different doping levels. 1. High purity Ge; timeofflight technique (Jacoboni et al. [1981]); 26. Hall effect N_{d}  N_{a}(cm^{3}): 2. 1·10^{13}; 3. 1.4·10^{14}; 4. 1.7·10^{15}; 5. 7.5·10^{15}; 6. 5.5·10^{16} (Debye and Conwell [1954]); 7. Hall effect N_{d}  N_{a}=1.2·10^{19}(cm^{3}) (Fistul et al. [1962]). 
Electron Hall mobility versus electron concentration 1. T = 77 K; 2. T = 300 K. (Fistul et al. [1962]). 
The electron Hall factor versus donor density. 1. T = 300 K; 2. T = 77 K. (Babich et al. [1969]). 

Resistivity versus impurity concentration., T = 300 K. (Cuttris [1981]). 

Temperature dependences of hole mobility for different doping levels. 1. High purity Ge; timeofflight technique (Ottaviany et al. [1973]). 27. Halleffect (Golikova et al. [1961]). N_{a} N_{d} (cm^{3}): 2. = 4.9·10^{13}; 3. 3.2·10^{15}; 4. 2.7·10^{16}; 5. 1.2·10^{17}; 6. 4.9·10^{18}; 7. 2.0·10^{20}. 
The hole Hall mobility versus hole concentration. Experimental points: data from three References (Golikova et al. [1961]). 

The hole Hall factor versus temperature for high purity pGe (Morin [1954]). 
Field dependences of the electron drift velocity. Solid lines: F(100) Solid lines: F(111). (Jacoboni et al. [1981]). 

Mean energy of electrons in lower valleys as a function of electronic field for three lattice temperatures. (Jacoboni et al. [1981]). (Jacoboni et al. [1981]). 

The field dependence of longitudinal electron diffusion coefficient D for 77 K and 190 K.
F(100). Solid lines show the results calculation. Symbols represent measured data. (Jacoboni et al. [1981]). 

Field dependences of the electron drift velocity at different temperatures. F(100). (Ottaviani et al. [1973]). 

Drift velocity v_{d} as a function of temperature for electric field F=10^{4}(V cm^{1}). F(100). Solid line show the results of calculation in the case where nonparabolic effect are taken into account (Reggiani et al. [1977]). 

Mean energy of hole as a function of electronic field F at different lattice temperatures. Solid line are MonteCarlo calculations for F(111) (Reggiani et al. [1977]). Points show experimental results for 82 K. (Vorob'ev et al. [1978]). 

The field dependence of longitudinal hole diffusion coefficient D for 77 K and 190 K. F(111). Dashed and solid lines show the results of the calculations. Symbols represent measured data. (Reggiani et al. [1978]). 
Ionization rates in (111) and (100) directions versus 1/F. T = 300 K. (Mikava et al. [1977]). 
For electrons: α_{i} = α_{o}exp(F_{no}/F)  
(111) direction  α_{o} = 2.72·10^{6} cm^{1}  F_{no} = 1.1·10^{6} V cm^{1} 
(100) direction  α_{o} = 8.04·10^{6} cm^{1}  F_{no} = 1.4·10^{6} V cm^{1} 
For holes: β_{i} = β_{o}exp(F_{po}/F)  
(111) direction  β_{o} = 1.72·10^{6} cm^{1}  F_{po} = 9.37·10^{5} V cm^{1} 
(100) direction  β_{o} = 6.39·10^{6} cm^{1}  F_{po} = 1.27·10^{6} V cm^{1} 
For electrons: α_{i}=α_{o}exp(F_{no}/ F)  
where  α_{o} = 2.84·10^{6} cm^{1}  F_{no} = 1.14·10^{6} V cm^{1} 
For holes: β_{i}=β_{o}exp(F_{po}/ F)  
where  β_{o} = 4.21·10^{6} cm^{1}  F_{po} = 1.11·10^{6} V cm^{1} 
Breakdown voltage and breakdown field versus doping density for an abrupt pn junction. (Kyuregyan and Yurkov [1989]). 
Pure ntype material  
300 K 

The longest lifetime of holes  τ_{p}≥ 10^{3} s 
Diffusion length  L_{p}≥ 0.2 cm 
77 K 

The longest lifetime of holes  τ_{p}≥ 10^{4} s 
Diffusion length  L_{p}≥ 0.15 cm 
Pure ptype material  
300 K 

The longest lifetime of electrons  τ_{n}≥ 10^{3} s 
Diffusion length  L_{n}≥ 0.3 cm 
77 K 

The longest lifetime of electrons  τ_{n}≥ 10^{4} s 
Diffusion length  L_{n}≥ 0.15 cm 
Surface recombination  10 ÷ 10^{6}cm/s. 
Radiative recombination coefficient at 300 K  6.41·10^{14} cm^{3} s^{1} 
Auger coefficient at 300 K  ~10^{30} cm^{6} s^{1} 