|
9th Biennial International Workshop
Fullerenes
and Atomic Clusters
IWFAC'2009
July 6-10, 2009
St Petersburg, Russia Abstracts
CONTENTS |
page |
Invited Lectures
|
Inv1 |
V.L.
Aksenov, Joint Institute for Nuclear Research, Russia
Last Results in Neutron Scattering Research of Carbon Nanostructures
|
2 |
Inv.2 |
M.Ya.
Amusia, Ioffe Institute, Russia
Fullerenes Shells as Resonators and Amplifiers |
3 |
Inv.3 |
A.A.
Balandin, University of California, USA
Thermal Conductivity of Graphene |
4 |
Inv.4 |
P.G.
Baranov, Ioffe Institute, Russia
EPR and ODEPR as Methods of Characterization of Nanocarbons |
5 |
Inv.5 |
Fabbro C., Montellano Lopez A., Prato M., T. Da Ros , Pharmaceutical
Sciences Department University of Trieste, Italy
Medicinal Chemistry and Pharmacological Potential of Fullerenes and
Carbon Nanotubes |
6 |
Inv.6 |
Y.
Matsuo, University of Tokyo, Japan
C60 Derivatives having Self-assembly Capabilities |
7 |
Inv.7 |
E.D.
Obraztsova , The Natural Sciences Center at General Physics Institute,
Moscow, Russia
Carbon Nanotubes for Nonlinear Optics and Laser Physics |
8 |
Inv.8 |
J.
Onoe, Tokyo Institute of Technology, Japan
One-dimensional Metallic Peanut–shaped Nanocarbons with Positive
and Negative Gaussian Curvatures: Toward a New Science of Quantum
Electronic Systems on Curved Surfaces |
9 |
Inv.9 |
V.F.
Razumov , Institute of Problems of Chemical Physics, Chernogolovka,
Russia
Fullerene-based Materials for Organic Electronics |
10 |
Inv.10 |
S.
Ravi P. Silva, Advanced Technology Institute University of Surrey,
England
Carbon superlattice based on Diamond-Like Carbon Films for High Speed
Electronics |
11 |
Inv.11 |
R.
Tenne, Weizmann Institute of Science, Israel
Inorganic Nanotubes |
12 |
Inv.12 |
K.
Tsukagoshi , Research Center for Materials Nanoarchitectonics,
International Center for Materials Nanoarchitectonics, National Institute
for Materials Science, Japan
Gate induced Band Gap for Graphene Device |
13 |
Inv.13 |
V.A.
Volkov, The Institute of Radioengineering and Electronics, Moscow,
Russia
Electrons in Graphene: Theoretical Expectations and Experiments |
14 |
Oral Session
|
Or.1 |
Amsharov
K.Yu.,
Jansen M.
Toward the direct synthesis of higher fullerenes |
15 |
Or.2 |
R.Z.
Bakhtizin, A.I. Oreshkin, V. Kumar, P. Murugan, J.T. Sadowski,
Y. Fujikawa, Y. Kawazoe, T. Sakurai
STM study on the Interactions of Individual C60F18
Molecules with the Si(111)-7x7 Surface |
16 |
Or.3 |
S.V.
Demishev, A.L. Chernobrovkin, V.V. Glushkov, E.A. Goodilin, A.V.
Grigorieva, T.V. Ishchenko, A.V. Kuznetsov, N.E. Sluchanko, Yu.D.
Tretyakov, A.V. Semenov
Anomalous Magnetism and Quantum Critical Phenomena in VOx
Multiwall Nanotubes |
17 |
Or.4 |
P.S.
Dorozhkin, A. Schekin, A. Shelaev, V. Bykov
Combined Scanning Probe Microscopy and Micro/nano Raman Studies of
Modern Nanostructures |
18 |
Or.5 |
Yu.S.
