Публикации 2007-2022

2024

  1. Comprehensive theoretical study of the effects of facet, oxygen vacancies, and surface strain on iron and cobalt impurities in different surfaces of anatase TiO2,
    D.W. Boukhvalov, V.Yu. Osipov, A. Baldycheva, B.T. Hogan
    Scientific Reports, In Press (2024) Q1

  2. Алмазные наночастицы как контрастный агент для магнитно-резонансной томографии,
    Чижикова,АС; Юдина,ЕБ; Panich,AM; Salti,M; Кульвелис,ЮВ; Shames,AI; Prager,O; Swissa,E; Алексенский,АЕ; Вуль,АЯ
    ЖТФ, т.94, 9, В книге (сборнике): Материалы V Международной конференции “Физика – наукам о жизни”, с. 1474 – 1482 (2024) Q3
    DOI: 10.61011/JTF.2024.09.58667.70-24

  3. Сорбенты графенового типа для элиминации микотоксина T-2,
    Возняковский,АП; Карманов,АП; Неверовская,АЮ; Кочева,ЛС; Возняковский,АА; Канарский,АВ; Семенов,ЭИ; Кидалов,СВ
    ЖТФ, т.94, 9, В книге (сборнике): Материалы V Международной конференции “Физика – наукам о жизни”, с. 1489 - 1494 (2024) Q3
    DOI: 10.61011/JTF.2024.09.58669.71-24

  4. Влияние малослойного графена на физиологическую активность спор ризосферной культуры B. Subtilis sp,
    Возняковский,АА; Канарский,АВ; Возняковский,АП; Гематдинова,ВМ; Канарская,ЗА; Семенов,ЭИ; Кидалов,СВ
    ЖТФ, т.94, 9, В книге (сборнике): Материалы V Международной конференции “Физика – наукам о жизни”, с. 1483 - 1488 (2024) Q3
    DOI: 10.61011/JTF.2024.09.58668.69-24

  5. Few-Layer Graphene Produced by the Self-Propagating High-Temperature Process from Biopolymers: Synthesis, Properties, and Application (a Review),
    Voznyakovskii,AP; Vozniakovskii,AA; Kidalov,SV
    Russ. J. Inorg. Chem., v.69, p. 1-7 (2024)
    DOI: 10.1134/S0036023623603185

  6. First Example of Single-Crystal Nanodiamonds Immobilized in Porous SiO2-Aerogel Matrix: Synthesis and Characterization,
    Fomina,IG; Gozhikova,IO; Sipyagina,NA; Straumal,EA; Kopitsa,GP;Mazilkin,AA; Eliseev,AA; Efimov,NN; Zavorotny,YS;Shvidchenko,AV; Vul’,AYa; Eremenko,IL; Lermonto,SA
    Chem NanoMat,v. 10, ArtNo: #e202400172 (2024)
    DOI: 10.1002/cnma.202400172

  7. Unveiling the Structure of Metal–Nanodiamonds Bonds: Experiment and Theory/strong>,
    Boukhvalov,DW; Osipov,VYu; Serikkanov,A; Takai,K
    C-J. Carbon Res., v.10, 3, ArtNo: #63 (2024)
    DOI: 10.3390/c10030063

  8. Extrastrong aggregates of detonation nanodiamonds: structure and formation,
    Trofimuk,AD; Sharonova,LV; Kidalov, SV; Shvidchenko,AV; Kirilenko,DA; Stovpiaga,EYu; Dideikin,AT
    Fullerenes, Nanotubes and Carbon Nanostructures, 32(11), 1050–1061 (2024)
    DOI: 10.1080/1536383X.2024.2367580

  9. Effect of Ti on the properties of diamond microcrystals synthesized in C-O-H supercritical fluid at high pressure and high temperature,
    Shakhov,FM; Ruchkin,IA; Prilezhaev,KS; Oshima,R
    Diam. Relat. Mat., v.147,  ArtNo: #111260
    DOI: 10.1016/j.diamond.2024.111260

  10. The reversible piezochromic luminescence behavior of carbon dots under a cycle of loading/unloading pressure,
    Liu,L; Ma,M; Jiang,L; Li,Z; Osipov,VYu; Geng,T; Xiao,G; Bi, H
    Nanoscale, v. 16, pp. 11327-11335 (2024)
    DOI: 10.1039/D4NR00310A

  11. Research of the Process of Electrochemical Deposition of Chromium in the Presence of a Composite Compound Based on Detonation Diamond-Containing Carbon,
    Dolmatov,VYu; Svir,KA;, Kiselev,MN; Myllymakie,V; Eidelman,ED; Blinov,MA
    Universal Journal of Carbon Research, v. 2, 1, pp. 47-59 (2024)
    DOI: 10.37256/2120244369

  12. Sorption of Radium-226 on Few-Layer Graphene Synthesized under Conditions of Self-Propagating High-Temperature Synthesis,
    Vozniakovskii,AA; Voznyakovskii,AP; Kidalov,SV; Karmanov,AP; Rachkova,NG; Podlozhnyuk,ND
    Colloid J., v.86, 2, pp.: 178-184 (2024)
    DOI: 10.1134/S1061933X23601348

  13. Transmission of waves and particles through the interface: Reversibility and coherence,
    Meilakhs,AP
    Annals of Physics, v.466,  ArtNo: #169686 (2024)
    DOI: 10.1016/j.aop.2024.169686

  14. Structure and properties of self-assembled graphene oxide–detonation nanodiamond composites,
    Trofimuk,AD; Kirilenko,DA; Kukushkina,YuA; Tomkovich,MV; Stovpiaga,EYu; Dideikin,AT
    Fullerenes, Nanotubes and Carbon Nanostructures, v. 32, 9, pp. 887-895 (2024)
    DOI: 10.1080/1536383X.2024.2340022

  15. A comprehensive model of carbon nanodots with 0.21 nm lattice fringes patterns,
    Boukhvalov,DW; Osipov,VYu; Murzalinov,D; Serikkanov,A; Bi,H
    Carbon,v. 225, 119101 (2024)
    DOI: 10.1016/j.carbon.2024.119101

  16. Rationalizing Graphene-ZnO Composites for Gas Sensing via Functionalization with Amines,
    Rabchinskii,MK; Sysoev,VV; Brzhezinskaya,M; Solomatin,MA; Gabrelian,VS; Kirilenko,DA; Stolyarova,DYu; Saveliev,SD; Shvidchenko,AV; Cherviakova,PD; Varezhnikov,AS; Pavlov,SI; Ryzhkov,SA; Khalturin,BG; Prasolov,ND; Brunkov,PN
    Nanomaterials, v.14, 9 ArtNo: #735 (2024) Q1
    DOI: 10.3390/nano14090735

  17. Proton-conducting membranes based on Nafion® synthesized by using nanodiamond platform,
    Lebedev,VT; Kulvelis,YuV; Odinokov,AS; Primachenko,ON; Kononova,SV; Ivan`kova,EM; Orlova,VA; Yevlampieva,NP; Marinenko,EA; Gofman,IV; Shvidchenko,AV; Peters,GS
    J. Membr. Sci. Lett., v.4 ArtNo: #100070 (2024)
    DOI: 10.1016/j.memlet.2024.100070

  18. Photoluminescence features of nickel-nitrogen complexes in Ib HPHT diamond matrix,
    Kaliya,IE; Osipov,VYu; Shakhov,FM; Takai,K; Bogdanov,KV; Baranov,AV
    Carbon, v 219, ArtNo: #118839 (2024)
    DOI: 10.1016/j.carbon.2024.118839

  19. Basic properties of hydrogenated detonation nanodiamonds,
    Aleksenskii,AE; Chizhikova,AS; Kuular,VI; Shvidchenko,AV; Stovpiaga,EYu; Trofimuk,AD; Tudupova,BB; Zhukov,AN
    Diam. Relat. Mat., v. 142, ArtNo: #110733 (2024)
    DOI: 10.1016/j.diamond.2023.110733

  20. Magnetic properties of crystalline diamond powders synthesized at high pressure and high temperature in the graphite–nickel–aluminum system,
    Shakhov,FM; Oshima,R; Popov,VV
    J. Phys. Chem. Sol.,v. 185, 111770 (2024)
    DOI: 10.1016/j.jpcs.2023.111770

  21. Electronic Kapitza conductance and related kinetic coefficients at an interface between n-type semiconductors,
    Meilakhs,A
    J. Phys.: Condens. Matter,v. 36, 045302 (2024)
    DOI: 10.1088/1361-648X/ad0014

2023

  1. Compression-Induced Dehydrogenation of Graphene: Insight from Simulations,
    Boukhvalov,DW; Osipov,VYu
    Hydrogen, v. 4(4), pp. 1022-1034 (2023) DOI: 10.3390/hydrogen4040059

  2. Electrochemical Properties and Structure of Membranes from Perfluorinated Copolymers Modified with Nanodiamonds,
    Lebedev,VT; Kulvelis,Y V; Shvidchenko,AV; Primachenko,ON; Odinokov,AS; Marinenko,EA; Kuklin,AI; Ivankov,OI
    Membranes, v. 13, 850 (2023)
    DOI: 10.3390/membranes13110850

  3. Микрокристаллы флуоресцентного алмаза с (NV-)-центрами для применений в фотонике и cенсорике: идентификационные и фотофизические сигнатуры,
    Осипов,ВЮ; Шахов,ФМ; Богданов,КВ; Takai,K; Баранов,АВ,
    Оптика спектроск., т.131, 12 стр. 1661-1671 (2023)

  4. Adsorption of Rhodamine G from Aqueous Solutions onto Particles of Few-Layer Graphene Prepared by Self-Propagating High-Temperature Synthesis,
    Podlozhnyuk,ND; Vozniakovskii,AA; Vozniakovskii,AP; Kidalov,SV; Bogacheva,EA,
    Russ. J. Appl. Chem., v.96, 2, pp. 198-204 (2023)
    DOI: 10.31857/S0044461823020093

  5. Use of Few-Layer Graphene Synthesized under Conditions of Self-Propagating High-Temperature Synthesis for Supercapacitors Applications,
    Vozniakovskii,AA; Smirnova,EA; Apraksin,RV; Kidalov,SV; Voznyakovskii,AP,
    Nanomaterials, 13(16), 2368 (2023)
    DOI: 10.3390/nano13162368

  6. Improving PFSA Membranes Using Sulfonated Nanodiamonds,
    Shvidchenko,AV; Odinokov,AS; Primachenko,ON; Gofman,IV; Yevlampieva,NP; Marinenko,EA; Lebedev,VT; Kuklin,AI; Kulvelis,YV,
    Membranes, 13(8), 712 (2023)
    DOI: 10.3390/membranes13080712

  7. ODMR active bright sintered detonation nanodiamonds obtained without irradiation,
    Likhachev,KV; Uchaev,MV Breev,ID; Ankudinov,AV; Babunts,RA; Baranov,PG; Kidalov,SV,
    ФТП, т. 57, вып. 2, стр. 101-106 (2023)
    DOI: 10.21883/SC.2023.02.55954.4212

  8. Stable hydrosol prepared by deaggregation from laser synthesis nanodiamond,
    Aleksenskii,AE; Baidakova,MV; Trofimuk,AD; Tudupova,BB; Chizhikova,AS; Shvidchenko,AV,
    Nanosyst. Phys. Chem. Math., v.14, 3, pp. 372-379 (2023)
    DOI: 10.17586/2220-8054-2023-14-3-372-379

  9. Foam-like Ce-Fe-O-based nanocomposites as catalytic platforms for efficient hydrogen oxidation in air,
    Cam,TS; Omarov,S; Trofimuk,A; Lebedev,V; Panchuk,V; Semenov,V; Nguyen,AT; Popkov,V,
    J. Sci.: Adv. Mater. Devices, v.8, 3, 100596 (2023)
    DOI: 10.1016/j.jsamd.2023.100596

  10. Influence of few-layer graphene on the complex of strength and thermophysical properties of polymer composites obtained by DLP by 3D printing,
    Vozniakovskii,AA; Kidalov,SV; Voznyakovskii,AP; Podlozhnyuk,ND; Titova,SI; Auchynnikau,EV,
    J. Adv. Mater. Technol., v.8, 2, pp. 103-110 (2023)
    DOI: 10.17277/jamt.2023.02.pp.103-110

  11. Isolated Spin-7/2 Species of Gadolinium (III) Chelate Complexes on the Surface of 5-nm Diamond Particles,
    Osipov,VYu; Boukhvalov,DW; Takai,K,
    Nanomaterials, v.13, 13 ArtNo: #1995 (2023)
    DOI: 10.3390/nano13131995

  12. Formation of stable microporous core-shell V2O5/SiO2 colloidal particles potential for heterogeneous catalysis,
    Eurov,DA; Kirilenko,DA; Sharonova,LV; Shvidchenko,AV; Smirnov,AN; Tomkovich,MV; Yagovkina,MA; Kurdyukov,DA,
    Mater. Today Commun., v.35 ArtNo: #106047 (2023)
    DOI: 10.1016/j.mtcomm.2023.106047

  13. First-principles modeling of bottom-up synthesis of carbon quantum dots,
    Boukhvalov,DW; Osipov,VYu,
    Crystals, v.13, 5 ArtNo: #716 (2023)
    DOI: 10.3390/cryst13050716

  14. Graphene Amination towards Its Grafting by Antibodies for Biosensing Applications,
    Rabchinskii,MK; Besedina,NA; Brzhezinskaya,M; Stolyarova,DYu; Ryzhkov,SA; Saveliev,SD; Antonov,GA; Baidakova,MV; Pavlov,SI; Kirilenko,DA; Shvidchenko,AV; Cherviakova,PD; Brunkov,PN,
    Nanomaterials, v.13, 11, ArtNo: #1730 (2023)
    DOI: 10.3390/nano13111730

  15. Manifesting Epoxide and Hydroxyl Groups in XPS Spectra and Valence Band of Graphene Derivatives,
    Rabchinskii,MK; Shnitov,VV; Brzhezinskaya,M; Baidakova,MV; Stolyarova,DYu; Ryzhkov,SA; Saveliev,SD; Shvidchenko,AV; Nefedov,DYu; Antonenko,AO; Pavlov,SV; Kislenko,VA; Kislenko,SA; Brunkov,PN,
    Nanomaterials, v.13, 1, ArtNo: #23 (2023)
    DOI: 10.3390/nano13010023

  16. СeO2-supported Ni and Co catalysts prepared by a solution combustion method for H2 production from glycerol: the effect of fuel/oxidizer ratio and oxygen exces,
    Matveyeva,AN; Omarov,ShO; Gavrilova,MA; Trofimuk,AD; Warna,J; Murzin,DYu,
    Catal. Sci. Technolog., v.13, рр. 1-20 (2023)
    DOI: 10.1039/d3cy00854a

  17. Carbonization of Biopolymers as a Method for Producing a Photosensitizing Additive for Energy Materials,
    Ilyushin,MA; Voznyakovskii,AP; Shugalei,I; Vozniakovskii,AA,
    Nanomanufacturing, v.3, 2, pp. 167-176 (2023)
    DOI: 10.3390/nanomanufacturing3020011

  18. Titanium dioxide nanoparticles heavily doped with niobium: a light-induced electron paramagnetic resonance study,
    Osipov,V; Hao,D; Takai,K; Uchikoshi,T; Ogata,H; Ishigaki,T,
    Mendeleev Commun., , v. 33, pp. 349–352 (2023)
    DOI: 10.1016/j.mencom.2023.04.017

  19. Structures of Nanodiamonds with Photoactive Modifiers,
    Lebedev,VT; Kulvelis,YuV; Soroka,MA; Kyzyma,OA; Vul,AYa,
    J. Surf. Invest. X-ray, v.17, 1, pp. 7-16 (2023)
    DOI: 10.1134/S1027451023010159

  20. Composite Materials Based on Epoxy Oligomers and Graphene Nanoplatelets as a Basis for Protective Coatings with an Improved Complex of Environmental Characteristics,
    Voznyakovskii,AP; Neverovskaya,AYu; Otvalko,ZhA; Vozniakovskii,AA; Shugalei,IV,
    Russ. J. Gen. Chem., v.93, 13 страницы: 3279-3284 (2023)
    DOI: 10.1134/S1070363223130029

  21. Алмазные наночастицы детонационного синтеза с поверхностью, модифицированной ионами d-элементов,
    Чижикова,АС; Юдина,ЕБ; Швидченко, АВ; Алексенский,АЕ
    Труды XXVII Международного симпозиума"Нанофизика и наноэлектроника" Т.1, С. 339-340 (2023) (Нижний Новгород, 13–16 марта 2023 г.)

  22. Получение нанокристаллической CVD алмазной пленки, легированной ионами Eu3+,
    Юдина,ЕБ; Алексенский,АА; Богданов,CА; Букалов,СС; Лейтес,ЛА; Радищев,ДБ; Вихарев,АЛ; Вуль,АЯ
    Труды XXVII Международного симпозиума "Нанофизика и наноэлектроника" Т.2, С. 812-813 (2023) (Нижний Новгород, 13–16 марта 2023 г.)

