Breakdown field | ≈105V cm-1 |
Mobility electrons | ≤3900 cm2 V-1s-1 |
Mobility holes | ≤1900 cm2 V-1s-1 |
Diffusion coefficient electrons | ≤100 cm2 s-1 |
Diffusion coefficient holes | ≤50 cm2 s-1 |
Electron thermal velocity | 3.1·105m s-1 |
Hole thermal velocity | 1.9·105m s-1 |
Electron mobility versus temperature for different doping levels. 1. High purity Ge; time-of-flight technique (Jacoboni et al. [1981]); 2-6. Hall effect Nd - Na(cm-3): 2. 1·1013; 3. 1.4·1014; 4. 1.7·1015; 5. 7.5·1015; 6. 5.5·1016 (Debye and Conwell [1954]); 7. Hall effect Nd - Na=1.2·1019(cm-3) (Fistul et al. [1962]). |
Electron Hall mobility versus electron concentration 1. T = 77 K; 2. T = 300 K. (Fistul et al. [1962]). |
The electron Hall factor versus donor density. 1. T = 300 K; 2. T = 77 K. (Babich et al. [1969]). |
|
Resistivity versus impurity concentration., T = 300 K. (Cuttris [1981]). |
|
Temperature dependences of hole mobility for different doping levels. 1. High purity Ge; time-of-flight technique (Ottaviany et al. [1973]). 2-7. Hall-effect (Golikova et al. [1961]). Na- Nd (cm-3): 2. = 4.9·1013; 3. 3.2·1015; 4. 2.7·1016; 5. 1.2·1017; 6. 4.9·1018; 7. 2.0·1020. |
The hole Hall mobility versus hole concentration. Experimental points: data from three References (Golikova et al. [1961]). |
|
The hole Hall factor versus temperature for high purity p-Ge (Morin [1954]). |
Field dependences of the electron drift velocity. Solid lines: F||(100) Solid lines: F||(111). (Jacoboni et al. [1981]). |
|
Mean energy of electrons in lower valleys as a function of electronic field for three lattice temperatures. (Jacoboni et al. [1981]). (Jacoboni et al. [1981]). |
|
The field dependence of longitudinal electron diffusion coefficient D for 77 K and 190 K.
F||(100). Solid lines show the results calculation. Symbols represent measured data. (Jacoboni et al. [1981]). |
|
Field dependences of the electron drift velocity at different temperatures. F||(100). (Ottaviani et al. [1973]). |
|
Drift velocity vd as a function of temperature for electric field F=104(V cm-1). F||(100). Solid line show the results of calculation in the case where non-parabolic effect are taken into account (Reggiani et al. [1977]). |
|
Mean energy of hole as a function of electronic field F at different lattice temperatures. Solid line are Monte-Carlo calculations for F||(111) (Reggiani et al. [1977]). Points show experimental results for 82 K. (Vorob'ev et al. [1978]). |
|
The field dependence of longitudinal hole diffusion coefficient D for 77 K and 190 K. F||(111). Dashed and solid lines show the results of the calculations. Symbols represent measured data. (Reggiani et al. [1978]). |
Ionization rates in (111) and (100) directions versus 1/F. T = 300 K. (Mikava et al. [1977]). |
For electrons: αi = αoexp(-Fno/F) | ||
(111) direction | αo = 2.72·106 cm-1 | Fno = 1.1·106 V cm-1 |
(100) direction | αo = 8.04·106 cm-1 | Fno = 1.4·106 V cm-1 |
For holes: βi = βoexp(-Fpo/F) | ||
(111) direction | βo = 1.72·106 cm-1 | Fpo = 9.37·105 V cm-1 |
(100) direction | βo = 6.39·106 cm-1 | Fpo = 1.27·106 V cm-1 |
For electrons: αi=αoexp(-Fno/ F) | ||
where | αo = 2.84·106 cm-1 | Fno = 1.14·106 V cm-1 |
For holes: βi=βoexp(-Fpo/ F) | ||
where | βo = 4.21·106 cm-1 | Fpo = 1.11·106 V cm-1 |
Breakdown voltage and breakdown field versus doping density for an abrupt p-n junction. (Kyuregyan and Yurkov [1989]). |
Pure n-type material | |
300 K |
|
The longest lifetime of holes | τp≥ 10-3 s |
Diffusion length | Lp≥ 0.2 cm |
77 K |
|
The longest lifetime of holes | τp≥ 10-4 s |
Diffusion length | Lp≥ 0.15 cm |
Pure p-type material | |
300 K |
|
The longest lifetime of electrons | τn≥ 10-3 s |
Diffusion length | Ln≥ 0.3 cm |
77 K |
|
The longest lifetime of electrons | τn≥ 10-4 s |
Diffusion length | Ln≥ 0.15 cm |
Surface recombination | 10 ÷ 106cm/s. |
Radiative recombination coefficient at 300 K | 6.41·10-14 cm3 s-1 |
Auger coefficient at 300 K | ~10-30 cm6 s-1 |