Grushko , V.S. Kozlov, V.P. Sedov, S.G. Kolesnik, V.T. Lebedev,
V.A. Shilin, Yu.E. Loginov, V.V. Kukorenko, E.V. Tsyrlina,.I. Krzhivitsky
P., M.A. Khodorkovsky, T.O. Artamonova, A.L. Shakhmin, V.V. Shamanin,
E.Yu. Melenevskaya, S.G. Konnikov, M.V. Zamorianskaya
MRI-contrasting System based on Water-solublefullerene/Gd-metallofullerene
Mixture |
19 |
Or.6 |
Musatov
A.L., Gulyaev Yu.V., Izrael'yants K.R., K.R. Izrael'yants,
Ormont A.B., Chirkova E.G., Maslennikov O.Yu., Guzilov I.A., Kiselev
N.A., Kukovitskiy E.F.
Small-Sized X-Ray Tube with the Carbon Nanotube Field Electron Emitter
|
20 |
Or.7 |
V.A.
Karachevtsev
Carbon Nanotubes-DNA Hybrids: Structures and Properties |
21 |
Or.8 |
E.A.
Katz, A.I. Shames, L. Zeiri, T.L. Makarova
Determination of Crystallite size La in Nanocarbon Materials by Raman
Spectroscopy: an Open Question |
22 |
Or.9 |
A.V. Krestinin, A.P. Kharitonov, L.N. Kharitonova, Yu.M. Shul'ga,
O.M. Zhigalina, E.I. Knerel'man, M.M. Brzhezinskaya, A.S. Vinogradov,
A.B. Preobrazhenskii, G.I. Zvereva, M.B. Kislov, B.M. Martynenko,
N.A. Kiselev, M. Dubois
The Synthesis and Characterization of Fluorinated Single-walled Carbon
Nanotubes |
23 |
Or.10 |
Butko
V.Y., Kloc C., Ramirez A. P.
Effect of correlated rotational order on nonlinear transport in C60
|
24 |
Or.11 |
D.V.
Konarev , S.S. Khasanov, G. Saito, R.N. Lyubovskaya
The Design of Ionic Complexes of Fullerenes Manifesting High Conductivity
and Coexistence of High Conductivity and Magnetic Interactions |
25 |
Or.12 |
M. Liu, Y. Lian, J. Zhang, L. Gong
Modification of Single-walled Carbon Nanotubes by Ammonium Sulfamate
|
26 |
Or.13 |
Yu.E.
Lozovik
Electronic Properties and Coherent Phases in Graphene and Graphene
Structures |
27 |
Or.14 |
V. Kuznetsov, I. Mazov,S. Moseenkov, A. Romanenko, O. Anikeeva,
T. Buryakov, P. Kuzhir, S. Maksimenko, V. Suslyaev
Electrophysical and Electromagnetic Properties of Pure MWNTs and MWNT/PMMA
Composite Materials depending on their Structure |
28 |
Or.15 |
K.P.
Meletov , A.V. Krestinin, J. Arvanitidis , D. Christofilos, G.A.
Kourouklis
Temperature Effects in the Raman Spectra of Bundled Single-walled
Carbon Nanotubes |
29 |
Or.16 |
V.Z
Mordkovich , S.V. Zaglyadova, A.R Karaeva., I.A. Maslov, A.K.
Don
Prospective Ways for Production of Long Aligned Carbon Nanofiber Strands
|
30 |
Or.17 |
A.V.
Okotrub, M.A. Kanygin, A.G. Kudashov, A.G. Guselnikov, L.G. Bulusheva
Interactions of Ultra Soft X-rays with Carbon Nanotube Arrays |
31 |
Or.18 |
A.V.
Palnichenko, Yu.A. Ossipyan, N.S. Sidorov, O.M. Vyaselev,
M.V. Kartsovnik, M. Opel, V.V. Avdonin, D.V. Shakhrai, V.E. Fortov
Superconductivity of Calcium C 60 Intercalation Compound
Synthesized by
Shock-Wave Pressure |
32 |
Or.19 |
R.J.