  23. A comprehensive model of nitrogen-free ordered carbon quantum dots,
    Boukhvalov,DW; Osipov,VY; Hogan,BT; Baldycheva,A,
    Discover Nano, v.18, 1 ArtNo: #1 (2023)
    DOI: 10.1186/s11671-023-03773-0

  24. The role of nanoparticle charge in crystallization kinetics and ice adhesion strength for dispersions of detonation nanodiamonds,
    Emelyanenko,AM; Emelyanenko,KA; Vul,AYa; Shvidchenko,AV; Boinovich,LB,
    Chem. Chem. Phys., v. 25, 3950 (2023)
    DOI: 10.1039/d2cp05144c

  25. The Effect of Few-Layer Graphene on the Complex of Hardness, Strength, and Thermo Physical Properties of Polymer Composite Materials Produced by Digital Light Processing (DLP) 3D Printing,
    Kidalov,S; Voznyakovskii,A; Vozniakovskii,A; Titova,S; Auchynnikau,Y,
    Materials, v.16(3), 1157 (2023)
    DOI: 10.3390/ma16031157

  26. X-ray Excited Optical Luminescence of Eu in Diamond Crystals Synthesized at High Pressure High Temperature,
    Lebedev,VT; Shakhov,FM; Vul,AYa; Zakharov,AA; Zinoviev,VG; Orlova,VA; Fomin,EV,
    Materials, v.16(2), 830 (2023)
    DOI: 10.3390/ma16020830

  27. Suspensions of manganese-grafted nanodiamonds: Preparation, NMR, and MRI study,
    Panich,AM; Salti,M; Aleksenskii,AE; Kulvelis,YV; Chizhikova,A; Vul',AYa; Shames,AI,
    Diam. Relat. Mater, v. 131, 109591 (2023)
    DOI: 10.1016/j.diamond.2022.109591

  28. Size effect in electron paramagnetic resonance spectra of impurity centers in diamond particles,
    Shames,AI; Zegrya,GG; Samosvat,DM; Osipov,VYu; Vul',AYa,
    Physica E, v.146, 115523 (2023)
    DOI: 10.1016/j.physe.2022.115523

  29. Pyrolysis mass-spectrometry study of detonation nanodiamonds surface chemistry,
    Yudina,EB; Romanov,PA; Chizhikova,AS; Aruev,NN,
    Fullerenes, Nanotubes and Carbon Nanostructures, v.31(1), pp. 68-74 (2023)
    DOI: 10.1080.153638X.2022.2120477

2022

  1. Electron spin resonance of NV(-)-centers in synthetic fluorescent diamond microcrystals under conditions of optical spin polarization
    Osipov,VYu; Bogdanov,KV; Rampersaud,A; Takai,K; Ishiguro,Y; Baranov,AV
    Opt. Spectrosc., v.130, 12, pp. 1645-1652 (2022)
    DOI: 10.21883/EOS.2022.12.55255.4248-22

  2. 6H-SiC Nanoparticles Integrated with Atomic Force Microscope for Scanning Quantum Sensors
    Likhachev,KV; Breev,ID; Kidalov,SV; Baranov,PG; Nagalyuk,SS; Ankudinov,AV; Anisimov,AN
    JETP Lett., v.116, 11, pp. 1-6 (2022)
    DOI: 10.1134/S0021364022602251

  3. Prediction of Diamene-based Chemo-Sensors
    Boukhvalov,DW;  Osipov, VYu 
    Chemosensors, 10(11), 480 (2022)
    DOI: 10.3390/chemosensors10110480

  4. Influence of the sign of the zeta potential of nanodiamond particles on the morphology of graphene-detonation nanodiamond composites in the form of suspensions and aerogels,
    Rabchinskii,MK; Trofimuk,AD; Shvidchenko,AV; Baidakova,MV; Pavlov,SI; Kirilenko,DA; Kulvelis,YuV; Gudkov,MV; Shiyanova,KA; Koval,VS; Peters,GS; Lebedev,VT; Melnikov,VP; Dideikin,AT; Brunkov,PN,
    Tech. Phys., v.67, 12, pp. 1611-1626 (2022)
    DOI: 10.21883/TP.2022.12.55197.208-22

  5. Detonation synthesis as a modern eco-friendly method for obtaining 2D nanocarbons,
    Voznyakovskii,AP; Voznyakovskii,AA; Shugalei,IV; Dolmatov,VYu; Iliushin,MA; Neverovskaia,AYu
    Russ. J. Gen. Chem., v.92, 13, стр. 3093-3099 (2022)
    DOI: 10.1134/S107036322213014X

  6. New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance,
    Primachenko,ON; Kulvelis,YV; Odinokov,AS; Glebova,NV; Krasnova,AO; Antokolskiy,LA; Nechitailov,AA; Shvidchenko,AV; Gofman,IV; Marinenko,EA; Yevlampieva,NP; Lebedev,VT; Kuklin,AI
    Membranes, v.12, 9 ArtNo: #827 (2022)
    DOI: 10.3390/membranes12090827

  7. Tracking nitrogen-to-nickel ratio and prevalent paramagnetic species in synthetic diamonds by means of electron spin resonance at 90 K,
    Osipov,VYu;  Shakhov,FM; Romanov,NM;  Takai,K,
    Mendeleev Commun., 32, pp. 645‒648 (2022)
    DOI: 1016/j.mencom.2022.09.026

  8. CVD Nanocrystalline Diamond Film Doped with Eu,
    Yudina, EB; Aleksenskii, AE; Bogdanov, SA; Bukalov, SS; Leites, LA; Radishev, DB; Vikharev, AL; Vul', AY
    Materials , v. 15, pp. 5788 (2022)
    DOI: 10.3390/ma15165788

  9. Predictive estimate of the calorific value of substances with negative oxygen balance depending on the value of oxygen balance,
    Dolmatov,VYu; Ozerin,AN; Eidelman,ED; Kozlov,AS; Naryzhny,SYu; Martchukov,VA; Vehanen,A; Myllymaki,V,
    J. Adv. Mater. Technol., v.7, 2, pp.122-134 (2022)
    DOI: 10.17277/jamt.2022.02.pp.122-134

  10. Enhancing the Strengthening Effect of Graphene-Nanoplates in Al Matrix Composites by Heterogeneous Matrix Design,
    Shao,P; Sun,K; Zhu,P; Liu,K; Zhang,Q; Yang,W; Wang,Z; Sun,M; Zhang,D; Kidalov,S; Xiao,H; Wu,G,
    Nanomaterials, 12, 1833 (2022)
    DOI: 10.3390/nano12111833

  11. Few-Layer Graphene Structures as a Promising Mycotoxin Sorbent,
    Voznyakovskii,AP; Karmanov,AP; Kocheva,LS; Neverovskaya,AYu; Vozniakovskii,AA; Kanarskii,AV; Semenov,EI; Kidalov,SV,
    In: IV INTERNATIONAL CONFERENCE WITH THE SCHOOL OF YOUNG SCIENTISTS “PHYSICS FOR LIFE SCIENCES” Tech. Phys., v.67, 7, pp. 792-797 (2022)
    DOI: 10.21883/TP.2022.07.54472.31-22

  12. The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil,
    Kuznetsov,NM; Vdovichenko,AY; Bakirov,AV; Belousov,SI; Kamyshinsky,RA; Vasiliev,AL; Kulikova,ES; Svetogorov,RD; Chvalun,SN; Yudina,EB; Vul’,AY,
    Diam. Relat. Mat., v.125 ArtNo: #108967 (2022)
    DOI: 10.1016/j.diamond.2022.108967

  13. Transition metal atoms grafted on the nanodiamonds surface: identification and guest-host spin-spin interactions,
    Gridnev,ID, Osipov,VYu,
    Journal of Crystal Growth, Mendeleev Comm., v. 32(2), pp. 143-151 (2022) Q2
    DOI: 10.1016/j.mencom.2022.03.0016

  14. Single crystal diamond particles formed by the reaction of amorphous carbon and organic compounds at high pressure and high temperature,
    Oshima,R; Iizuka,K; Vul’,AYa; Sakhov,FM,
    Journal of Crystal Growth, in Press (2022) Q2
    DOI: 10.1016/j.jcrysgro.2022.126646

  15. Development of Submicrocapsules Based on Co-Assembled Like-Charged Silica Nanoparticles and Detonation Nanodiamonds and Polyelectrolyte Layers,
    Palamarchuk,KV; Borodina,TN; Kostenko,AV; Chesnokov,YM; Kamyshinsky,RA; Palamarchuk,NP; Yudina,EB; Nikolskaya,ED; Yabbarov,NG; Mollaeva,MR; Bukreeva,TV,
    Pharmaceutics, v.14, 3 ArtNo: #575 (2022) Q1
    DOI: 10.3390/pharmaceutics14030575

  16. A Quantitative Chemical Method for Determining the Surface Concentration of Stone–Wales Defects for 1D and 2D Carbon Nanomaterials,
    Voznyakovskii,A; Neverovskaya,A; Vozniakovskii,A; Kidalov,S,
    Nanomaterials, v.12, pp. 883 (2022)
    DOI: 10.3390/nano12050883

  17. Rational Synthesis of Solid-State Ultraviolet B Emitting Carbon Dots via Acetic Acid-Promoted Fractions of sp3 Bonding Strategy,
    Xu,J; Liang,Q; Li,Z; Osipov, VYu; Lin,Y; Ge,B; Xu,Q; Zhu,J; Bi.H,
    Advanced Materials, in Press (2022)
    DOI: 10.1002/adma.202200011

  18. Thermal conductivity and heat capacity of nanofluid based on water modified by hybrid material of composition detonation nanodiamonds-carbon nanotubes,
    Vozniakovskii,A; Voznyakovskii,A; Kidalov,S; Ovchinnikov,E; Kalashnikova,E,
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 5-9 (2022)
    DOI: 10.1080/1536383X.2021.1994951

  19. Hardness and thermal conductivity of a composite based on aluminum modified with a hybrid material detonation nanodiamond/few-layer graphene,
    Vozniakovskii,A; Kidalov,S; Voznyakovskii,A; Podlozhnyuk,N,
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 205-210 (2022)
    DOI: 10.1080/1536383X.2021.2014455

  20. Complexes of nanodiamonds with Gd-fullerenols for biomedicine,
    Lebedev,VT; Török,G; Kulvelis,YV; Soroka,MA; Fomin,EV; Vul,AYa; Garg,S
    Fuller. Nanotub. Carbon Nanostruct.,v.30(1), pp. 36-45 (2022)

  21. Phenomenological model of synthesis of few-layer graphene (FLG) by the selfpropagating high-temperature synthesis (SHS) method from biopolymers,
    Voznyakovskii,A; Vozniakovskii,A; Kidalov,S
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 59-65 (2022)
    DOI: 10.1080/1536383X.2021.1993831

  22. Low-threshold field electron emission from graphene nanostructures,
    Voznyakovskii,A; Fursei,G; Vozniakovskii,A; Polyakov,M; Neverovskaya,A; Zakirov,I,
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 53-58 (2022)
    DOI: 10.1080/1536383X.2021.1995366

  23. Biocompatible acid-degradable micro-mesoporous CaCO3:Si:Fe nanoparticles potential for drug delivery, ,
    Eurov,DA; Kurdyukov,DA; Boitsov,VM; Kirilenko,DA; Shmakov,SV; Shvidchenko,AV; Smirnov,AN; Tomkovich,MV; Yagovkina,MA; Golubev,VG,
    Microporous Mesoporous Mater., v.333 ArtNo: #111762 (2022)
    DOI: 10.1016/j.micromeso.2022.111762

  24. Thermal Conductivity of Composite Materials Copper-Fullerene Soot, ,
    Koltsova,T; Bobrynina,E; Vozniakovskii,A; Larionova,T; Klimova-Korsmik,O,
    Materials, v.15, 4 ArtNo: #1415 (2022)

  25. Magnetic resonance tracking of copper ion fixation on the surface of carboxylatednanodiamonds from viewpoint of changes in carbon-inherited paramagnetism,
    Osipov,VYu; Romanov,NM; Suvorkova,IE; Osipova,EV; Tsuji,T; Ishiguro,Y; Takai,K,
    Mendeleev Comm., Mendeleev Commun., v.32, pp. 132-135 (2022)

  26. New Way of Synthesis of Few-Layer Graphene Nanosheets by the Self Propagating High-Temperature Synthesis Method from Biopolymers, ,
    Voznyakovskii,A; Vozniakovskii,AA; Kidalov,SV,
    Nanomaterials, v.12, 4, 657 (2022)
    DOI: 10.1021/acs.jpcc.1c09026

  27. Spatially Resolved Spin−Lattice Relaxation Times and Line Widths in Manganese-Grafted Detonation Nanodiamonds, ,
    Panich,AM; Aleksenskii,AE; Yudina,EB; Vul’,AYa,
    J. Phys. Chem. C, v.126, 3, pp. 1489-1495 (2022)

  28. Fluorinated carbon dots/carboxyl methyl cellulose sodium composite with a temperature-sensitive fluorescence/phosphorescence applicable for anti-counterfeiting marking,
    Xu,M; Chen,D; Xu,J; Sajid ur Rehman; Wang,Q; Osipov,VYu; Jiang,Kai; Wang,J; Bi,H,
    Carbon, v.189, 459-466 (2022)

  29. Diamond powders synthesized at high pressure and high temperature from graphite with nickel in the presence of aluminum. Applicability of methods for analyzing nitrogen concentration in diamonds,
    Shakhov,FM; Osipov,VYu; Krasilin,AA; Iizuka,K; Oshima,R
    J. Sol. State Chem., v. 307, 122804 (2022)

  30. Identification of NV Centers in Synthetic Fluorescent Nanodiamonds and Control of Defectiveness of Crystallites Using Electron Paramagnetic Resonance
    Osipov,VYu; Bogdanov,KV; Treussart,F; Rampersaud,AA; Baranov,AV
    Optics and Spectroscopy, v.130, 2, pp. 296-305 (2022)
    DOI: 10.21883/EOS.2022.02.53968.2872-21

  31. Investigation of the effect of hydrogen content on the conductivity of nanocrystalline diamond films,
    Ivanov,OA; Vikharev,AL; Bogdanov,SA; Ovechkin,NM; Loginov,VP; Yakovlev,YA; Vul',AYa,
    Tech. Phys. Letters, v.48, 2, pp. 37-40 (2022)
    DOI: 10.21883/TPL.2022.01.52477.18923

2021

  1. About Incorrect and Unrepresentative Citation in the Review “High Thermal Conductive Copper/Diamond Composites: State of the Art” by S.J.Jia, F.Yang and in Other Papers,
    Abyzov,AM; Shakhov,FM,
    Известия СПбГТИ (ТУ), т.58, стр. 51-55 (2021)
    DOI: 10.36807/1998-9849-2021-58-84-51-55

  2. Effect of Particle Sizes on the Efficiency of Fluorinated Nanodiamond Neutron Reflectors,
    Aleksenskii,A; Bleuel,M; Bosak,A; Chumakova,A; Dideikin,A; Dubois,M; Korobkina,E; Lychagin,E; Muzychka,A; Nekhaev,G; Nesvizhevsky,V; Nezvanov,A; Schweins,R; Shvidchenko,A; Strelkov,A; Turly-bekuly,K; Vul’,A; Zhernenkov,K,
    Nanomaterials, v.11(11), 3067 (2021)

  3. Valence Band Structure Engineering in Graphene Derivatives,
    Shnitov,VV; Rabchinskii,MK; Brzhezinskaya,M; Stolyarova,DY; Pavlov,SV; Baidakova,MV; Shvidchenko,AV; Kislenko,VA; Kislenko,SA; Brunkov,PN,
    Small, v.17 ArtNo: #2104316 (2021)

  4. Structure of Diffusion Polymer Membranes for Molecular and Ionic Transport,
    Lebedev,VT; Kulvelis,YV; Torok,G; Ivankov,OI; Polotskaya,GA; Vinogradova,LV; Vul,AY; Primachenko,ON; Marinenko,EA; Odinokov,AS
    J. Surf. Invest. X-ray, v.15, 5, pp.939-946 (2021)

  5. Diamond based nanostructures with metal-organic molecules,
    Lebedev,VT; Török,G; Kulvelis,YV; Soroka,MA; Fomin,EV; Vul,AYa; Garg,S
    Soft Materials, in Press (2021)

  6. Modification of the mechanism of proton conductivity of the perfluorinated membrane copolymer by nanodiamonds,
    Kulvelis,YV; Primachenko,ON; Gofman,IV; Odinokov,AS; Shvidchenko,AV; Yudina,EB; Marinenko,EA; Lebedev,VT; Vul,AY, Russ. Chem. Bull., v.70, 9, pp. 1713-1717 (2021)

  7. Small-angle neutron scattering study of graphene-nanodiamond composites for biosensor and electronic applications,
    Kulvelis, YuV; Rabchinskii, MK; Dideikin, AT; Trofimuk, AD; Shvidchenko, AV; Kirilenko, DA; Gudkov, MV; Kuklin,AI,
    Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, Vol. 15, No. 5, pp. 896–898 (2021)

  8. The 20-Year Russian-Italian Scientific Collaboration in Industrial Applications of Neutrons and Prospects on High Flux Reactor “PIK” of Russian National Centre “Kurchatov Institute”,
    Rogante,M; Lebedev,VT; Kulvelis,Y; Vul,AY; Kozlov,VS; Konoplev,KA,
    Neutron News, v. 32, 3, pp. 9-15 (2021)

  9. Manganese-grafted detonation nanodiamond, a novel potential MRI contrast agent,
    Panich,AM; Shames,AI; Aleksenskii,AE; Yudina,EB; Vul',AYa ,
    Diam. Relat. Mater., v. 119, 108590 (2021)

