Strong-coupling effects of pairing fluctuations, and Anderson-Bogoliubov mode in 1S0 neutron superfluids in neutron stars

D. Inotani

Department of Physics & Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan

We investigate effects of thermal and quantum fluctuations of the superfluid order parameter in 1S0 superfluids in neutron stars. We construct a separable potential to reproduce the 1S0 phase shift reconstructed by using the partial wave analysis from nucleon scattering data. We include superfluid fluctuations within a strong-coupling approximation developed by Nozieres and Schmitt-Rink and determine self-consistently the superfluid order parameter as well as the chemical potential. We show that the quantum depletion, which gives a fraction of noncondensed neutrons at zero temperature due to quantum pairing fluctuations, plays an important role not only near the critical temperature from superfluid states to normal states but also at zero temperature. We derive the dispersion relation of Anderson-Bogoliubov modes associated with phase fluctuations, and show also that there is a nonzero fraction of noncondensed components in the neutron number as a result of the strong coupling effect. Our results indicate that superfluid fluctuations are important for thermodynamic properties in neutron stars.

Reference:

D. Inotani, S. Yasui, & M. Nitta, Phys. Rev. C 102, 065802 (2020)
[Back to Seminar Programme] [Seminar Home Page] [Department of Theoretical Astrophysics] [Ioffe Institute]

Page created on January 26, 2021.