Papoular, R. Le Parc, V. Dmitriev, V.A. Davydov, A.V. Rakhmanina,
V. Agafonov
First Observation of the FCC to Rhombohedral Transition of dimerized
C 60 under High-pressure |
33 |
Or.20 |
L.B.
Piotrovsky , M.Yu. Eropkin, M.A. Dumpis, E.V. Litasova, E.M. Eropkina,
O.I Kiselev
Toxicological Characterization of Fullerene C 60 in vitro
– dependence on Preparations and Cell Line |
34 |
Or.21 |
A.M.
Popov , E. Bichoutskaia, Y.E. Lozovik
, O.V. Ershova, I.V. Lebedeva, A.A. Knizhnik
Nanoresonator Based on Relative Vibrations of the Walls of Carbon
Nanotubes |
35 |
Or.22 |
E.F.
Sheka , B.S. Razbirin
Fullerene-cluster Amplifiers and Nanophotonics of Fullerene Solutions
|
36 |
Or.23 |
V.I.
Sokolov , E.G. Rakov, N.A. Bumagin, M.G. Vinogradov
New Method to Prepare Nanopalladium Clusters Immobilised on Carbon
Nanotubes, a very Efficient Catalyst for forming the Carbon-carbon
Bonds and Hydrogenation |
37 |
Or.24 |
Gy.
Torok, V.T. Lebedev, L.V. Vinogradova, D.N. Orlova, V.V. Shamanin
Molecular Correlations in Bulk Star-shaped Polystyrene with Fullerene
C60 Center |
38 |
Or.25 |
D.
Usachov, V.K. Adamchuk, A.M. Shikin, D. Marchenko, M. Brzhezinskaya,
A. Varykhalov, O. Rader
Electronic Structure of Graphene-related Nanosystems |
39 |
Or.26 |
S.
Yamana
Business Development of Fullerenes in Life Science Applications
|
40 |
POSTER SESSIONS
|
1. Electronic Properties of nanotubes
|
|
P1.1 |
Arkhipov
A.V., Mishin M.V., Kuzmichev
A.V.
Interpretation of dynamic and dc field-emission characteristics of
nanocarbons in terms of two-stage emission model |
42 |
P1.2 |
Arkhipov A.V., Bondarenko
V.B., Gabdullin P.G.
On possible structure of field-induced electron emission centers of
nano-porous carbon |
43 |
P1.3 |
Arkhipov
A.V., Gabdullin P.G.
"Fine structure" of emission I-V characteristics of nano-dispersed
films |
44 |
P1.4 |
Arkhipov A.V.
Facilitating effect of non-stationary electric field on electron emission
from nanocarbon films |
45 |
P1.5 |
Belolipetskii
A.A., Lebedev N.G.
Research of dependence of SWCNTs dipole moment on its length |
46 |
P1.6 |
Belskii M.D., Bocharov G.S.,
Eletskii A.V.
Electrical field amplification in electron field emitters on the basis
of carbon nanotubes |
47 |
P1.7 |
Musatov A.L.,
Izrael'yants K.R., Ormont A.B., Chirkova E.G., Kukovitskii
E.F.
High current density planar field electron emitters with carbon nanotubes
|
48 |
P1.8 |
Kharissova O.V., Osorio M., Garza
M., Kharisov B.I.
Study of bismuth nanoparticles and nanotubes obtained by microwave
heating |
49 |
P1.9 |
Kharissova
O.V., Ortiz Mendez U., Kharisov B.I.
Fe-filled carbon nanotubes produced by microwave heating of ferrocene
|
50 |
P1.10 |
Kondrashov V.A.,
Nevolin V.K.
The pulse discharge method for carbon nanotube ring production |
51 |
P1.11 |
Krinichnaya
E.P., Moravsky A.P., Loutfy R.O., Ivanova O.P., Zhuravleva T.S.,
Kutner W.
Studies on electrochemical properties of aligned multi-walled carbon
nanotube electrodes |
52 |
P1.12 |
Kurenya A.G., Kudashov
A.G., Okotrub A.V., Gusel'nikov A.V., Bulusheva L.G.