  10. Теплопроводность наножидкостей: влияние формы частиц,
    Эйдельман,ЕД; Вуль,АЯ,
    Письма ЖТФ, т.47, 20, стр. 45-47 (2021)

  11. Clustering of Diamond Nanoparticles, Fluorination and Efficiency of Slow Neutron Reflectors,
    Aleksenskii,A; Bleuel,M; Bosak,A; Chumakova,A; Dideikin,A; Dubois,M; Korobkina,E; Lychagin,E; Muzychka,A; Nekhaev,G; Nesvizhevsky,V; Nezvanov,A; Schweins,R; Shvidchenko,A; Strelkov,A; Turlybekuly,K; Vul’,A; Zhernenkov,K
    Nanomaterials, 11(8), 1945 (2021) (2021)

  12. Long range interactions and related C-C bonds reconstruction between interior and surface defects in nanodiamonds ,
    Boukhvalov,DW; Osipov,VYu; Takai,K,
    Phys. Chem. Chem. Phys.,v.23, pp. 14592-14600 (2021)

  13. Sonication assisted advanced oxidation process: hybrid method for deagglomeration of detonation nanodiamond particles,
    Shestakov,MS; Shvidchenko,AV; Yudina,EB; Besedina,NA; Koniakhin,SV; Kirilenko,DA; Dideikin,AT,
    Fuller. Nanotub. Carbon Nanostruct, in Press (2021)

  14. Influence of Graphene Nanoplatelets Synthesized by Self-Propagating High-Temperature Synthesis on the Hardness and Thermal Conductivity of an Aluminum Composite,
    Voznyakovsky,AA; Wozniakovsky,AP; Kidalov,SV; Zavarinsky,VI,
    In: XXXI SYMPOSIUM “MODERN CHEMICAL PHYSICS” Russ. J. Phys. Chem. B, v.15, 3, pp. 377-380, PLEIADES PUBLISHING ISSN: 1990-7931 (2021)

  15. Calculation of Kapitza Resistance with Kinetic Equation,
    Meilakhs,AP; Semak,BV,
    Phys. Status Solidi B-Basic Solid State Phys. ArtNo: #2100018 (2021)

  16. Solid-state reaction of niobium with diamond carbon at high pressure and high temperature to form superconducting composite,
    Osipov,VYu; Shakhov,FM; Romanov,NM; Takai,K,
    Mendeleev Commun., v.31, 3, pp. 415-418 (2021)

  17. Thermoelectric effect and a thermoelectric generator based on carbon nanostructures: achievements and prospects,
    Eidelman,ЕD, Physics-Uspekhi, v. 64, 6, pp. 535-557 (2021)

  18. Composite Films Based on Carbon Quantum Dots in a Matrix of PEDOT:PSS Conductive Polymer,
    Nenashev G.V., Istomina M.S., Shcherbakov I.P., Shvidchenko A.V., Petrov V.N., Aleshin A.N.,
    Phys. Solid State, v. 63, 8, pp. 1-7 in Press (2021)

  19. Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity,
    Ding,H; Xu,J Jiang,L; Dong,C; Meng,Q; Sajid ur Rehman; Wang,J; Ge,Z; Osipov,VYu; Bi,H,
    Chinese Chemical Letters, v. 32, 11, pp. 3646–3651 (2021)

  20. Graphene oxide chemistry management via the use of KMnO4/K2Cr2O7 oxidizing agents,
    Shiyanova,KA; Gudkov,MV; Rabchinskii,MK; Sokura,LA; Stolyarova,DYu; Baidakova,MV; Shashkin,DP; Trofimuk,AD; Smirnov,DA; Komarov,IA; Timofeeva,VA; Melnikov,VP,
    Nanomaterials, 11(4), p. 915 (2021)

  21. PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI,
    Panich,AM; Salti,M; Prager,O; Swissa,E; Kulvelis,YuV; Yudina,EB; Aleksenskii,AE; Goren,SD; Vul',AYa; Shames,AI
    Magnetic Resonance in Medicine, v. 86, 2, pp. 935-942 (2021)

  22. Irradiation of detonation nanodiamonds with γ-rays does not produce long living spin radicals,
    Osipov, VYu; Romanov, NM; Takai, K
    Mendeleev Communications, v. 31, pp. 227-229 (2021)

  23. Deagglomeration of polycrystalline diamond synthesized from graphite by shock-compression,
    Aleksenskii,AE; Kirilenko,DA; Trofimuk,AD;Shvidchenko,AV; Yudina,EB
    Fullerenes, Nanotubes and Carbon Nanostructures, v.29(10), pp.779-782 (2021)

  24. Synthesis of Monodisperse MoS2 Nanoparticles by the Template Method,
    Stovpiaga,EYu; Kurdyukov,DA; Kirilenko,DA; Smirnov,AN; Shvidchenko,AV; Yagovkina,MA; Golubev,VG,
    Semiconductors, v.55, 6, pp. 525-530 (2021) Q3
    DOI: 10.1134/S106378262105016X

  25. Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: Effect of nanodiamonds surface,
    Kuznetsov,NM; Belousov,SI; Kamyshinsky,RA; Vasiliev,AL; Chvalun,SN; Yudina,EB; Vul,AYa,
    Carbon, v.174, pp. 138-147 (2021)

  26. Hole-matrixed carbonylated graphene: Synthesis, properties, and highly-selective ammonia gas sensing,
    Rabchinskii,MK; Varezhnikov,AS; Sysoev,VV; Solomatin,MA; Ryzhkov,SA; Baidakova,MV; Stolyarova,DY; Shnitov,VV; Pavlov,SS; Kirilenko,DA; Shvidchenko,AV; Lobanova,EY; Gudkov,MV; Smirnov,DA; Kislenko,VA; Pavlov,SV; Kislenko,SA; Struchkov,NS; Bobrinetskiy,II; Emelianov,AV; Liang,P; Liu,Z; Brunkov,PN,
    Carbon, v.172, pp. 236-247 (2021)

  27. Study of Undoped Nanocrystalline Diamond Films Grown by Microwave Plasma-Assisted Chemical Vapor Deposition,
    Vikharev,AL; Bogdanov,SA; Ovechkin,NM; Ivanov,OA; Radishev,DB; Gorbachev,AM; Lobaev,MA; Vul,AY; Dideikin,AT; Kraev,SA; Korolev,SA,
    Semiconductors, 55, 1, pp. 66-75 (2021)

2020

  1. Biomass of Sosnowskyi`s hogweed as raw material for 2D the carbonic nanostructures obtaining,
    Voznyakovskii,AP; Karmanov,AP; Neverovskaya,AYu; Voznyakovskii,AA; Kocheva,LS; Kidalov,SV,
    Khimiya Rastitelnogo Syrya, v.4, pp. 83-92 (2020)

  2. Morphology and redispersibility of silver nanoparticles prepared by chemical reduction,
    Lukhmyrina,TS; Shestakov,MS; Shvidchenko,AV; Matveev,BA
    in book: 7TH INTERNATIONAL SCHOOL AND CONFERENCE “SAINT-PETERSBURG OPEN 2020” ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES, IOP PUBLISHING, J. Phys.: Conf. Ser., v.1695, 1, pp. #012187- (2020)

  3. Energy Spectrum of Electrons of Deep Impurity Centers in Wide-Bandgap Mesoscopic Semiconductors,
    Zegrya,GG; Samosvat,DM; Vul,AY, Jetp Lett., v.112, 12, pp. 769-773 (2020)

  4. Examining relaxivities in suspensions of nanodiamonds grafted by magnetic entities: comparison of two approaches,
    Panich, AM; ·Shames,AI; Goren,SD; Yudina,EB; Aleksenskii,AE; Vul’AYa
    Magnetic Resonance Materials in Physics, Biology and Medicine, Vol. 33, pp. 885–888 (2020)

  5. High Quality Green Emitting Nanodiamonds Fabricated by HPHT Sintering of Polycrystalline Shockwave Diamonds,
    Osipov,VYu; Shakhov,FM; Bogdanov, KV; Takai, K, Hayashi, T; Treussart, F; Baldycheva, A; Hogan, BT; Jentgens, C
    Nanoscale Res. Lett. 15, p. 209 (2020)

  6. 2D Carbon-Supported Platinum Catalysts for Hydrosilylation Reactions,
    Voznyakovskii,AP; Neverovskaya,AY; Kalinin,AV; Voznyakovskii,AA; Nikolaev,GA
    Russ. J. Gen. Chem., v.90, 10, pp. 1944-1948 (2020)

  7. Structural Studies of Detonation Nanodiamonds with Grafted Metal Ions by Small-Angle Neutron Scattering,
    Kulvelis, Yu; Lebedev, V; Yudina, E; Shvidchenko , A; Aleksenskii , A; Vul, A; Kuklin, A,
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, Vol. 14, Suppl. 1,
    pp. S132–S133 (2020)

  8. Structure and Magnetic Properties of Superoxide Radical Anion Complexes with Low Binding Energy at the Graphene Edges,
    Osipov,VY; Boukhvalov,DW; Takai,K, Russ. J. Coord. Chem., v.46, 11, pp. 738-745 (2020)

  9. Alumina ceramics doped with manganese titanate via applying Mn-Ti-O coatings to corundum micropowder,
    Abyzov,AM; Khristyuk,NA; Kozlov,VV; Shakhov,F, J. Korean Ceram. Soc., v. 57, pp. 692–707 (2020)

  10. Gadolinium ion bonding on the surface of carboxylated detonation nanodiamond in terms of magnetochemistry and density functional theory,
    Osipov,VY; Boukhvalov,DW; Takai,K, Mendeleev Commun., v.30, 4, pp. 436-438 (2020)

  11. Fluorination of Diamond Nanoparticles in Slow Neutron Reflectors Does Not Destroy Their Crystalline Cores and Clustering While Decreasing Neutron Losses,
    Bosak, A; Dideikin,A; Dubois, M; Ivankov, O; Lychagin, E; Muzychka, A; Nekhaev, G; Nesvizhevsky, V; Nezvanov, A; Schweins , R; Strelkov, A; Vul’, A; Zhernenkov K., Materials 2020, 13(15), 3337 (2020)

  12. Hogweed Biomass as a Raw Material for Producing 2D Nanocarbons: An Environmental Aspect,
    Voznyakovskii,AP; Neverovskaya,AY; Voznyakovskii,AA; Karmanov,AP; Shugalei,IV,
    Russ. J. Gen. Chem., v.90, 13, pp. 2627-2631 (2020)

  13. Evidence of absorption dominating over scattering in light attenuation by nanodiamonds,
    Koniakhin,SV; Rabchinskii,MK; Besedina,NA; Sharonova,LV; Shvidchenko,AV; Eidelman,ED,
    Phys. Rev. Research 2, 013316 (2020)

  14. The role of charge states in the self-organization of detonation nanodiamonds nanoparticles,
    Vdovichenko,AY; Kuznetsov,NM; Shevchenko,VG; Belousov,SI; Yudina,EB; Chvalun,SN,
    Diam. Relat. Mat., v.107 ArtNo: #107903 (2020)

  15. From graphene oxide towards aminated graphene: facile synthesis, its structure and electronic properties,
    Rabchinskii,MK; Ryzhkov,SA; Kirilenko,DA; Ulin,NV; Baidakova,MV; Shnitov,VV; Pavlov,SI; Chumakov,RG; Stolyarova,DY; Besedina,NA; Shvidchenko,AV; Potorochin,DV; Roth,F; Smirnov,DA; Gudkov,MV; Brzhezinskaya,M; Lebedev,OI; Melnikov,VP; Brunkov,PN, Sci. Rep., v.10, 1 ArtNo: #6902 (2020)

  16. Characteristics and mechanical properties of composites based on nitrile butadiene rubber using graphene nanoplatelets,
    Vozniakovskii,AA; Vozniakovskii,AP; Kidalov,SV; Otvalko,J; Yu Neverovskaia,A,
    J. Compos Mater., v. 26(23), pp. 3351-3364 (2020)

  17. Intrinsic infrared absorption for carbon-fluorine bonding in fluorinated nanodiamond,
    Osipov VYu; Romanov,NM; Kogane,K; Touhara,H; Hattori,Y; Takai, K,
    Mendeleev Communications, Vol. 30(1), pp. 84-87 (2020)

  18. Unique rheological behavior of detonation nanodiamond hydrosols: The nature of sol-gel transition,
    Kuznetsov,NM; Belousov,SI; Bakirov,AV; Chvalun,SN; Kamyshinsky,RA; Mikhutkin,AA; Vasiliev,AL; Tolstoy,PM; Mazur,AS; Eidelman,ED; Yudina,EB; Vul,AY, Carbon, Vol. 161, pp. 486-494 (2020)

  19. Neutron studies of the structure and dynamics of molecular and polymer self-assembled systems,
    Lebedev,VT; Kulvelis,YV; Ivanchev,SS; Vul,AYa; Kuklin,AI; Primachenko,ON; Odinokov AS,
    Physica Scripta, Vol. 95, 044008 (2020)

  20. Powder hybrid nanomaterial: Detonation nanodiamonds – Carbon nanotubes and its stable reversible water nanofluids,
    Vozniakovskii A.A., Kol'tsova T.S., Voznyakovskii A.P., Kumskov A.L., Kidalov S.V.
    J. Colloid Interface Sci., Vol. 565, pp. 305-314 (2020)

  21. Synthesis of manganese titanate and its precursors from xerogel,
    Abyzov,AM; Khristyuk,NA; Shakhov,FM, Ceram. Int., Vol. 46(2), pp. 1990-2001 (2020)

  22. Self-trapped-induced energy funneling and broadband emission in the Mn2+ doped two-dimensional perovskite, Wang,S; Cai,P; Xu,T; Pu,X; Du,P; Wang,X; Tang,Y; Yuan,X; Chen,H; Ai,Q; Si,J; Yao,X; Rabchinskii,MK; Brunkov,PN; Liu,Z, J. Lumines., v.226 ArtNo: #117457 (2020)

  23. Scattering mechanisms and mobility enhancement in epitaxial BaSnO3 thin films probed via electrolyte gating,
    Wang,H; Prakash, A; Reich,K; Ganguly,K; Jalan,B; Leighton,C, APL Mater. 8, 071113 (2020)

  24. Field emission from carbon nanostructures: models and experiment,
    Eidelman,ED; Arkhipov, AV, Phys. Usp. 63(7) (2020)

  25. Нанокомпозиционные функционализированные полимерные материалы,
    Овчинников,ЕВ; Лиопо,ВА; Возняковский,АП; Возняковский,АА; Чекан,НМ; Эйсымонт,ЕИ,
    Прогрессивные технологии и системы машиностроения, т.2 (69), стр. 63-70 (2020)

  26. Electrosurface Properties of Detonation Nanodiamond Hydrosols as Depending on the Size of Dispersed Particles,
    Zhukov,AN; Shvidchenko,AV; Yudina,EB, Colloid J., v.82, 4, pp. 369-375 (2020)

  27. Synthesis of GdFeO3 nanoparticles via low-temperature reverse co-precipitation: the effect of strong agglomeration on the magnetic behavior,
    Albadi,Y; Martinson,KD; Shvidchenko,AV; Buryanenko,IV; Semenov,VG; Popkov,VI, Nanosyst. Phys. Chem. Math., v.11, 2 pp. 252-259 (2020)

  28. Estimation of the Maximum Transverse Size of Multilayer Bimetallic Films for Self-Propagating High-Temperature Synthesis for the Ni/Al Structure as an Example,
    Kvashenkina,OE; Eidelman,ED; Osipov,VS; Gabdullin,PG; Khina,BB, Tech. Phys., v.65, 7 pp. 1144-1149 (2020)

  29. Diffusion of Overheated and Overcooled Particles as a Mechanism of Thermal Conductivity in Nanofluids,
    Meilakhs,AP; Aleksenskii,AE, JETP Lett., v.111, 6, pp. 338-342 (2020)

  30. Structure and Paramagnetic Properties of Graphene Nanoplatelets Prepared from Biopolymers Using Self-Propagating High-Temperature Synthesis,
    Vozniakovskii,AA; Voznyakovskii,AP; Kidalov,SV; Osipov,VY, J. Struct. Chem., v.61, 5, pp. 826-834 (2020)

  31. Electrostatic Stabilization of Hydrosols of Calcium Carbonate Nanoparticles Synthesized by the Template Method,
    Eurov,DA; Shvidchenko,AV; Kurdyukov,DA, Colloid J., v.82, 2 pp. 115-121 (2020)

  32. Effect of the Beryllium Acceptor Impurity upon the Optical Properties of Single-Crystal AlN,
    Mokhov,EN; Rabchinskiy,MK; Nagalyuk,SS; Gafurov,MR; Kazarova,OP, Semiconductors, v.54, 3, pp. 278-281 (2020)

  33. Perfluorinated Proton-Conducting Membrane Composites with Functionalized Nanodiamonds, Primachenko,ON; Kulvelis,YV; Lebedev,VT; Odinokov,AS; Bayramukov,VY; Marinenko,EA; Gofman,IV; Shvidchenko,AV; Vul,AY; Ivanchev,SS, Membranes and Membrane Technologies, v.2, 1, pp. 1-9 (2020)

  34. Conductivity of quantum dots array,
    K.V. Reich, Physics Uspekhi, 63, pp. 994-1014 (2020)

  35. Laser Initiation of Energy-Saturated Composites Based on Nanoporous Silicon,
    Zegrya,GG; Savenkov,GG; Zegrya,AG; Bragin,VA; Os`kin,IA; Poberezhnaya,UM,
    Tech. Phys., v. 65, 10, pp. 1636-1642 (2020)

  36. 2D Nanocarbons as the Matrix for Immobilized Microbial Preparations,
    Voznyakovskii,AP; Novikova,II; Voznyakovskii,AA; Boikova,IV; Neverovskaya,AY,
    In book:THIRD INTERNATIONAL CONFERENCE “PHYSICS FOR THE LIFE SCIENCES” Tech. Phys., v.65, 9, pp. 1384-1390 (2020)

  37. Композиционные полимерные материалы, модифицированные нанодисперсными функционализированными частицами,
    Овчинников,ЕВ; Возняковский,АП; Возняковский,АА, XI Международная научно-техническая конференция ассоциации технологов-машиностроителей “Инновационные технологии машиностроения в транспортном комплексе” Калининград, Российская Федерация; 10—13 сентября 2019, В книге (сборнике): Инновационные технологии машиностроения в транспортном комплексе. Материалы XI Международной научно-технической конференции ассоциации технологов-машиностроителей , страницы: 177-186, 2020 347 стр., Изд. Балтийского федерального университета им.И.Канта ISBN: 978-5-9971-0583-9.