Influence of CVD parameters on growth of aligned carbon nanotube arrays
|
53 |
P1.13 |
Lavskaya
Yu.V., Bulusheva L.G., Okotrub A.V., Yudanov N.F., Fonseca A.
Comparative X-ray investigation of fluorinated single- and few-wall
carbon nanotubes |
54 |
P1.14 |
Lyapkosova O.S.,
Lebedev N.G.
Piezoresistance effect in carbon nanotubes |
55 |
P1.15 |
Lyapkosova
O.S., Lebedev N.G.
Influence of point defects on band structure of carbon nanotubes within
the framework of the periodical Anderson's model |
56 |
P1.16 |
Mikhalchan A.A.,
Lysenko V.A.
Lysenko A.A. The effect of different treatments on electrical resistivity
of carbon nanotubes |
57 |
P1.17 |
Bogdanova
D.A., Moliver S.S.
Spin-triplet molecule inside carbon nanotube |
58 |
P1.18 |
Pak A.V., Lebedev
N.G.
The influence of adsorbed molecular hydrogen on band structure of
carbon nanotubes |
59 |
P1.19 |
Pinchuk
T.M., Dmytrenko O.P., Kulish M.P., Grabovskyy Yu.E., Prylutskyy
Yu.I., Bilyy M.M., Matsuy L.Yu., Zabolotnyy M.A.
Physically-mechanical properties of poly(vinyl) chloride with multi-walled
cardon nanotubes |
60 |
P1.20 |
Popov A., Lebedev
N.
Modeling of electromagnetic pulse propagation through the system of
carbon nanotubes |
61 |
P1.21 |
Pozdnyakov
O.F., Popov E.O., Latypov Z.Z., Pozdnyakov A.O.
Field electron emission from "polymer-carbon nanotubes" composites
as revealed by mass spectrometry" |
62 |
P1.22 |
Prikhodko A., Konkov
O., Terukov E., Filippov A.
Nanosecond S-type electrical instability in carbon nanotube-polymer
matrix |
63 |
P1.23 |
Shamina
E.N., Lebedev N.G.
The semi-empirical research of chiral absorption effect of atomic
and molecular particles on the carbon nanotubes surface |
64 |
P1.24 |
Nevolin V.K., Simunin
M.M.
Concept of single-walled carbon nanotube formation |
65 |
P1.25 |
Tikhomirova
G.V., Volkova Ya.Yu., Babushkin A.N.
Conductivity of fullerite C60 and single-wall carbon nanotubes
at pressures 20-50 GPa |
66 |
P1.26 |
Tomilin O.B., Muryumin
E.E., Rodionova E.V., Syrkina N.P.
A prismatic modification of single-walled carbon nanotubes by fluorine
and boron atoms |
67 |
P1.27 |
Tomilin
O.B., Muryumin E.E.,
Rodionova E.V., Syrkina N.P.
A ring conjugation in a prismatic modifications of single-walled carbon
nanotubes |
68 |
P1.28 |
Tomilin O.B., Muryumin E.E.,
Devyataykina S.P., Syrkina N.P.
An isolated one-dimensional conjugated subsystem in a modified single-walled
carbon nanotubes |
69 |
P1.29 |
Belonenko
M.B., Lebedev N.G., Yanyushkina N.N.
Few cycle optical pulses in the carbon nanotubes with periodical impurities
|
70 |
P1.30 |
Zagainova V.S., Makarova
T.L., Bulusheva L.G., Okotrub A.V., Kurenya A.G.
Magnetic properties of carbon nanotubes with low content of Fe |
71 |
|
|
|
2. Synthesis and Properties of Graphene and Nanographite
|
|
p2.1 |
Gusyatnikova
P.P., Artyukhov V.I., Chernozatonskii L.A.
Electronic and magnetic properties of zigzag graphene nanoribbon-based
1D superlattices |
72 |
p2.2 |
Bets K., Yakobson
B.I.
Dynamics of spontaneous deformations of graphene nanoribbons |
73 |
p2.3 |
Chernozatonskii
L.A., Sorokin P.B.,
Graphene biribbons: the features of electronic properties. |
74 |
p2.4 |
Chernozatonskii L.A.,
Sheka E.F., Sorokin P.B., Artukh A.A.
New cabon materials: modeling nanotube- graphene nanoribbons composites
|
75 |
p2.5 |
Sheka
E.F., Chernozatonskii L.A.
Chemical reactivity and magnetism of graphene |
76 |
p2.6 |
Davydov S.Yu.
Simple estimations of the elastic characteristics of graphene and
silicene |
77 |
p2.7 |
Dunaev
A.V., Belmesov A.A., Archangelsky I.V., Avdeev V.V.
Formation of a highly porous graphene-based material with Pt nanoparticles
by intercalation of [Pt(NH3)4]2+
into graphite oxide |
78 |
p2.8 |
Kosakovskii G.G.,
Simunin M.M.
Influence of substrate's material on the structure graphene films
synthesized by thermal-electric method |
79 |
p2.9 |
Kvashnin
A.G., Sorokin P.B., Kvashnin D.G.
The theoretical study of mechanical properties of graphene membranes
|
80 |
p2.10 |
Latyshev Yu.I., Orlov
A.P., Latyshev A.Yu., Vignolles D.,
Interlayer tunnelling spectroscopy of Dirac fermions in graphite |
81 |
p2.11 |
Volgaev
A.S., Osipov V.Yu.
Optical transmission spectroscopy for characterization of absorption
due to surface plasmon resonance in multi-shell nanographites |
82 |
p2.12 |
Rut'kov E.V., Gall
N.R.
Graphene layers on Rh(111). |
83 |
|
|
|
3.Synthesis and Properties of Carbon Onions and Nanodiamonds
|
|
P3.1 |
Dolmatov
V.Yu.
Elemental composition and crystallography of detonation S(DND) |
84 |
P3.2 |
Burkat G.K., Dolmatov
V.Yu., Osawa E., Orlova E.A.
Investigation of properties of chrome-nanodiamond coatings based on
detonation nanodiamonds (DND) of different producers |
85 |
P3.3 |
Gavrilov
A.S., Voznyakovsky A.P.
Detonation nanocarbons. From explosion to composition |
86 |
P3.4 |
Ilyin I.V., Soltamova
A.A., Baranov P.G., Vul' A.Ya., Kidalov S.V., Shakhov F.M., Mamin
G.V., Orlinskii S.B., Salakhov M.Kh.
Detection and identification of nitrogen centers in nanodiamonds:
EPR studies |
87 |
P3.5 |
Karbushev
V., Vasil'ev G., Konstantinov I., Semakov A., Kulichikhin V.
Morphology and properties of polymer-nanodiamond composites |
88 |
P3.6 |
Korobov M.V., Efremova
M.M., Avramenko N.V., Ivanova N.I., Rozhkova N.N., Osawa E.
Do primary particles of detonation nanodiamond form a secondary structure?
|
89 |
P3.7 |
Osipov
V.Yu., Volgaev A.S., Alexenskiy A.E., Shames A.I., Vul'A.Ya.
Infrared absorption studies of surface functional groups of chemically
modified nanodiamonds |
90 |
P3.8 |
Pecheva E., Pramatarova
L., Tanaka Y., Sakamoto H., Doi H., Tsutsumi Y., Vul' A., Hanawa T.
Apatite-nanodiamond composite as a functional coating of stainless
steel implants |
91 |
P3.9 |
Kidalov
S.V., Shakhov F.M., Vul' A.Ya., Ozerin A.N., Kurkin T.S.,
Smirnov A.N. Properties of high pressure sintered nanodiamonds and
its composites |
92 |
P3.10 |
Blaut-Blachev A.N., Bouilov
L.L., Zolotarevsky V.I., Spitsyn B.V.