  38. Revealing the structure of composite nanodiamond–graphene oxide aqueous dispersions by small-angle scattering,
    O.V. Tomchuk, M.V. Avdeev, A.T. Dideikin, A.Ya. Vul', A.E. Aleksenskii, D.A. Kirilenko, O.I. Ivankov, D.V. Soloviov, A.I. Kuklin, V.M. Garamus, Yu.V. Kulvelis, V.L. Aksenov, L.A. Bulavin, 30th International Conference on Diamond and Carbon Materials (DCM); Seville, Spain; 08-12 September 2019, In: 30TH INTERNATIONAL CONFERENCE ON DIAMOND AND CARBON MATERIALS (DCM), Diam. Relat. Mater. Vol. 103, 107670 (2020)

  39. Crystallization in the Presence of a Flow,
    E.D. Eidelman, M.A. Durnev, Physics of the Solid State, Vol. 62, No. 1, pp. 30–33 (2020)

  40. Low-field electron emission from carbon cluster films: combined thermoelectric/hot-electron model of the phenomenon, A. V. Arkhipov, E. D. Eidelman, A. M. Zhurkin, V. S. Osipov & P. G. Gabdullin, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 28(4), pp. 286-294 (2020)

  41. SANS analysis of aqueous dispersions of Eu- and Gd-grafted nanodiamond particles, O.V. Tomchuk, V. Ryukhtin, O. Ivankov, A.Ya. Vul’, A.E. Aleksenskii, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 28(4), pp. 272-276 (2020)

  42. Uniform graphene oxide films fabrication via spray-coating for sensing application, Struchkov,NS; Alexandrov,EV; Romashkin,AV; Silakov,GO; Rabchinskii,MK, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 28(3), pp.214-220 (2020)

  43. Magnetic properties of C60/exfoliated graphite carbon system, Berezkin, VI; Kidalov, SV; Popov, VV; Sharenkova, NV, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 28(2) pp. 150-153 (2020)

  44. Composite proton-conducting membranes with nanodiamonds, Yu.V. Kulvelis, O.N. Primachenko,A.S. Odinokov,A.V. Shvidchenko, V.Yu. Bayramukov, I.V. Gofman,V.T. Lebedev, S.S. Ivanchev, A.Ya. Vul, A.I. Kuklin, B. Wu, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures,
    Vol. 28 (2), pp.140-146 (2020)

  45. Carbon nanomaterials based on plant biopolymers as radionuclides sorbent, Vozniakovskii,A; Kidalov,SV; Vozniakovskii,AA; Karmanov,A; Kocheva,L; Rachkova,N, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 28(3), pp. 238-241 (2020)

  46. Graphene oxide conversion into controllably carboxylated graphene layers via photoreduction process in the inert atmosphere, Rabchinskii,MK; Shnitov,VV; Stolyarova,DY; Ryzhkov,SA; Baidakova,MV; Lobanova,EY; Shvidchenko,AV; Besedina,NA; Smirnov,DA, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 28(3), pp.221-225 (2020)

  47. Reduced graphene oxide resistance in composites with polystyrene of different molecular masses, Nikolaeva,MN; Bugrov,AN; Bezrukova,MA; Rabchinskii,MK; Dideikin,AT, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE “ADVANCED CARBON NANOSTRUCTURES”(ACNS’2019), Fullerenes, Nanotubes and Carbon Nanostructures, Vol.28(3), pp. 163-167 (2020)

2019

  1. Influence of Rotation on Crystallization Process of Aluminum Melt with Reinforcing Admixtures, Durnev,MA; Eidelman,ED, Nonlinear Phenom. Complex Systems, Vol. 22(4), pp. 362-366 (2019)

  2. Fluorescence enhancement of monodisperse carbon nanodots treated with aqueous ammonia and hydrogen peroxide,
    Rabchinskii,MK; Mironov,L; Sgibnev,Y; Kolesnikov,I; Kurdyukov,DA; Eurov,DA; Kirilenko,DA; Shvidchenko,AV; Stolyarova,D; Smirnov,D; Golubev,VG, Nanotechnology, v.30, 47 ArtNo: #475601 (2019)

  3. Interaction of Carboxyl Groups with Rare Metal Ions on the Surface of Detonation Nanodiamonds,
    Yudina,EB; Aleksenskii,AE; Fomina,IG; Shvidchenko,AV; Danilovich,DP; Eremenko,IL; Vul,AY, Eur. J. Inorg. Chem.,v.39-40, pp. 4345-4349 (2019)

  4. Photoluminescence from NV- Centres in 5 nm Detonation Nanodiamonds: Identification and High Sensitivity to Magnetic Field,
    Osipov,VY; Treussart,F; Zargaleh,SA; Takai,K; Shakhov,FM; Hogan,BT; Baldycheva,A, Nanoscale Res. Lett., v.14, 1 ArtNo: #279 (2019)

  5. Noncovalent bonding of copper atoms to the nitrogen-containing sites of hydrogenated diamond surfaces,
    Osipov,VY; Boukhvalov,DW; Takai,K, Mendeleev Commun., v.29, 4, pp. 452-454 (2019)

  6. Sol-Gel Transition in Nanodiamond Aqueous Dispersions by Small-Angle Scattering, Tomchuk,OV; Avdeev,MV; Aleksenskii,AE; Vul,AY; Ivankov,OI; Ryukhtin,VV; Fuzi,J; Garamus,VM; Bulayin,LA, J. Phys. Chem. C, v.123, 29, pp. 18028-18036 (2019)

  7. Colloids of Detonation Nanodiamond Particles for Advanced Applications,
    Shvidchenko AV; Eidelman ED; Vul' AYa; Kuznetsov NM; Stolyarova DYu; Belousov SI; Chvalun SN, Advances in Colloid and Interface Science 268, pp. 64–81 (2019)

  8. Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls, Krasilin,AA; Danilovich,DP; Yudina,EB; Bruyere,S; Ghanbaja,J; Ivanov,VK, Appl. Clay Sci., v.173, стр. 1-11 (2019)

  9. Development of composite material aluminum-carbon nanotubes with high hardness and controlled thermal conductivity,
    Vozniakovskii,AA; Kidalov, SV; Kol'tsova, TS, J. Composit. Mater., 53, 21, pp. 2959-2965 (2019)

  10. Graphene Oxide and Derivatives: The Place in Graphene Family,
    Dideikin,AT; Vul,AY, Front. Physics, v.6 ArtNo: #149 (2019)

  11. Gd(III)-Grafted Detonation Nanodiamonds for MRI Contrast Enhancement,
    Panich,AM; Salti,M; Goren,SD; Yudina,EB; Aleksenskii,AE; Vul,AYa; Shames,AI, J. Phys. Chem. C, v.123, 4, pp. 2627-2631 (2019)

  12. Evidence of absorption dominating over scattering in light attenuation by nanodiamonds, Koniakhin S.V., Rabchinskii M.K., Besedina N.A.,Sharonova L.V.,Shvidchenko A.V., Eidelman E.D., arXiv:1812.03512 (2019)

  13. Calculation of Kapitza resistance with kinetic equation,
    Meilakhs AP; Semak BV, arXiv preprint arXiv:1901.06308 (2019)

  14. Size Effect in Electron Paramagnetic Resonance Spectra of Impurity Centers in Diamond Nanoparticles,
    Samosvat D., Zegrya G., Osipov V., Shemes A., Vul A, Nanotechnology, arXiv:1912.06330 (2019)

  15. Magnetic Properties of Fullerene–Thermally Exfoliated Graphite Composites Doped with Sodium,
    VI Berezkin, VV Popov, SV Kidalov, NV Sharenkova, Physics of the Solid State, 61(10), 1752-1758 (2019)

  16. Thermoelectric Mechanism of Field Emission from Carbon Nanostructures,
    Eidelman,ED, Tech. Phys., v.64, 10, pp. 1409-1417 (2019)

  17. Исследование влияния углеродной нанодобавки на теплопроводность и твердость металлокомпозитов на основе алюминия,
    Заваринский,ВИ; Возняковский,АА, Интернаука, т.26 (108), стр. 31-33 (2019)

  18. Electron Emission Properties of Self-Assembling Nanodiamond‒Polymer Nanocomposite Coatings, Lebedev-Stepanov,PV; Dideykin, AT; Chvalun, SN; AL Vasiliev, TE Grigoryev, AN Korovin, SI Belousov, SP Molchanov, GA Yurasik, A Ya Vul, Crystallography Reports, 64(5), pp. 817-822 (2019)

  19. A Study of the Process of Gold Plating from Citrate and Phosphate Electrolytes in the Presence of Modified Detonation Nanodiamonds,
    Dolmatov,VY; Rudenko,DV; Burkat,GK; Aleksandrova,AS; Vul`,AY; Aleksenskii,AE; Kozlov,AS; Myllymaki,V; Vehanen,A; D`yakov,IA; Dorokhov,AO; Kiselev,MN, J. Superhard Mater., v.41, 3, pp. 169-177 (2019)

  20. Weakly Ordered Nanostructured Silver Disilicate and Its Colloidal Solutions: Preparation and Properties,
    Baidakova,MV; Germanov,NA; Golyandin,SN; Kompan,ME; Mochalov,SV; Nashchekin,AV; Nevedomskii,VN; Pul`nev,SA; Rabchinskii,MK; Ulin,VP; Ulin,NV, Tech. Phys., v.64, 6, pp. 884-892 (2019)

  21. Low-Threshold Field Electron Emission from Two-Dimensional Carbon Structures, Voznyakovskii,AP; Fursey,GN; Voznyakovskii,AA; Polyakov,MA; Neverovskaya,AY; Zakirov,II, Tech. Phys. Lett., v.45, 5, pp. 467-470 (2019)

  22. A Carbon Nanostructure for a Thermoelectric Generator,
    Rabchinskii,MK; Eidelman,ED; Vinogradov,AY; Grudinkin,SA; Dideikin,AT, Tech. Phys. Lett., v.45, 4,pp. 339-342

  23. Effect of gamma irradiation on photoluminescence of MEH-PPV/detonation nanodiamond polymer composite,
    Romanov,NM; Shakhov,FM; Osipov,VY; Musikhin,CF, J. Opt. Technol., v.86, 10, pp. 608-613 (2019)

  24. Photo- and cathodoluminescence spectra of diamond single crystals formed by sintering of detonation nanodiamond,
    Kidalov,SV; Zamoryanskaya,MV; Kravez,VA; Sharonova,LV; Shakhov,FM; Yudina,EB; Artamonova,TO; Khodorkovskii,MA; Vul,AYa, Наносистемы: физика, химия, математика, т.10, 1,
    стр. 12-17 (2019) PDF

  25. Синтез порошкового гибридного материала состава ДНА-МУНТ и его устойчивых водных наножидкостей,
    Возняковский AA; Кольцова TC; Кидалов СВ; Толочко О; Возняковский АП; Кумсков АЛ, Вестник СПбПУ, Научно-технические ведомости СПбПУ. Естественные и инженерные науки. 2019. т. 25(1), стр. 155-162 (2019) PDF

  26. Nitrogen impurities and fluorescent nitrogen-vacancy centers in detonation nanodiamonds: identification and distinct features,
    Osipov,VY; Zargaleh,SA; Treussart,F; Takai,K; Romanov,NM; Shakhov,FM; Baldycheva,A, J. Opt. Technol., v.86, 1, pp. 1-8 (2019) PDF

  27. The Possibilities of Energy-Saturated Nanoporous Silicon-Based Composites (Review and New Results),
    Savenkov,GG; Zegrya,AG; Zegrya,GG; Rumyantsev,BV; Sinani,AB; Mikhailov,YM, Tech. Phys., v.64, 3, pp. 361-367 (2019)

  28. Effect of Conductivity Type and Doping Level of Silicon Crystals on the Size of Formed Pore Channels during Anodic Etching in Hydrofluoric Acid Solutions,
    Zegrya,GG; Ulin,VP; Zegrya,AG; Ulin,NV; Mikhailov,YM, Tech. Phys., v.64, 10, pp. 1492-1500 (2019)

  29. The Effect of the Doping Level of Starting Silicon Single Crystals on Structural Parameters of Porous Silicon Produced by Electrochemical Etching,
    Zegrya,AG; Sokolov,VV; Zegrya,GG; Ganin,YV; Mikhailov,YM, Tech. Phys. Lett., v.45, 11, pp. 1067-1070 (2019)

  30. Advanced oxidation process for detonation nanodiamond surface chemical modification,
    Shestakov,MS; Vul`,SP; Dideikin,AT; Larionova,TV; Shvidchenko,AV; Yudina,EB; Shnitov,VV,
    International Conference PhysicA.SPb/2019, J. Phys.: Conf. Ser., v.1400, 5, p. #055044- (2019)
    (International Conference PhysicA.SPb/2019; St.Petersburg, Russian Federation; 22–24 October 2019)

2018

  1. Dry Microwave-Chemistry Enabled Fabrication of Pristine Holey Graphene Nanoplatelets with Rich Zigzag Edges, Savaram K; Li Q; Takai K; Osipov V; He H, AMPERE Newsletter, 97, pp 2-6 (2018). PDF

  2. Non-thermal and low-destructive X-ray induced graphene oxide reduction,, Mikoushkin VM, Kriukov AS, Nikonov SYu, Dideikin AT, Vul AYa, Vilkov OYu, J. Appl. Phys, J. Appl. Phys., 124(17), ArtNo: #175303 (2018).

  3. Comment on ‘‘Angstrom-scale probing of paramagnetic center location in nanodiamonds by 3 He NMR at low temperatures’’ by V. Kuzmin, K. Safiullin, G. Dolgorukov, A. Stanislavovas, E. Alakshin, T. Safin, B. Yavkin, S. Orlinskii, A. Kiiamov, M. Presnyakov, A. Klochkov and M. Tagirov, Phys. Chem. Chem. Phys., 2018, 20, 1476, Shames AI, Osipov VYu, Panich AM, Phys. Chem. Chem. Phys., 20, pp. 27694-27696 (2018)

  4. Facile reduction of graphene oxide suspensions and films using glass wafers, Rabchinskii MK; Dideikin AT; Kirilenko DA; Baidakova MV; Shnitov VV; Roth F; Konyakhin SV; Besedina NA; Pavlov SI; Kuricyn RA; Lebedeva NM; Brunkov PN; Vul’ AYa, Sci. Rep., 8, 14154 (2018) PDF

  5. Dry microwave heating enables scalable fabrication of pristine holey graphene nanoplatelets and their catalysis in reductive hydrogen atom transfer reactions, Savaram,K; Li,M; Tajima,K; Takai,K; Hayashi,T; Hall,G; Garfunkel,E; Osipov,V; He,H, Carbon, 139, pp. 861-871 (2018)

  6. Highly intensive emission of the NV- centers in synthetic HPHT microdiamonds at low nitrogen doping, Bogdanov,KV; Zhukovskaya,MV; Osipov,VY; Ushakova,EV; Baranov,MA; Takai,K; Rampersaud,A; Baranov,AV, APL Mater., 6(8) ArtNo: #086104 (2018)

  7. Effective method for obtaining the hydrosols of detonation nanodiamond with particle size < 4 nm, Trofimuk,AD; Muravijova,DV; Kirilenko,DA; Shvidchenko,AV, Materials, 11(8), ArtNo: #1285 (2018)

  8. Controllable spherical aggregation of monodisperse carbon nanodots, Kurdyukov,DA; Eurov,DA; Rabchinskii,MK; Shvidchenko,AV; Baidakova,MV; Kirilenko,DA; Koniakhin,SV; Shnitov,VV; Sokolov,VV; Brunkov,PN; Dideikin,AT; Sgibnev,YM; Mironov,LY; Smirnov,DA; Vul,AY; Golubev,VG, Nanoscale, 10(27), pp. 13223-13235 (2018)

  9. Properties of AlN single crystals doped with Beryllium via high temperature diffusion, Soltamov,VA; Rabchinskii,MK; Yavkin,BV; Kazarova,OP; Nagalyuk,SS; Davydov,VY; Smirnov,AN; Lebedev,VF; Mokhov,EN; Orlinskii,SB; Baranov,PG, Appl. Phys. Lett., v.113, 8 ArtNo: #082104 (2018)

  10. Natural limit of the number of copper ions chemisorbed on the surface of a detonation nanodiamond, Osipov VYu, Gridnev ID,Panich AM, Mendeleev Commun., 28(4), 404-405(2018)

  11. Stabilization of detonation nanodiamonds hydrosol in physiological media with poly(vinylpyrrolidone), Kulvelis,YV; Shvidchenko,AV; Aleksenskii,AE; Yudina,EB; Lebedev,VT; Shestakov,MS; Dideikin,AT; Khozyaeva,LO; Kuklin,AI; Torok,G; Rulev,MI; Vul,AY, Diam. Relat. Mater.,87, 78-89 (2018)

  12. Laser-induced breakdown spectroscopy: an advanced method for analysis of nanocarbon materials chemical composition, Lebedev VF; Rabchinskii MK; Kozlyakov MS; Stepanov DN; Shvidchenko AV; Nikonorova NV; Vul AYa, J. Anal. At. Spectrom., 33, 240-250 (2018)

  13. Effect of diamond nanoparticle chains on rheological properties of hydrosol, Kuznetsov NM, Belousov SI, Stolyarov DYu, Bakirov AV, Chvalun SN, Shvidchenko AV, Eidelman ED, Vul' AYa, Diam. Relat. Mater., 83, pp. 141-145 (2018)

  14. Ultracentrifugation for ultrafine nanodiamond fractionation. Koniakhin,SV; Besedina,NA; Kirilenko,DA; Shvidchenko,AV; Eidelman,ED, Superlattices Microstruct, 113, 204-212 (2018)

  15. Comment on "Carbon structure in nanodiamonds elucidated from Raman spectroscopy" by V.I. Korepanov et al. Osipov,VY; Panich,AM; Baranov,AV, Carbon, 127, pp. 193-194 (2018)

  16. Auger recombination in quantum well laser with participation of electrons in waveguide region, Karpova,AA; Samosvat,DM; Zegrya,AG; Zegrya,GG; Bugrov,VE, Rev. Adv. Mater. Sci., 57(2) pp. 193-198 (2018)

  17. Design of Gradient Composites of Aluminum and Graphite by the Centrifugal-Casting Method, Eidel`man,ED; Durnev,MA, Tech. Phys., 63(11), pp. 1615-1619 (2018)

  18. Resistance of reduced graphene oxide on polystyrene surface, Nikolaeva,MN; Bugrov,AN; Anan`eva,TD; Gushchina,EV; Dunaevskii,MS; Dideikin,AT, Наносистемы: физика, химия, математика, 9(4) стр. 496-499 (2018) PDF

  19. Resistance of UV-perforated reduced graphene oxide on polystyrene surface, Nikolaeva,MN; Bugrov,AN; Anan`eva,TD; Dideikin,AT; Rabchinskii,MK; Ionov,AN, Наносистемы: физика, химия, математика, 9(6) стр. 793-797 (2018) PDF

  20. Structure and Properties of Thin Graphite-Like Films Produced by Magnetron-Assisted Sputtering, Vinogradov,AY; Grudinkin,SA; Besedina,NA; Koniakhin,SV; Rabchinskii,MK; Eidelman,ED; Golubev,VG, Semiconductors, 52(7), pp. 914-920 (2018) PDF

  21. Self-Assembling Polymer–Nanodiamond Composite Coatings for Vacuum Cathodes, Lebedev-Stepanov,PV; Dideykin,AT; Chvalun,SN; Vasiliev,AL; Grigoryev,TE; Korovin,AN; Belousov,SI; Molchanov,SP; Yurasik,GA; Vul',AY, J. Surf. Invest. X-ray, 12(1), 135-138 (2018) PDF

  22. Surface Hardening of Composite Material by the Centrifugal-Casting Method, Eidelman,ED; Durnev,MA, Tech. Phys. Lett., 44(4), pp. 284-286 (2018) PDF

  23. Evolution of Triplet Paramagnetic Centers in Diamonds Obtained by Sintering of Detonation Nanodiamonds at High Pressure and Temperature, Osipov,VY; Shames,AI; Efimov,NN; Shakhov,FM; Kidalov,SV; Minin,VV; Vul',AY, Phys. Solid State, 60(4) 723-729 (2018) PDF

  24. Identifying quasi-free and bound nitrate ions on the surfaces of diamond nanoparticles by IR and x-ray photoelectron spectroscopy, Osipov,VY; Romanov,NM; Shakhov,FM; Takai,K, J. Opt. Technol., 85(3), 122-129 (2018) PDF

  25. Chemical composition of surface and structure of defects in diamond single crystals produced from detonation nanodiamonds, Kidalov,SV; Shnitov,VV; Baidakova,MV; Brzhezinskaya,M; Dideikin,AT; Shestakov,MS; Smirnov,DA; Serenkov,IT; Sakharov,VI; Sokolov,VV; Tatarnikov,NI; Vul,AYa, Nanosystems: physics, chemistry, mathematics, 9(1), pp. 21-24 (2018) PDF

  26. Investigation of NV(−) centers and crystallite interfaces in synthetic single-crystal and polycrystalline nanodiamonds by optical fluorescence and microwave spectroscopy, Osipov,VY; Romanov,NM; Bogdanov,KV; Treussart,F; Jentgens,C; Rampersaud,A, J. Opt. Technol., 85(2),
    63-72 (2018) PDF

  27. Intraband Radiation Absorption by Holes in InAsSb/AlSb and InGaAsP/InP Quantum Wells, Pavlov,NV; Zegrya,GG; Zegrya,AG; Bugrov,VE, Semiconductors, 52(2), 195-208 (2018)

  28. The Mechanism of Generation of Singlet Oxygen in the Presence of Excited Nanoporous Silicon, Samosvat,DM; Chikalova-Luzina,OP; Khromov,VS; Zegrya,AG; Zegrya,GG, Tech. Phys. Lett., 44(6) pp. 479-482 (2018)

  29. Evidence of absorption dominating over scattering in light attenuation by nanodiamonds, Koniakhin SV; Rabchinskii MK; Besedina NA; Sharonova LV; Shvidchenko AV; Eidelman ED, arXiv:1812.03512 (2018)

Proceedings

  1. Probing the electrocatalytic behavior of zigzag edges in holey graphene nanoplatelets, Li,QD; Savaram,K; Li,MJ; Tajima,K; Takai,K; Hayashi,T; Garfunkel,E; Osipov,V; He,HX, in: 256TH NATIONAL MEETING AND EXPOSITION OF THE AMERICAN-CHEMICAL-SOCIETY (ACS) - NANOSCIENCE, NANOTECHNOLOGY AND BEYOND Abstr. Pap. Am. Chem. Soc., v.256, pp. #ENFL4-, 2018 (256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond; Boston, USA; 19-23 August 2018)

  2. Catalytic hydrogenation of nitrobenzene via intrinsic holey graphene nanoplatelets with rich zigzag edges, Savaram,K; Li,MJ; Tajima,K; Takai,K; Hayashi,T; Garfunkel,E; Osipov,V; Ma,N; He,HX, in: 256TH NATIONAL MEETING AND EXPOSITION OF THE AMERICAN-CHEMICAL-SOCIETY (ACS) - NANOSCIENCE, NANOTECHNOLOGY AND BEYOND Abstr. Pap. Am. Chem. Soc., v.256, pp. #ENFL249-, 2018 (256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond; Boston, USA; 19-23 August 2018)

  3. Microwave-enabled scalable fabrication of holey graphene nanoplatelets and their catalysis in reductive hydrogen atom transfer reactions, Savaram,K; Li,MJ; Tajima,K; Takai,K; Hayashi,T; Hall,G; Garfunkel,E; Osipov,V; He,HX, in: 256TH NATIONAL MEETING AND EXPOSITION OF THE AMERICAN-CHEMICAL-SOCIETY (ACS) - NANOSCIENCE, NANOTECHNOLOGY AND BEYOND Abstr. Pap. Am. Chem. Soc., v.256, pp. #ENFL290-, 2018 (256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond; Boston, USA; 19-23 August 2018)

  4. Laser-induced breakdown spectroscopy as an effective approach for study of nanocarbon materials, Rabchinskii,MK; Lebedev,VF; Kozlyakov,MS; Stepanov,DN; Shvidchenko,AV; Nikonorov,NV; Vul,AYa, in: PROCEEDINGS - INTERNATIONAL CONFERENCE LASER OPTICS 2018, ICLO 2018 (2018 International Conference Laser Optics, ICLO 2018; St.Petersburg, Russian Federation; 4-8 June 2018), pp. #8435718-2018, IEEE ISBN: 978-1-5386-3612-1. PDF

  5. Singlet oxygen generation mechanism in the presence of excited nanoporous silicon, Samosvat,DM; Chikalova-Luzina,OP; Khromov,VS; Zegrya,AG; Zegrya,GG, in: 5TH INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES, SAINT PETERSBURG OPEN 2018 J. Phys.: Conf. Ser., v.1124, 3, p. #031025- (2018)

2017

  1. Revealing the structure of composite nanodiamond–graphene oxide aqueous dispersions by small-angle scattering,
    O.V. Tomchuk, M.V. Avdeev, A.T. Dideikin, A.Ya. Vul', A.E. Aleksenskii, D.A. Kirilenko, O.I. Ivankov, D.V. Soloviov, A.I. Kuklin, V.M. Garamus, Yu.V. Kulvelis, V.L. Aksenov, L.A. Bulavin,
    Diam. Relat. Mater. Vol. 103, 107670 (2020)

  2. Molecular dynamic simulations of glycine amino acid association with potassium and sodium ions in explicit solvent. Terterov,I; Koniakhin,S; Vyazmin,S; Boitsov,V; Dubina,M, F1000 Res., v.6 ArtNo: #74 (2017)

  3. Thermoelectric generator based on composites obtained by sintering of detonation nanodiamonds. Eidelman,ED, Meilakhs,AP, Semak,BV, Shakhov,FM, Journal of Physics D: Applied Physics, v. 50(46), 4007 (2017). PDF

  4. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature. Shakhov,FM; Abyzov,AM; Takai,K, Journal of Solid State Chemistry, v.256, pp. 72-92 (2017). PDF

  5. New explanation of Raman peak redshift in nanoparticles.Meilakhs,AP; Koniakhin,SV, Superlattices Microstruct, Superlattices Microstruct., v.110, pp. 319-323 (2017). PDF

  6. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Dideikin,AT; Aleksenskii,AE; Baidakova,MV; Brunkov,PN; Brzhezinskaya,M; Davydov,VY; Levitskii,VS; Kidalov,SV; Kukushkina,YA; Kirilenko,DA; Shnitov,VV; Shvidchenko,AV; Senkovskiy,B; Shestakov,MS; Vul,AY, Carbon, v.122, pp. 737-745 (2017).PDF

  7. Distribution of supercritical nucleation centers during the crystallization process in the presence of a flow as illustrated by the example of boron carbide-reinforced aluminum. Durnev,MA; Eidelman,ED, Наносистемы: физика, химия, математика, т.8, 3 страницы: 360-364 (2017). PDF

  8. Does Progressive Nitrogen Doping Intensify Negatively Charged Nitrogen Vacancy Emission from e-Beam-Irradiated lb Type High-Pressure-High-Temperature Diamonds? Shames,AI; Osipov,VY; Bogdanov,KV; Baranov,AV; Zhukovskaya,MV; Dalis,A; Vagarali,SS; Rampersaud,A, J. Phys. Chem. C, v.121, 9 страницы: 5232-5240 (2017).

  9. Substrate-induced reduction of graphene thermal conductivity. Koniakhin,SV; Utesov,OI; Terterov,IN; Nalitov,AV, Phys. Rev. B, v.95, 4, ArtNo: #045418(2017).PDF

  10. Transition sol-gel in nanodiamond hydrosols. Vul,AY; Eidelman,ED; Aleksenskiy,AE; Shvidchenko,AV; Dideikin,AT; Yuferev,VS; Lebedev,VT; Kul`velis,YV; Avdeev,MV, Carbon, v.114, pp. 242-249(2017). PDF

  11. Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst. F.M. Shakhov, A.M. Abyzov, S.V. Kidalov, A.A. Krasilin, E. Lähderanta, V.T. Lebedev, D.V. Shamshur, K. Takai. J. Phys. Chem. Solids, v. 103, pp. 224–237 (2017).PDF

  12. Disorder from the Bulk Ionic Liquid in Electric Double Layer Transistors. Petach,TA; Reich,KV; Zhang,X; Watanabe,K; Taniguchi,T; Shklovskii,BI; Goldhaber-Gordon,D, ACS Nano, v.11, 8, pp. 8395-8400 (2017).

  13. ZnO Nanocrystal Networks Near the Insulator-Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light. Greenberg,BL; Robinson,ZL; Reich,KV; Gorynski,C; Voigt,BN; Francis,LF; Shklovskii,BI; Aydil,ES; Kortshagen,UR, Nano Lett., v.17, 8, pp. 4634-4642 (2017).

  14. Universality of electron mobility in LaAlO3/SrTiO3 and bulk SrTiO3. Trier,F; Reich,KV; Christensen,DV; Zhang,Y; Tuller,HL; Chen,YZ; Shklovskii,BI; Pryds,N, Appl. Phys. Lett., v.111, 9 ArtNo: #092106 (2017).

  15. The influence of substrate material on the resistance of composite films based on reduced graphene oxide and polystyrene.Nikolaeva,MN; Gushchina,EV; Dunaevskii,MS; Dideikin,AT; Bugrov,AN; Anan`eva,TD, Наносистемы: физика, химия, математика, т.8, 5, стр. 665-669 (2017) PDF

  16. Adapter Modification for a High-Speed Centrifuge Rotor for Use with Standard Medical Polypropylene Tubes. I. V. Atamanov, A. E. Aleksenskii, A. V. Shvidchenko, and M. K. Rabchinskii, Instruments and Experimental Techniques, Vol. 60, No. 6, pp. 880–882 (2017)). PDF

  17. Photochromic properties of modified nanodiamonds. Venidiktova,OV; Valova,TM; Barachevsky,VA; Ait,AO; Lebedev-Stepanov,PV; Vul,AY; Koltsova,LS; Shienok,AI; Zaichenko,NL, Opt. Spectrosc., v.122, 5, pp. 729-734 (2017)). PDF

  18. Identification of paramagnetic nitrogen centers (P1) in diamond crystallites synthesized via the sintering of detonation nanodiamonds at high pressure and temperature. Osipov,VY; Shakhov,FM; Efimov,NN; Minin,VV; Kidalov,SV; Vul',AY, Phys. Solid State, v.59, 6, pp. 1146-1153 (2017)). PDF

  19. Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions. Osipov,VY; Romanov,NM, J. Opt. Technol., v.84, 5, pp. 285-288 (2017)). PDF

  20. Correlation between structure and resistance of composites based on polystyrene and multilayered graphene oxide. Nikolaeva,MN; Anan`eva,TD; Bugrov,AN; Dideikin,AT; Ivankova,EM, Наносистемы: физика, химия, математика, т.8, 2, стр. 266-271 (2017).

  21. Counterion condensation in hydrosols of single-crystalline detonation nanodiamond particles obtained by air annealing of their agglomerates. Shvidchenko,AV; Dideikin,AT; Zhukov,AN, Colloid J., v.79, 4, pp. 567-569 (2017)).PDF

  22. Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond, Romanov,NM; Osipov,VYu; Takai,K; Touhara,H; Hattori,Y, J. Opt. Technol., v.84, 10, pp. 654-657 (2017)) PDF

  23. Growth of diamond microcrystals by the oriented attachment mechanism at high pressure and high temperature. Kidalov,SV; Shakhov,FM; Shvidchenko,AV; Smirnov,AN; Sokolov,VV; Yagovkina,MA; Vul`,AY, Tech. Phys. Lett., v.43, 1, pp. 53-56 (2017))

  24. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments. Zegrya,GG; Savenkov,GG; Morozov,VA; Zegrya,AG; Ulin,NV; Ulin,VP; Lukin,AA; Bragin,VA; Oskin,IA; Mikhailov,YM, Semiconductors, v.51, 4, pp. 477-482 (2017)).

  25. Initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds with fast semiconductor switches and energy-releasing elements, Savenkov,GG; Kardo-Sysoev,AF; Zegrya,AG; Os`kin,IA; Bragin,VA; Zegrya,GG, Tech. Phys. Lett., v.43(10), pp. 896-898 (2017)

Proceedings

  1. On a carbon nanostructure-based thermoelectric converter with record parameters. Eidelman,ED, Semiconductors, v.51, 7, pp. 906-908 (2017) (MAIK NAUKA/INTERPERIODICA/SPRINGER ISSN: 1063-7826, XV International Conference “Thermoelectrics and Their Applications-2016”, St.Petersburg, November 15–16, 2016).