Highohmic nanocrystalline diamond films |
93 |
P3.11 |
Kidalov
S.V., Bogomazov I.E., Vul' A.Ya.
Heat transfer in forced convective flows of water-based nanofluids
with nanocrystalline diamonds of detonation synthesis |
94 |
P3.12 |
Aleksenskiy A.E.,
Dydeikin A.T., Shvidchenko A.V., Vul' A.Ya., Sakseyev D.A., Baidakova
M.V.
The aggregation of the particles in the purified detonation nanodiamond
|
95 |
4.Inorganic Fullerenes and Nanotubes
|
|
P4.1 |
Alshevskiy
Yu.L., Blank V.D., Kazennov N.V., Tatyanin Ye.V.
Vapor phase synthesis of filamentary tungsten oxides by HFCVD |
96 |
P4.2 |
Blank V., Batov D.,
Kulnitskiy B., Polyakov E., Bagramov R.
Annealing and structural modifications of CNx nanofibers
|
97 |
P4.3 |
Chernobrovkin
A.L., Demishev S.V., Glushkov V.V., Goodilin E.A., Grigorieva
A.V., Ishchenko T.V., Sluchanko N.E., Tretyakov Yu.D.+, Semeno A.V.
Transport properties of VOx multiwall nanotubes |
98 |
P4.4 |
Sorokin P.B., Avramov P.V.,
Demin V.A., Chernozatonskii L.A.
Beta-phase silicon nanowires: structure and properties |
99 |
P4.5 |
Koroteev
V.O., Rogalski I.V., Shubin U.V., Bulusheva L.G., Okotrub A.V.
Formation of MoS2 and Mo2S3 layers
on the surface of thermo expanded graphite |
100 |
P4.6 |
Sorokin P.B., Kvashnin
D.G., Kvashnin A.G.
Theoretical investigation of the elastic properties of branched silicon
nanowires |
101 |
P4.7 |
Fokin
A.V., Ivanov A., Kumzerov Yu.A., Naberezhnov A.A., Petrov A.A., Semkin
V.N., Vakhrushev S.B.
Origin of (-O-H) stretch mode in the chrysotile asbestos: neutron
scattering and optical absorption study |
102 |
P4.8 |
Sorokin P.B., Chernozatonskii
L.A.
The theoretical prediction of new MgB2 nanotubes |
103 |
P4.9 |
Sorokin
P.B., Vlasenko A.A.
The investigation of growth mechanism of silicon nanowires |
104 |
P4.10 |
Sorokin P.B., Zaitsev
A.A.
The theoretical study of electronic structure of single nanotube of
TiB2 |
105 |
P4.11 |
Zaporotskova
I.V., Perevalova E.V., Zaporotskova N.P.
The adsorption properties of baron nanotubes |
106 |
P4.12 |
Zaporotskova I.V., Perevalova
E.V., Zaporotskov P.A.
Semiempirical investigation of boron nanotubes and some structure-modification
composites on its base |
107 |
5. Synthesis and Chemical Properties of Fullerene Derivatives
|
|
P5.1 |
Agafonov
S.S., Somenkov V.A., Filippov A.A.
Structure of intercalates Ñ60 and Ñ70. |
108 |
P5.2 |
Amsharov K.Yu.,
Simeonov K., Jansen M.
The principles of reactivity of higher fullerenes |
109 |
P5.3 |
Bulgakov
R.G., Ponomareva Yu.G., Sabirov D.Sh.
Influence of medium on C60 reactivity in liquid phase oxidation
of hydrocarbons |
110 |
P5.4 |
Bulgakov R.G., Galimov
D.I., Kinzyabaeva Z.S., Sabirov D.Sh.
A new type of chemiluminescence: liquid phase oxidation of Ñ60H36
fullerene hydride |
111 |
P5.5 |
Chubarova
E.V. and Melenevskaja E.Yu.
Effect of structure of monocyclic aromatic solvents on the consistency
of fullerene C60 solvation shell |
112 |
P5.6 |
Lebedeva M.F., Melenevskaja
E.Yu., Chubarova E.V.