  2. Oriented-attachment growth of diamond single crystal from detonation nanodiamonds. Dideikin,AT; Eidelman,ED; Kidalov,SV; Kirilenko,DA; Meilakhs,AP; Shakhov,FM; Shvidchenko,AV; Sokolov,VV; Babunz,RA; Vul,AY, В книге (сборнике): 27TH INTERNATIONAL CONFERENCE ON DIAMOND AND CARBON MATERIALS – DCM 2016 Diam. Relat. Mat., v.75, SI, pp. 85-90 (2017) (27th International Conference on Diamond and Carbon Materials - DCM 2016; September 4-8, 2016; Le Corum, Montpellier, France) PDF

  3. Гидрирование графена пучком ионов H2+ кэВ-диапазона. Микушкин,ВМ; Крюков,АС; Никонов,СЮ; Солоницына,АП; Дидейкин,АТ; Вилков,ОЮ, В книге (сборнике): ТРУДЫ XXIII МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ “ВЗАИМОДЕЙСТВИЕ ИОНОВ С ПОВЕРХНОСТЬЮ”, ВИП-2017 Труды международной конференции “ВИП”, т.3, стр. 101-104 (НИЯУ МИФИ ISSN: 2308-6289) (2017). In Russian

2016

Publications

  1. Nuclear magnetic resonance study of zeolite-templated carbon. Panich,AM; Osipov,VY; Nishihara,H; Kyotani,T, Synth. Met., v.221, pp. 149-152(2016).PDF

  2. Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures. Boukhvalov,DW; Osipov,VY; Shames,AI; Takai,K; Hayashi,T; Enoki,T, Carbon, v.107, pp. 800-810 (2016).PDF

  3. On the structure of concentrated detonation nanodiamond hydrosols with a positive zeta potential: Analysis of small-angle neutron scattering. Avdeev,MV; Tomchuk,OV; Ivankov,OI; Alexenskii,AE; Dideikin,AT; Vul,AY, Chem. Phys. Lett., v.658, pp. 58-62(2016).PDF

  4. Surface roughness scattering in multisubband accumulation layers. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.93, 23 ArtNo: #235312 (2016).PDF

  5. Size-dependent Raman and SiV-center luminescence in polycrystalline nanodiamonds produced by shock wave synthesis. Bogdanov,KV; Osipov,VYu; Zhukovskaya,MV; Jentgens,C; Treussart,F; Hayashi,T; Takai,K; Fedorov,AV; Baranov,AV, RSC Adv., v.6, 57, pp. страницы: 51783-51790 (2016).PDF

  6. Magnetic Resonance Study of Gadolinium-Grafted Nanodiamonds. Panich,AM; Shames,AI; Sergeev,NA; Osipov,VY; Alexenskiy,AE; Vul,AY, J. Phys. Chem. C, v.120, 35, pp. 19804-19811 (2016).

  7. Drag of electrons in graphene by substrate surface polar phonons. Koniakhin,SV; Nalitov,AV, Phys. Rev. B, v.94, 12 ArtNo: #125403 (2016).PDF

  8. Structure and Magnetic Properties of Pristine and Fe-Doped Micro- and Nanographenes. Panich,AM; Shames,AI; Tsindlekht,MI; Osipov,VY; Patel,M; Savaram,K; He,H, J. Phys. Chem. C, v.120, 5, стр. 3042-3053 (2016).

  9. Hopping conductivity and insulator-metal transition in films of touching semiconductor nanocrystals. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.93, 12 ArtNo: #125430 (2016). PDF

  10. Anomalous conductivity, Hall factor, magnetoresistance, and thermopower of accumulation layer in SrTiO3. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.94, 4 ArtNo: #045310 (2016).PDF

  11. Dielectric constant and charging energy in array of touching nanocrystals. Reich,KV; Shklovskii,BI, Appl. Phys. Lett., v.108, 11 ArtNo: #113104 (2016).PDF

  12. Metal-insulator transition in films of doped semiconductor nanocrystals. Chen,T; Reich,KV; Kramer,NJ; Fu,H; Kortshagen,UR; Shklovskii,BI, Nat. Mater., v.15, 3, pp. 299-303 (2016).PDF

  13. Exciton Transfer in Array of Epitaxially Connected Nanocrystals. Reich,KV; Shklovskii,BI, ACS Nano, v.10, 11 pp. 10267-10274 (2016).

  14. Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. Rabchinskii,MK; Shnitov,VV; Dideikin,AT; Aleksenskii,AE; Vul,SP; Baidakova,MV; Pronin,II; Kirilenko,DA; Brunkov,PN; Weise,J; Molodtsov,SL, J. Phys. Chem. C, v.120, 49, pp. 28261-28269 (2016).

  15. Formation of nanodiamond films from aqueous suspensions during spin coating. Lebedev-Stepanov,PV; Molchanov,SP; Vasil`ev,AL; Mitrokhin,VP; Yurasik,GA; Aleksenskii,AE; Dideikin,AT, Tech. Phys., v.61, 3, pp. 401-408 (2016).PDF

  16. Changes in the mechanism of heat transfer in passing from microparticles to nanoparticles. Shakhov,FM; Meilakhs,AP; Eidelman,ED, Tech. Phys. Lett., v.42, 3, pp. 252-255 (2016)PDF

  17. Macroscopic thermoelectric efficiency of carbon nanocomposites. Eidelman,ED; Meilakhs,AP, Nanosyst. Phys. Chem. Math., v.7, 6, pp. 919-924 (2016)

  18. Phonon transmission across an interface between two crystals. Meilakhs,AP, Nanosyst. Phys. Chem. Math., v.7, 6, pp. 971-982 (2016)

  19. Template synthesis of monodisperse carbon nanodots. Kurdyukov,DA; Eurov,DA; Stovpiaga,EY; Kirilenko,DA; Konyakhin,SV; Shvidchenko,AV; Golubev,VG, Phys. Solid State, v.58, 12, pp. 2545-2549 (2016). PDF

  20. Spin Centres in SiC for All-optical Nanoscale Quantum Sensing under Ambient Conditions. Anisimov,AN; Babunts,RA; Kidalov,SV; Mokhov,EN; Soltamov,VA; Baranov,PG, Jetp Lett., v.104, 2, pp. 82-87 (2016). PDF

  21. Electrosurface properties of single-crystalline detonation nanodiamond particles obtained by air annealing of their agglomerates. Shvidchenko,AV; Zhukov,AN; Dideikin,AT; Baidakova,MV; Shestakov,MS; Shnitov,VV; Vul`,AY, Colloid J., v.78, 2, pp. 235-241 (2016)PDF

  22. Electron gas induced in SrTiO3. Fu,H; Reich,KV; Shklovskii,BI, J. Exp. Theor. Phys., v.122, 3, pp. 456-471 (2016))PDF

Proceedings

  1. Etching of wrinkled graphene oxide films in noble gas atmosphere under UV irradiation. Aleksenskii,AE; Vul`,SP; Dideikin,AT; Sakharov,VI; Serenkov,IT; Rabchinskii,MK; Afrosimov,VV, Наносистемы: физика, химия, математика т.7, 1, стр. 81-86 (International Conference “Advanced Carbon Nanostructures”, 29.06.2015 – 03.07.2015, St. Petersburg, Russia), СПбГУ ИТМО ISSN: 2220-8054(2016).

  2. Electronic structure, optical and magnetic properties of tetraphenylporphyrins-fullerene molecular complexes. Elistratova,MA; Zakharova,IB; Romanov,NM; Kvyatkovskii,OE; Zakharchuk,I; Lahderanta,E; Makarova,TL, J. Phys.: Conf. Ser., v.690, 1, стр. #012012- (В книге (сборнике): 17TH RUSSIAN YOUTH CONFERENCE ON PHYSICS OF SEMICONDUCTORS AND NANOSTRUCTURES, OPTO- AND NANOELECTRONICS (RYCPS 2015)) IOP PUBLISHING (2016).

  3. Strengthening mechanisms and properties of composite materials with carbon nanofibres. Skvortsova,AN; Lycheva,KA; Voznyakovskii,AA; Koltsova,TS; Larionova,TV, Mater. Phys. Mech., v.25, 1, pp. 30-36 (The 11th International Scientific and Technical Conference “Advanced Metal Materials and Technologies (AMMT`2015)”, June 23-27, 2015, St. Petersburg, Russia), IPME ISSN: 1605-2730 (2016).

  4. Reduction of the graphene oxide films by soft UV irradiation. Rabchinskii,MK; Dideikin,AT; Baidakova,MV; Shnitov,VV; Pronin,II; Kirilenko,DA; Brunkov,PN; Walter,J; Molodtsov,SL, p. #7549933 (В книге (сборнике): PROCEEDINGS - 2016 INTERNATIONAL CONFERENCE LASER OPTICS, LO 2016 ) IEEE COMPUTER SOCIETY ISBN: 978-1-4673-9735-3) (2016).PDF

  5. Investigation of optical and structural characteristics of the various median sizes luminescent diamonds produced by the shock wave synthesis with following grinding. Bogdanov,K; Osipov,V; Zhukovskaya,M; Jentgens,C; Treussart,F; Takai,K; Hayashi,T; Baranov,A; Fedorov,A, В книге (сборнике): NANOCON 2016 - CONFERENCE PROCEEDINGS, 8TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH AND APPLICATION , pp. 675-679 (8th International Conference on Nanomaterials - Research and Application, NANOCON 2016; Brno, Czech Republic; 19-21 October 2016), TANGER LTD. ISBN: 978-80872-9468-0 (2016).

  6. From Guest Editorial. Baidakova,MV; Dideikin,AT; Sharonova,LV, Наносистемы: физика, химия, математика, т.7, 1, стр. 21-21 (International Conference “Advanced Carbon Nanostructures”, 29.06.2015 – 03.07.2015, St. Petersburg, Russia) СПбГУ ИТМО ISSN: 2220-8054 (2016).

2015

Publications

  1. Structure and Bonding in Chlorine-Functionalized Nanodiamond-Nuclear Magnetic Resonance and X-Ray Photoelectron Spectroscopy Study. Panich,AM; Sergeev,NA; Olszewski,M; Froumin,N; Dideykin,AT; Sokolov,VV; Vul',AY, J. Nanosci. Nanotechnol., v.15, 2, pp. 1030-1036 (2014).

  2. Size dependence of C-13 nuclear spin-lattice relaxation in micro- and nanodiamonds. Panich,AM; Sergeev,NA; Shames,AI; Osipov,VY; Boudou,JP; Goren,SD, J. Phys.: Condens. Matter, v.27, 7 ArtNo: #072203 (2015).PDF

  3. XRD, NMR, and EPR study of polycrystalline micro- and nano-diamonds prepared by a shock wave compression method. Shames,AI; Mogilyansky,D; Panich,AM; Sergeev,NA; Olszewski,M; Boudou,JP; Osipov,VY, Phys. Status Solidi A-Appl. Mat., v.212, 6, pp. 1-10 (2015).

  4. Magnetic resonance tracking of fluorescent nanodiamond fabrication. Shames,AI; Osipov,VYu; Boudou,JP; Panich,AM; Von Bardeleben,HJ; Treussart,F; Vul',AYa, J. Phys. D-Appl. Phys., v.48, 15 ArtNo: #155302 (2015).PDF

  5. Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers. Sedov,V; Ralchenko,V; Khomich,AA; Vlasov,I; Vul,A; Savin,S; Goryachev,A; Konov,V, Diam. Relat. Mat., v.56, pp. 23-28 (2015).PDF

  6. Molecular dynamics-based refinement of nanodiamond size measurements obtained with dynamic light scattering. Koniakhin,SV; Eliseev,IE; Terterov,IN; Shvidchenko,AV; Eidelman,ED; Dubina,MV, Microfluid. Nanofluid., v.18, 5-6, pp. 1189-1194 (2015).PDF

  7. Graphite oxide Auger-electron diagnostics. Mikoushkin,VM; Kriukov,AS; Shnitov,VV; Solonitsyna,AP; Fedorov,VYu; Dideykin,AT; Sakseev,DA; Vilkov,OYu; Lavchiev,VM, J. Electron Spectrosc. Relat. Phenom., v.199 pp. 51-55 (2015).PDF

  8. One-step synthesis of a suspended ultrathin graphene oxide film: Application in transmission electron microscopy. Kirilenko,DA; Dideykin,AT; Aleksenskiy,AE; Sitnikova,AA; Konnikov,SG; Vul',AY, Appl. Micron, v.68, pp. 23-26 (2015).PDF

  9. Hybrid composite materials aluminum - Carbon nanostructures. Koltsova,T; Nasibulin,AG; Shamshurin,A; Shakhov,FM; Michailov,V, Materials Science - Medziagotyra, v.21, 3, pp. 372-375 (2015).PDF

  10. Mechanical properties of a diamond-copper composite with high thermal conductivity. Abyzov,AM; Shakhov,FM; Averkin,AI; Nikolaev,VI, Mater. Des., v.87, pp. 527-539 (2015).PDF

  11. Collapse of electrons to a donor cluster in SrTiO3. Fu,H; Reich,KV; Shklovskii,BI, Phys. Rev. B, v.92, 3 ArtNo: #035204 (2015).PDF

  12. Accumulation, inversion, and depletion layers in SrTiO3. Reich,KV; Schecter,M; Shklovskii,BI, Phys. Rev. B, v.91, 11, ArtNo: #115303 (2015).PDF

  13. Hopping conduction via ionic liquid induced silicon surface states. Nelson,J; Reich,KV; Sammon,M; Shklovskii,BI; Goldman,AM, Phys. Rev. B, v.92, 8 ArtNo: #085424 (2015).PDF

  14. Determining the content and binding energy of hydrogen in diamond films. Polyanskiy,AM; Polyanskiy,VA; Yakovlev,YA; Feoktistov,NA; Golubev,VG; Vul',AY, Tech. Phys. Lett., v.41, 6, pp. 540-542 (2015)

  15. Magnetic Studies of a Detonation Nanodiamond with the Surface Modified by Gadolinium Ions. Osipov VYu, Aleksenskiy AE, Takai K, Vul’ AYa, Phys. Sol. State, т.57, 11, стр. 2314–2319 (2015).

  16. Nonequilibrium distribution function in the presence of a heat flux at the interface between two crystals. Meilakhs,AP, Phys. Solid State, v.57, 1, pp. 148-152 (2015)).PDF

  17. On the possibility of oscillatory electrodynamic instability in nematic liquid crystal in a constant inhomogeneous electric field. Zelikman,MA; Eidel'man,ED, Tech. Phys. Lett., v.41, 6, pp. 614-616 (2015))

  18. Estimation of the contact area of solids by electrothermal analogy. Eidelman,ED, Наносистемы: физика, химия, математика, т.6, 4, стр. 547-550 (2015)

  19. Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications. Konoplyannikov,AG; Alekseenskiy,AE; Zlotin,SG; Smirnov,BB; Kalsina,SS; Lepehina,LA; Semenkova,IV; Agaeva,EV; Baboyan,SB; Rjumshina,EA; Nosachenko,VV; Konoplyannikov,MA, Crystallogr. Rep., v.60, 5, pp. 763-767 (2015)).

  20. Композиционные материалы на основе алюминия, упрочненные углеродными нановолокнами. Скворцова,АН; Лычева,КА; Возняковский,АА; Кольцова,ТС., НТВ СПбГПУ, т.3 (226) стр. 78-84 (2015). In Russian

  21. Нейтронные исследования и структурная диагностика синтезированных электродуговым методом и функционализированных углеродных наноструктур в растворах. Лебедев,ВТ; Вуль,АЯ; Тропин,ТВ, Вестник РФФИ, т.2 (86) стр. 55-60 (2015). In Russian

2014

Publications

  1. Defects in Nanodiamonds: Application of High-Frequency cw and Pulse EPR, ODMR. Yavkin,BV; Soltamov,VA; Babunts,RA; Anisimov,AN; Baranov,PG; Shakhov,FM; Kidalov,SV; Vul',AY; Mamin,GV; Orlinskii,SB, Appl. Magn. Reson., v.45, 10, pp.1035-1049 (2014).PDF

  2. Diamagnetism of carbon onions probed by NMR of adsorbed water. Panich,AM; Osipov,VYu; Takai,K, New Carbon Mat., v.29, 5, pp. 392-397 (2014).PDF

  3. Measurement of the effective thermal conductivity of particulate materials by the steady-state heat flow method in a cuvette. Abyzov,AM; Shakhov,FM, Meas. Sci. Technol., v.25, 12 ArtNo: #125009 (2014).
  4. Ratchet effect in graphene with trigonal clusters. Koniakhin,SV, Eur. Phys. J. B, v.87, 9 ArtNo: #216 (2014).PDF

  5. Combined experimental and DFT study of the chemical binding of copper ions on the surface of nanodiamonds.Gridnev,ID; Osipov,VY; Aleksenskii,AE; Vul,AY; Enoki,T, Bull. Chem. Soc. Jpn., v.87, 6, pp. 693-704 (2014).
  6. Theory of a field-effect transistor based on a semiconductor nanocrystal array. Reich,KV; Chen,T; Shklovskii,BI, Phys. Rev. B, v.89, 23 ArtNo: #235303 (2014).PDF

  7. Small-angle scattering from polydisperse particles with a diffusive surface.? Tomchuk,OV; Bulavin,LA; Aksenov,VL; Garamus,VM; Ivankov,OI; Vul',AY; Dideikin,AT; Avdeev,MV, J. Appl. Crystallogr., v.47, 2, pp. 642-653 (2014).

  8. Native and induced triplet nitrogen-vacancy centers in nano- and micro-diamonds: Half-field electron paramagnetic resonance fingerprint. Shames,AI; Osipov,VY; von Bardeleben,HJ; Boudou,JP; Treussart,F; Vul',AY, Appl. Phys. Lett., v.104, 6 ArtNo: #063107 (2014).PDF

  9. Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies. Bogdanov,K; Fedorov,A; Osipov,V; Enoki,T; Takai,K; Hayashi,T; Ermakov,V; Moshkalev,S; Baranov,A, Carbon, v.73, pp 78-86 (2014).PDF

  10. Effective thermal conductivity of disperse materials. II. Effect of external load.A.M. Abyzov, A.V. Goryunov, F.M. Shakhov. Int. J. Heat Mass Transf., v.70, pp. 1121-1136 (2014).PDF

  11. Utilizing of the medium-energy ion scattering spectrometry for the composition investigation of graphene oxide films on silicon surface. Afrosimov,VV; Dideykin,AT; Sakharov,VI; Serenkov,IT; Vul,SP, Наносистемы: физика, химия, математика (СПбГУ ИТМО ISSN: 2220-8054), т.5, 1, стр. 113-116 (2014).
  12. Conductive properties of the composite films of graphene oxide based on polystyrene in a metal-polymer-metal structure. Nikolaeva,MN; Bugrov,AN; Anan'eva,TD; Dideikin,AT, Russ. J. Appl. Chem., v.87, 8б pp. 1151-1155 (2014)).PDF

  13. Fabrication of a Compacted Aluminum-Carbon Nanofiber Material by Hot Pressing. Kol'tsova,TS; Shakhov,FM; Voznyakovskii,AA; Lyashkov,AI; Tolochko,OV; Nasibulin,AG; Rudskoi,AI; Mikhailov,VG, Tech. Phys., v.59, 11 стр. 1626-1630 (2014)).PDF

  14. Overheating or overcooling of electrons in a metal because of the effect of an interface with an insulator. Meilakhs,AP; Eidelman,ED, Jetp Lett., v.100, 2, стр. 81-85 (2014)).PDF

  15. Formation of detonation diamond layers on silicon by the aerosol method. Baidakova,MV; Dideikin,AT; Pavlov,SI; Sokolov,RV; Shnitov,VV, Tech. Phys. Lett., v.40, 9, pp. 739-742 (2014)).PDF

  16. Effect of fullerenes on the activation energy of the graphite-diamond phase transition. Shakhov,FM; Kidalov,SV, Phys. Solid State, v.56, 8, pp. 1622-1625 (2014)).PDF

  17. Внутренние волны в расплаве металла при электрофизических воздействиях. Эйдельман,ЕД; Колмаков,АГ; Хейфец,МЛ; Соболь,СФ, Актуальные вопросы машиноведения, т.3 стр. 31-36 (2014). In Russian

Proceedings

  1. Влияние режимов горячего прессования на структуру и свойства композиционного материала алюминий-углеродные нановолокна. Рудской,АИ; Кольцова,ТС; Шахов,ФМ; Толочко,ОВ; Михайлов,ВГ. МиТОМ, т.10 (712), стр. 9-15 (III Международная научно-техническая конференция “Нанотехнологии функциональных материалов-2014”, 24-28 июня 2014, СПб, Россия) ISSN: 0026-0819(2014) In Russian

  2. The electron-phonon matrix element in the dirac point of graphene. Koniakhin,SV; Eidelman,ED, Nanosyst. Phys. Chem. Math., vol.5, 1, pp. 142-147 (2014)(11th Biennial International Conference “Advanced Carbon Nanostructures”, Saint Petersburg, Russia, July 01–05, 2013)СПбГУ ИТМО ISSN: 2220-8054.

2013

Publications

  1. Spin-spin interactions between pi-electronic edge-localized spins and molecular oxygen in defective carbon nano-onions. Shames,AI; Osipov,VYu; Vul',AYa; Kaburagi,Y; Hayashi,T; Takai,K; Enoki,T, Carbon, v.61, pp. 173-189 (2013).PDF

  2. Room Temperature High-Field Spin Dynamics of NV Defects in Sintered Diamonds. Yavkin,BV; Mamin,GV; Orlinskii,SB; Kidalov,SV; Shakhov,FM; Vul',AYa; Soltamova,AA; Soltamov,VA; Baranov,PG, Appl. Magn. Reson., v.44, 10, pp. 1235-1244 (2013).PDF

  3. Graphene hydrogenation by molecular hydrogen in the process of graphene oxide thermal reduction. Mikoushkin,VM; Nikonov,SY; Dideykin,AT; Vul',AY; Sakseev,DA; Baidakova,MV; Vilkov,OY; Nelyubov,AV, Appl. Phys. Lett., v.102, 7, ArtNo: 071910 (2013).PDF

  4. Effective thermal conductivity of disperse materials. I. Compliance of the commonmodels to experimental data. Abyzov,AM; Goryunov, AV; F.M. Shakhov,FM, Int. J. Heat Mass Transfer., v.67, pp. 752-767 (2013).PDF

  5. Phonon drag thermopower in graphene in equipartition regime. Koniakhin,SV; Eidelman,ED, Europhys. Lett., v.103, 3 ArtNo: #37006 (2013).PDF

  6. Photoluminescence in arrays of doped semiconductor nanocrystals. Reich,KV; Chen,T; Efros,AL; Shklovskii,BI, Phys. Rev. B, v.88, 24 ArtNo: #245311 (2013).PDF

  7. Temperature gradient and Fourier`s law in gradient-mass harmonic systems. Reich,KV, Phys. Rev. E, v.87, 5 ArtNo: #052109 (2013).PDF

  8. Kapitza resistance between electron and phonon gases in the 1D case. Reich,KV, Prog. Theor. Exp. Phys., v.2013, 1, ArtNo: #013I01 (2013).PDF

  9. Structure of nanodiamonds prepared by laser synthesis. Baidakova,MV; Kukushkina,YA; Sitnikova,AA; Yagovkina,MA; Kirilenko,DA; Sokolov,VV; Shestakov,MS; Vul`,AY; Zousman,B; Levinson,O, Phys. Solid State, v.55, 8, pp. 1747-1753 (2013)).PDF

  10. Single-layer graphene oxide films on a silicon surface. Aleksenskii,AE; Brunkov,PN; Dideikin,AT; Kirilenko,DA; Kudashova,YV; Sakseev,DA; Sevryuk,VA; Shestakov,MS, Tech. Phys., v.58, 11, pp. 1614-1618 (2013)).PDF

  11. Preparation of colloidal films with different degrees of disorder from monodisperse spherical silica particles. Eurov,DA; Kurdyukov,DA; Trofimova,EY; Yakovlev,SA; Sharonova,LV; Shvidchenko,AV; Golubev,VG, Phys. Solid State, v.55, 8, pp. 1718-1724 (2013)).PDF

  12. New model of heat transport across the metal-insulator interface by the example of boundaries in a diamond-copper composite. Meilakhs,AP; Eidelman,ED, JETP Lett., v.97, 1, pp. 38-40 (2013)).PDF

  13. Labeling detonation nanodiamond suspensions using the optical methods. Konyakhin,SV; Sharonova,LV; Eidelman,ED, Tech. Phys. Lett., v.39, 3, pp. 244-247 (2013)).PDF

  14. Properties of copper-detonation nanodiamond composites obtained by spray drying. Vasil`eva,ES; Kidalov,SV; Sokolov,VV; Klimov,GG; Puguang,J, Tech. Phys. Lett., v.39, 1, pp. 137-139 (2013)).PDF

2012

Publications

  1. Ordered porous diamond films fabricated by colloidal crystal templating.Kurdyukov,DA; Feoktistov,NA; Nashchekin,AV; Zadiranov,YuM; Aleksenskii,AE; Vul`,AYa; Golubev,VG. Nanotechnology, v.23, 1 ArtNo: 015601 (2012).PDF

  2. Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. Grudinkin,SA; Feoktistov,NA; Medvedev,AV; Bogdanov,KV; Baranov,AV; Vul,AYa; Golubev,VG. J. Phys. D-Appl. Phys., v.45, 6, ArtNo: 062001 (2012).PDF

  3. Spin S=1 centers: a universal type of paramagnetic defects in nanodiamonds of dynamic synthesis. Shames,AI; Osipov,VYu; Von_Bardeleben,HJ; Vul`,AYa. J. Phys.: Condens. Matter, v.24, 22, ArtNo: 225302 (2012).PDF

  4. The nucleation and growth of nanocrystalline diamond films in millimeter-wave CVD reactor. Chernov,VV; Vikharev,AL; Gorbachev,AM; Kozlov,AV; Vul`,AY; Aleksenskii,AE. Fuller. Nanotub. Carbon Nanostruct., v.20, 4-7, 600-605 (2012).
  5. Deaggregation of diamond nanoparticles studied by NMR. Panich,AM; Aleksenskii,AE. Diam. Relat. Mat., v.27-28 стр. 45-48 (2012).PDF

  6. Magnetic resonance evidence of manganese-graphene complexes in reduced graphene oxide. Panich,AM; Shames,AI; Aleksenskii,AE; Dideikin,A. Solid State Commun., v.152, 6, стр. 466-468 (2012).PDF

  7. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Abyzov,AM; Kidalov,SV; Shakhov,FM. Appl. Therm. Eng., v.48 стр. 72-80 (2012).PDF

  8. Optical properties of detonation nanodiamond hydrosols. Aleksenskii,AE; Vul,AY; Konyakhin,SV; Reich,KV; Sharonova,LV; Eidel'man,ED. Phys. Solid State, v.54, pp. 578-585 (2012)).PDF

  9. Comprehensive study of electrosurface properties of detonation nanodiamond particle agglomerates in aqueous kcl solutions. Zhukov,AN; Gareeva,FR; Aleksenskii,AE. Colloid J., v.74, 4 pp. 463-471 (2012))PDF

  10. Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity. Abyzov,AM; Kidalov,SV; Shakhov,FM. Phys. Solid State, v.54, 1 pp. 210-215 (2012)).PDF

  11. Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids. Melenevskaya,EYu; Mokeev,MV; Nasonova,KV; Podosenova,NG; Sharonova,LV; Gribanov,AV. Russ. J. Phys. Chem. A, v.86, 10, pp. 1583-1587 (2012)).PDF

  12. The applicability of dynamic light scattering to determination of nanoparticle dimensions in sols. Aleksenskii,AE; Shvidchenko,AV; Eidel'man,ED. Tech. Phys. Lett., v.38, 12, pp. 1049-1052 (2012)). PDF

  13. Получение и структура порошков меди, дисперсно-упрочненной детонационными наноалмазами с использованием метода распыления растворов. Васильева,ЕС; Кидалов,СВ; Шевырталов,СН; Кольцова,ТС. НТВ СПбГПУ, т.159 стр. 97-100 (2012)).

2011

Publications

  1. Enormously High Concentrations of Fluorescent Nitrogen-Vacancy Centers Fabricated by Sintering of Detonation Nanodiamonds. Baranov,PG; Soltamova,AA; Tolmachev,DO; Romanov,NG; Babunts,RA; Shakhov,FM; Kidalov,SV; Vul',AY; Mamin,GV; Orlinskii,SB; Silkin,NI. Small, v.7, 11, pp. 1533-1537 (2011). PDF

  2. Raman characterization and UV optical absorption studies of surface plasmon resonance in multishell nanographite. Osipov,VYu; Baranov,AV; Ermakov,VA; Makarova,TL; Chungong,LF; Shames,AI; Takai,K; Enoki,T; Kaburagi,Y; Endo,M; Vul',AYa. Diam. Relat. Mat., v.20, 2, pp. 205-209 (2011). PDF

  3. Deagglomeration of detonation nanodiamonds. Aleksenskiy,AE; Eydelman,ED; Vul',AYa. Nanoscience Nanotechnology Lett., v.3, 1, pp. 68-74 (2011).

  4. Locating inherent unpaired orbital spins in detonation nanodiamonds through the targeted surface decoration by paramagnetic probes. Shames,AI; Osipov,VY; Aleksenskiy,AE; Osawa,E; Vul',AYa. Diam. Relat. Mat., v.20, 3, pp. 318-321 (2011). PDF

  5. Absorption and scattering of light in nanodiamond hydrosols. Vul',AY; Eydelman,ED; Sharonova,LV; Aleksenskiy,AE; Konyakhin,SV. Diam. Relat. Mat., v.20, 3, pp. 279-284 (2011). PDF

  6. Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. Panich,AM; Altman,A; Shames,AI; Osipov,VY; Aleksenskiy,AE; Vul',AY. J. Phys. D-Appl. Phys., v.44, 12 ArtNo: #125303 (2011). PDF

  7. Detonation nanodiamonds as catalyst supports. Vershinin,NN; Efimov,ON; Bakaev,VA; Aleksenskii,AE; Baidakova,MV; Sitnikova,AA; Vul',AYa. Fuller. Nanotub. Carbon Nanostruct., v.19, 1-2, pp. 63-68 (2011).
  8. Detection and identification of nitrogen centers in nanodiamond: EPR studies. Ilyin,IV; Soltamova,AA; Baranov,PG; Vul,AY; Kidalov,SV; Shakhov,FM; Mamin,GV; Orlinskii,SB; Silkin,NI; Salakhov,MK. Fuller. Nanotub. Carbon Nanostruct., v.19, 1-2, pp. 44-51 (2011). PDF

  9. Palladium supported on detonation nanodiamond as a highly effective catalyst of the C=C and C=C bond hydrogenation. Turova,OV; Starodubtseva,EV; Vinogradov,MG; Sokolov,VI; Abramova,NV; Vul',AY; Alexenskiy,AE. Catal. Commun., v.12, 7, pp. 577-579 (2011). PDF

  10. Closed-Electron Network in Large Polyhedral Multi-Shell Carbon Nanoparticles. Shames,AI; Felner,I; Osipov,VYu; Katz,EA; Mogilko,E; Grinblat,J; Panich,AM; Belousov,VP; Belousova,IM; Ponomarev,AN. Nanoscience Nanotechnology Lett., v.3, 1, pp. 41-48 (2011).
  11. Creation of a single and quadrupole optical vortices by light focused by a two-component crystal-optics element: Prediction of an octupole vortex structure. Osipov,VYu; Buznikov,AA. Proc. SPIE, v.7822, pp. #78220G- (2011).
  12. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. Abyzov,AM; Kidalov,SV; Shakhov, FM. J. Mater. Sci., 46, pp.1424-1438, (2011). PDF

  13. Infrared absorption study of surface functional groups providing chemical modification of nanodiamonds by divalent copper ion complexes. Osipov, VYu; Aleksenskiy, AE; Shames, AI; Panich, AM; Shestakov, MS; Vul’, AYa. Diam. Relat. Mater., v.20, pp. 1234-1238 (2011). PDF

  14. Monolayer graphene from graphite oxide. Dideykin, A; Aleksenskiy,AE; Kirilenko, D; Brunkov, P; Goncharov, V; Baidakova, M; Sakseev, D; Vul', AYa. Diam. Relat. Mater., v.20, pp.105-108 (2011). PDF

  15. Measuring the corrugation amplitude of suspended and supported graphene." Kirilenko,DA; Dideykin,AT; Van Tendeloo,G. Phys. Rev. B, v.84, 23 ArtNo: #235417 (2011). PDF

  16. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds. Kidalov,SV; Shakhov,FM; Lebedev,VT; Orlova,DN; Grushko,YS. Crystallogr. Rep., v.56, 7, pp. 1181-1185 (2011). PDF

  17. Electron-phonon interaction in a local region. Reich,KV; Eidelman,ED. Phys. Solid State, v.53, 8, pp. 1704-1706 (2011)). PDF

  18. Optical properties of nanodiamond suspensions. Reich,KV. Jetp Lett., v.94, 1, pp. 22-26 (2011)). PDF

  19. Aerosol deposition of detonation nanodiamonds used as nucleation centers for the growth of nanocrystalline diamond films and isolated particles. Feoktistov,NA; Sakharov,VI; Serenkov,IT; Tolmachev,VA; Korkin,IV; Aleksenskii,AE; Vul`,AY; Golubev,VG. Tech. Phys., v.56, 5, pp. 718-724 (2011)).PDF

  20. Boron-doped transparent conducting nanodiamond films. Feoktistov,NA; Grudinkin,SA; Rybin,MV; Smirnov,AN; Aleksenskii,AE; Vul',AY; Golubev,VG. Tech. Phys. Lett., v.37, 4, pp. 322-325 (2011)). PDF

  21. Interference of polarized waves at the exit of crystal prisms and their use to control the wavefront flatness. Osipov,VYu; Osipov,YuV; Popov,VN; Buznikov,AA. Optoelectronics, Instrumentation and Data Processing, v.47, 2, pp. 175-193 (2011)). PDF

  22. Thermal conductivity of the diamond-paraffin wax composite. Abyzov,AM; Kidalov,SV; Shakhov,FM. Phys. Solid State, v.53, 1, pp. 48-52 (2011).PDF

  23. Synthesis and properties of superhard crystalline materials in boron-carbon-nitrogen system. Kidalov,SV; Shakhov,FM; Davidenko,VM; Yashin,VA. Tech. Phys. Lett., v.37, 3, pp. 247-249 (2011)). PDF

  24. Diagnostics of plasmon resonance in optical absorption spectra of nanographite aqueous suspensions. Osipov,VY; Shestakov,MS; Baranov,AV; Ermakov,VA; Shames,AI; Takai,K; Enoki,T; Kaburagi,Y; Hayashi,T; Endo,M; Vul',AY. Opt. Spectrosc., v.111, 2, pp. 220-223 (2011)). PDF

  25. Effect of tetraethoxysilane pretreatment on synthesis of colloidal particles of amorphous silicon dioxide. Trofimova,EY; Aleksenskii,AE; Grudinkin,SA; Korkin,IV; Kurdyukov,DA; Golubev,VG. Colloid J., v.73, 4, pp. 546-550 (2011)). PDF

  26. Controlling graphite oxide bandgap width by reduction in hydrogen. Mikoushkin,VM; Shnitov,VV; Nikonov,SY; Dideykin,AT; Vul`,SP; Vul`,AY; Sakseev,DA; Vyalikh,DV; Vilkov,OY. Tech. Phys. Lett., v.37, 10, pp. 942-945 (2011)). PDF

  27. Effect of water on silica gel adsorption with respect to human blood plasma components. Gal,LN; Malachova,MYa; Melenevskaya,EYu; Podosenova,NG; Sharonova,LV. Biomeditsinskaya Khim., v.57, 6, pp. 635-641 (2011).