Polymer chain degradation during deformation of polystyrene-fullerene
C60 composite films |
113 |
P5.7 |
Churilov
G.N., Osipova I.V., Marchenko S.A., Gulyaeva U.E.
Influence of sonic and magnetic fields on fullerene and nanotube formation
in carbon-helium plasma of high frequency at atmospheric pressure
|
114 |
P5.8 |
Domratcheva-LvovaL.G.,
Domrachev G.A., Domracheva E.G., Huipe Nava E., Spivak A.E.
The new molecular structures based on exo- and endo-fullerenes
|
115 |
P5.9 |
Ghanbari
B. , Tangeysh B.
The effect of ligand variation on catalytic property of CoSALEN in
hydroperoxidation of Fullerene C60 |
116 |
P5.10 |
Ghanbari B., Abadi
N.H.
The effect of axial bases in catalytic activity of CoSALEN in oxidation
of C60 |
118 |
P5.11 |
Gorina
E.A., Titova S.N., Kalakutskaya L.V., Domrachev G.A., Ketkov S.Y.,
Obiedkov A.M., Poddel'sky A.I., Lopatin M.A.
Organofullerenes with hydrocarbyl and trimethylsilyl groups prepared
from lithium and sodium fullerides |
119 |
P5.12 |
Obiedkov A.M., Gorina
E.A., Kaverin B.S., Semenov N.M., Egorov V.A., A.I.Kirillov, Titova
S.N., Domrachev G.A., Lopatina T.I., Gusev S.A.
Composite materials obtained on the basis of multi-wall carbon nanotubes
|
120 |
|
|
|
P5.14 |
Gruzinskaya N.I.,
Silin A.I., Pimenova A.S., Sidorov L.N., Troyanov S.I.
New fluorocycloalkyl derivatives of [60] and [70]fullerenes |
122 |
P5.15 |
Gubskaya
V.P., Fazleeva G.M., Balandina A.A., Latypov S.K., Gubaidullin
A.T., Saifina A.F., Nuretdinov I.A.
Synthesis, structure and properties of allyl esters of methanofullerenes
|
123 |
P5.16 |
Ioutsi V.A., Zadorin
A.À., Ovchinnikova N.S., Yurovskaya M.A.
Application of metal-catalyzed 1, 3-dipolar cycloaddition reactions
for synthesis of substituted fulleroproline derivatives |
124 |
P5.17 |
Yumagulova
R.Kh., Medvedeva N.A., Kolesov S.V.
Fractionation of fullerene containing copolymers |
125 |
P5.18 |
Khamatgalimov A.R.,
Mukhametshafikova L.R., Kovalenko V.I.
Electronic structure and stability of C80 fullerene IPR-isomers
|
126 |
P5.19 |
Jimenez
Gomez M.A., Kharissova O.V., Kharisov B.I.,
Ortiz Mendez U. Synthesis by Prato reaction and in situ UV-characterization
of several fulleropyrrolidine derivatives |
127 |
P5.20 |
Guerrero-Dib X.E., Ortiz-Mendez
U., Ferrer D., Sepulveda S., Jose-Yacaman M., Kharissova O.V.
Synthesis and properties of monometallic and bimetallic silver and
gold nanoparticles |
128 |
P5.21 |
Khavrel
P.A., Gruzinskaya N.I., Pimenova A.S., Ioffe I.N., Troyanov S.I.
19F NMR studies and DFT calculations of fluorocycloalkylated fullerenes
C60/70(C2F4) and C60/70(C2F4)
|
129 |
P5.22 |
Lijanova I., Klimova
E., Morales Espinosa E., Martinez-Garcia M.
Fullerene-dendrimers with OPV moieties |
130 |
P5.23 |
Sanchez-Montes
K.E., Klimova T., Martinez-Garcia M.
Synthesis of porphiryn dendrimers with fullerene C60 units
in the periphery |
131 |
P5.24 |
Konarev D.V., Khasanov
S.S., Mukhamadieva G.R., Lyubovskaya R.N.