2010

Publications

  1. Structure and Magnetic Properties of Detonation Nanodiamond Chemically Modified by Copper. Shames,AI; Panich,AM; Osipov,VY; Aleksenskiy,AE; Vul',AY; Enoki,T; Takai,K. Journal. Appl.Phys., Vol. 107, 014318 (2010). PDF

  2. A Model of Field Emission from Carbon Nanotubes Decorated by Nanodiamonds. Vul',A; Reich,K; Eidelman,E; Terranova,ML; Ciorba,A; Orlanducci,S; Sessa,V; Rossi,M. Adv. Sci. Lett., v.3, 2, pp. 110-116 (2010).
  3. Interaction between edge-localized spins and molecular oxygen in multishell nanographites derived from nanodiamonds. Osipov,VYu; Shames,AI; Enoki,T; Takai,K; Endo,M; Kaburagi,Y; Vul',AYa. Diam. Relat. Mat., v.19, 5-6, Sp. Iss. SI страницы: 492-495. PDF

  4. Grain-boundary heat conductance in nanodiamond composites. Kidalov,SV; Shakhov,FM; Vul’,AY; Ozerin,AN. Diam. Relat. Mat., v.19, 7-9, 976-980 (2010). PDF

  5. Erratum: Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds. (Physica B: Condensed Matter (2009) 404 (4522-4524)) Osipov,VY; Shames,AI; Vul',AY, Physica B, v.405, 16, pp.3512-3512 (2010).
  6. MRI-Contrasting System Based on Water-Soluble Fullerene/Gd-Metallofullerene Mixture. Grushko,YS; Kozlov,VS; Sedov,VP; Kolesnik,SG; Lebedev,VT; Shilin,VA; Khodorkovsky,MA; Artamonova,TO; Shakhmin,AL; Shamanin,VV; Melenevskaya,EY; Konnikov,SG; Zamorianskaya,MV; Tsyrlina,EV; Krzhivitsky,PI. Fuller. Nanotub. Carbon Nanostruct., v.18, Part 1, 4-6, pp.417-421 (2010).
  7. Free graphene films obtained from thermally expanded graphite. Dideikin,AT; Sokolov,VV; Sakseev,DA; Baidakova,MV; Vul',AY. Tech. Phys., v.55, 9, 1378-1381 (2010)).PDF

  8. Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds. Soltamova,AA; Il`in,IV; Shakhov,FM; Kidalov,SV; Vul',AY; Yavkin,BV; Mamin,GV; Orlinskii,SB; Baranov,PG. JETP Lett., v.92, 2, 102-106 (2010)). PDF

  9. Surface charge of detonation nanodiamond particles in aqueous solutions of simple 1:1 Electrolytes. Zhukov,AN; Gareeva,FR; Aleksenskii,AE; Vul,AY, Colloid J., v.72, 5 pp. 640-646 (2010)). PDF

  10. Formation of variable-spatial frequency interference patterns with the use of birefringent crystal prisms for laser Fourier spectroscopy. Osipov,VYu; Osipov,YuV; Popov,VN; Buznikov,AA, Optoelectronics, Instrumentation and Data Processing, v.46, 2, pp. 181-197 (2010)). PDF

  11. Влияние модификации углеродными наночастицами на работоспособность шлифовальных алмазных кругов. Кремень,ЗИ; Поповский,ДА; Чухнов,ВВ; Кидалов,СВ; Головко,ЕП. Металлообработка, т.5, стр.8-9 (2010). In Russian

Proceedings

  1. Nitrogen centers in nanodiamonds: EPR studies. Soltamova,AA; Baranov,PG; Ilyin,IV; Vul',AY; Kidalov,SV; Shakhov,FM; Mamin,GV; Silkin,NI; Orlinskii,SB; Salakhov,MK, In book: SILICON CARBIDE AND RELATED MATERIALS 2009 Mater. Sci. Forum, v.645-648, Part 1-2, pp. 1239-1242, 2010 1340 pp.(13th International Conference on Silicon Carbide and Related Materials, Nürnberg, Germany, October 11-16, 2009)

  2. Detonation Nanodiamonds as Catalyst Supports. N.N. Vershinin, O.N. Efimov, V.A. Bakaev, A.E. Aleksenskii, M.V. Baidakova, A.A. Sitnikova, and A.Ya. Vul'. Fullerenes, Nanotubes and Carbon Nanostructures, Vol. 19, Issue 1-2: Proceedings of the 9th Biennial International Workshop “Fullerenes and Atomic Clusters”—Part 2 (2010).

2009

Publications

  1. Nanographene and Nanodiamond; New Members in the Nanocarbon Family T. Enoki, K. Takai, V. Osipov, M. Baidakova, A. Vul'. Chemistry - An Asian Journal, Vol. 4(6), pp. 796-804 (2009).PDF

  2. Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds. V.Yu. Osipov, A.I. Shames, A.Ya. Vul'. Physica B. Condensed Matter., Vol. 404, pp. 4522-4524 (2009).PDF

  3. Erratum: Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds (Physica B: Condensed Matter (2009) 404 (4522-4524))

  4. Detection and identification of nitrogen defects in nanodiamond as studied by EPR. A.A. Soltamova, I.V. Ilyin, P.G. Baranov, A.Ya. Vul, S.V. Kidalov, F.M. Shakhov, G.V. Mamin, S.B. Orlinsii, N.I. Silkin, M.Kh. Salakhov. Physica B. Condensed Matter., Vol. 404 (23-24), pp. 4518-4521 (2009).PDF

  5. Magnetic and EPR studies of edge-localized spin paramagnetism in multi-shell nanographites derived from nanodiamonds. Osipov,VYu; Shames,AI; Enoki,T; Takai,K; Endo,M; Hayashi,T; Kaburagi,Y; Vul',AYa, Diam. Relat. Mat., v.18, 2-3, pp. 220-223 (2009).PDF

  6. Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions. A.M. Panich, A.I. Shames, O. Medvedev, V.Yu. Osipov, A.E. Aleksenskiy, A.Ya. Vul'. Appl. Magn. Reson., Vol. 36, pp. 317-329 (2009).PDF

  7. Effect of electron-phonon interaction on field emission from carbon nanostructures. K.V. Reich and E.D. Eidelman. EPL, Vol. 85, 47007 (2009).PDF

  8. Thermal Conductivity of Diamond Composites. Kidalov,SV; Shakhov,FM, Materials, v.2, 4, pp. 2467-2495 (2009)

  9. Electron spin resonance detection and identification of nitrogen centers in nanodiamonds. Baranov,PG; Il`in,IV; Soltamova,AA; Vul`,AY; Kidalov,SV; Shakhov,FM; Mamin,GV; Orlinskii,SB; Salakhov,MK, Jetp Lett., Vol. 89, 409-413 (2009)).PDF

  10. Graphene ladder: A model of field emission center on the surface of loose nanocarbon materials. Babenko,AY; Dideykin,AT; Eidelman,ED, Phys. Solid State, v.51, 2, pp. 435-439 (2009)). PDF

  11. Optical properties, electronic band structure, and vibrational spectrum of thin C-60-TPP films Zakharova,IB; Kvyatkovskii,OE; Donenko,EG; Biryulin,YF, Phys. Solid State, v.51, 9, pp. 1976-1983 (2009))PDF

  12. Formation of a quadrupole vortex and a second-order optical vortex in caustics upon focusing of light by a two-component crystal-optics element. Osipov,VY; Buznikov,AA, Opt. Spectrosc., v.107, 3, pp. 417-423 (2009))PDF

  13. Синтез и физико-химические свойства каталитически активных наноалмазов. Вершинин,НН; Бакаев,ВА; Ефимов,ОН; Коробов,ИИ; Гусев,АЛ; Алексенский,АЕ; Байдакова,МВ; Вуль,АЯ, Международный научный журнал "Альтернативная энергетика и экология", том. 9 (77), 123-127 (2009). In Russian

  14. Тепловые транспортные свойства наножидкостей на основе детонационных алмазов. Кидалов,СВ; Богомазов,ИЕ; Вуль,АЯ, Перспективные материалы, вып. 7, 139-142 (2009). In Russian

  15. Влияние фуллерена на адсорбционные свойства силикагеля по отношению к среднемолекулярным пептидам. Подосенова,НГ; Галль,ЛН; Меленевская,ЕЮ; Романенко,СМ; Шаронова,ЛВ; Крюкова,ЕГ, Эфферентная терапия, т.15, 3-4, стр. 8-13 (2009). In Russian

  16. Влияние воды на адсорбцию компонентов плазмы крови силикагелем. Галль,ЛН; Малахова,МЯ; Меленевская,ЕЮ; Подосенова,НГ; Шаронова,ЛВ, Эфферентная терапия, т.15, 3-4, стр. 14-18 (2009). In Russian

Proceedings

  1. Multi-component and composite optical vortices in the neighborhood of diffraction catastrophe and nonuniformly polarized caustic cusps. Osipov,VY; Buznikov,AA, J. Opt. A-Pure Appl. Opt., v.11, 9, p. #094019- (2009). PDF

  2. Creation of a single optical vortex in the vicinity of a double caustic cusp by light focused by a two-component crystal-optics element. Osipov,VYu; Buznikov,AA, SPIE, v.7388, p. #73880B- (2009).

2008

Publications

  1. Thermal conductivity of sintered nanodiamonds and microdiamonds. S.V. Kidalov, F.M. Shakhov, A.Ya. Vul'. Diamond and Related Materials, Vol. 17(4-5), pp. 844-847 (2008)

  2. Optical and vibrational properties of thin film fullerene-Zn(II) tetraphenylporphyrin complexes. Zakharova,IB; Donenko,EA; Biryulin,YuF; Sharonova,LV; Makarova,TL, Fullerenes, Nanotubes and Carbon Nanostructures, Vol.16(5-6), 424-429 (2008).PDF

  3. Strongly non-linear carbon nanofibre influence on electrical properties of polymer composites. Biryulin,Yu; Kurdybaylo,D; Shamanin,V; Aleksjuk,G; Volkova,T; Melenevskaya,E; Saydashev,I; Eidelman,E; Makarova,T; Terukov,E; Zaitseva,N; Negrov,V; Tkatchyov,A, Fullerenes, Nanotubes and Carbon Nanostructures, Vol.16(5-6), 629-633 (2008). PDF

  4. Microwave and optical absorption of composite layers of carbon nanofibres in dielectric polymer matrix. Biryulin,Yu; Kurdybaylo,D; Volkova,T; Sharonova,L; Shamanin,V; Terukov,E; Aleksjuk,G; Prikhodko,A; Negrov,V; Tkatchyov,A. Fuller. Nanotub. Carbon Nanostruct., v.16, 5-6, pp. 634-639 (2008).PDF

  5. Determination of an optimal pressure under field emission from diamondlike films. Reich,KV; Eidelman,ED; Dideykin,AT; Vul,AY. Tech. Phys., v.53, 2, pp. 261-263 (2008)).PDF

  6. Static synthesis of microdiamonds from a charge containing nanodiamonds. Kidalov,SV; Shakhov,FM; Davidenko,VM; Yashin,VA; Bogomazov,IE; Vul',AY. Tech. Phys. Lett., v.34, 8, pp. 640-642 (2008)).PDF

  7. Effect of carbon materials on the graphite-diamond phase transition at high pressures and temperatures. Kidalov,SV; Shakhov,FM; Davidenko,VM; Yashin,VA; Bogomazov,IE; Vul,AY. Phys. Solid State, v.50, 5, pp. 981-985 (2008)).PDF

  8. Calculating the three-dimensional structure of the near-focus diffraction field in the caustic zone of a convergent aberrational laser beam. Osipov,VY; Buznikov,AA. J. Opt. Technol., v.75, 8, pp. 495-499 (2008)).PDF

  9. Адсорбция среднемолекулярных пептидов на силикагеле. Крюкова,ЕГ; Меленевская,ЕЮ; Новиков,АВ; Подосенова,НГ; Шаронова,ЛВ. Сорбционные и хроматографические процессы, т.8, 4 стр. 668-676 (2008). In Russian

  10. Влияние режима термической подготовки силикагеля на его адсорбционные свойства по отношению к молекулам средней массы. Меленевская,ЕЮ; Новиков,АВ; Подосенова,НГ; Шаронова,ЛВ. Сорбционные и хроматографические процессы, т.8, 4, стр. 677-685 (2008). In Russian

  11. Композиционный материал алмаз-медь с высокой теплопроводностью. Абызов,АМ; Кидалов,СВ; Шахов,ФМ, Материаловедение, 5, стр.24 (2008). In Russian

  12. Моделирование поверхности наноалмазных частиц, полученных размалыванием. Коняхин,СВ; Эйдельман,ЕД, Вестник Полоцкого Гос. университета. Серия С. Фундаментальные науки. Физика. 2008, 9, с.93-97. In Russian

Proceedings

  1. Proceedings of the 8th Biennial International Workshop Fullerences and Atomic Clusters. Eds.: Lemanov,VV; Vul,AY. Fuller. Nanotub. Carbon Nanostruct., v.16, 5-6, pp. 283-284 (432 стр., TAYLOR & FRANCIS INC ISSN: 1536-383X) (2008).
  2. The influence of fullerene on adsorption properties of silica gel with respect to medium-molecular-mass peptides. Gall,LN; Podosenova,NG; Novikov,AV; Melenevskaya,EYu; Sharonova,LV. Fuller. Nanotub. Carbon Nanostruct., v.16, 5-6, pp. 687-692 (2008).

2007

Publications

  1. Defects localization and nature in bulk and thin film utrananocrystalline diamond. Shames,AI; Panich,AM; Porro,S; Rovere,M; Musso,S; Tagliaferro,A; Baidakova,MV; Osipov,VYu; Vul`,AYa; Enoki,T; Takahashi,M; Osawa,E; Williams,OA; Bruno,P; Gruen,DM, Diam. Relat. Mater., Vol. 16(10), , pp. 1806-1812 (2007).

  2. The strong thermoelectric effect in nanocarbon generated by ballistic phonon drag of electrons. Eidelman,ED; Vul,AY, Journal of Physics: Condensed Matter, 2007, Vol. 19(7), pp. 266210-266223. PDF

  3. New prospects and frontiers of nanodiamond clusters. Baidakova,M; Vul`,A, J. Phys.D: Appl. Phys. 2007, Vol. 40, P. 6300-6311. PDF

  4. Correlation between viscosity and absorption of electromagnetic waves in an aqueous UNCD suspension. Vul`,AYa; Eydelman,ED; Inakuma,M; Osawa,E, Diamond and Related Materials, 2007, Vol. 16, No. 12, pp. 2023-2028.
  5. Structures and electronic properties of surface/edges of nanodiamond and nanographite. Enoki,T; Kobayashi,Y; Katsuyama,C; Osipov,VYu; Baidakova,MV; Takai,K; Fukui,KI; Vul',AYa, Diam. Relat. Mater., Vol. 16, No. 12, pp. 2029-2034 (2007).
  6. Thermal conductivity of nanocomposites based on diamonds and nanodiamonds. Kidalov,SV; Shakhov,FM; Vul`,AYa, Diamond and Related Materials, 2007, Vol. 16, No. 12, pp. 2063-2066.
  7. Paramagnetic defects and exchange coupled spins in pristine ultrananocrystalline diamonds. V.Yu. Osipov, A.I. Shames, T. Enoki, K. Takai, M.V. Baidakova and A.Ya. Vul'. Diam. Relat. Mater., Vol. 16, No. 12, pp. 2035-2038 (2007).
  8. Estrogenic compounds removal by fullerene-containing membranes. Jin,X; Hu,JY; Tint,ML; Ong,SL; Biryulin,Y; Polotskaya,G, Desalination, 2007, Vol. 214 (1-3), pp. 83-90.

  9. Determination of temperature difference in carbon nanostructures in field emission. Reich,KV; Eidelman,ED; Vul',AY. Tech. Phys., v.52, 7, стр. 943-946 (2007)). PDF

  10. Nanocarbon studies in Russia: From fullerenes to nanotubes and nanodiamonds. Vul',AY; Sokolov,VI. Nanotechnologies Russ., v.4, 7-8 pp. 397-414 (2007)). PDF

Proceedings

  1. Magnetic Properties of hydrogenated and fluorinated surface layer of diamond nanoparticle. Baidakova,MV; Osipov,VYu; Katsuyama,C; Takai,K; Enoki,T; Yonemoto,A; Touhara,H; Vul,AYa, В книге (сборнике): Multifunctional Conducting Molecular Materials. Special Publications , pp. 224-231, 288 стр., RSC PUBLISHING ISBN: 978-0-85404-496-2 (2007)(Symposium Science and Engineering of the Future with Multifunctional Conducting Molecular Materials held at the 2005 International Chemical Congress of Pacific Basin Societies (Pacifichem 2005) held in Honolulu, Hawaii, USA on 15-17 December 2005)