Design of molecular and ionic complexes of fullerene C60
with metal (II) octaethylporphyrins by using coordination M-N(ligand)
and M-C(C60-) bonds |
132 |
|
|
|
POSTER SESSION II
|
|
Synthesis and Chemical Properties of fullerene Derivatives (continuation)
|
|
P5.26 |
Kornienko
E.S., Avdoshenko S.M., Goryunkov A.A, Ioffe I.N., Khavrel P.A.,
Kozlov A.A., Magdesieva T.V., Sidorov L.N., Vorobiev A.Kh.
Synthesis and investigation of electrochemical properties of novel
fluorine derivatives of C60 |
135 |
P5.28 |
Kozlov A., Kornienko
J., Brotsman V., Khavrel P., Avdoshenko S., Ioffe I., Goryunkov A.,
Vorobiev A.
Unprecedented ring expansion of C60: difluoromethylene[60]fullerenes
and their hydrides |
137 |
P5.29 |
Kvyatkovskii
O.E., Zakharova I.B., Makarova T.L.
Polymerization of hydrogenated fullerene |
138 |
P5.30 |
Lebedev V. T., Grushko
Yu.S., Orlova D.N., Kozlov V.S., V.P., Kolesnik S.G., Shamanin V.V.,
Melenevskaya E.Yu.
Aggregation in hydroxylated endohedral fullerene solutions |
139 |
P5.31 |
Lebedev
V.T., Vinogradova L.V., Torok Gy., Shamanin V.V.
Long-range self-assembly in solutions of star-shaped polymers with
fullerene C60 multifunctional centers |
140 |
P5.32 |
Lopatin D.V., Chirkin
E.S.
Structure and electronic properties of fullerene derivative: quantum
chemical calculations |
141 |
P5.33 |
Gerasimov
V., Losev G., Matuzenko M., Chizhov Yu.V.
Isomers of fullerene C60 |
142 |
P5.34 |
Gubskaya V.P., Fazleeva
G.M., Sibgatullina F.G., Berezhnaya L.Sh., Yanilkin V.V., Nastapova
N.V., Gubaidullin A.T., Saifina A.F., Nuretdinov I.A.
Thiophene derivatives of methanofullerene and pyrrolidinofullerenes
|
143 |
P5.35 |
Ovchinnikova
N.S., Goryunkov A.A., Khavrel P.A., Apenova M.G., Troyanov S.I.,
Yurovskaya M.A.
Functionalization of Cs-C70(CF3)8:
the Bingel reaction |
144 |
P5.36 |
Kazachenko V., Mieno T.,
Razanau I.
Structure of thin fullerene C60 polymer and composite C60-PTFE
and C60-PANi layers |
145 |
P5.37 |
Taheri
Rizi Z., Ghanbari B., Tangeysh B.
Chemical evaluation of anti-oxidative property of the aminofullerene
C60 derivative mixtures |
146 |
P5.38 |
Ruchenin V.A., Markin
A.V., Smirnova N.N.
The thermodynamic properties of the derivatives of Ñ60 fullerene with
elementorganic ligands R12C60 (R= t-Bu, Me3Si)
|
147 |
P5.39 |
Sabirov
A.R., Stankevich I.V.
DFT modeling of the complexes of osmium with fullerene C70
|
148 |
P5.40 |
Samokhvalov P.S.,
Skokan E.V., Markov V.Yu., Samokhvalova N.A., Karnatsevich V.L.
Trifluormethylation of sodium fullerides |
149 |
P5.41 |
Samokhvalova
N.A., Khavrel P.A., Troyanov S.I.
New CF3 derivatives of [60]fullerene |
150 |
P5.42 |
Serov M., Petukhova
G., Goryunkov A., Dobrokhotova Zh.
Substitutional fluorination in liquid phase - new way to fluorofullerenes
|
151 |
P5.43 |
Bityuzkaya
L.A., Sokolov Yu.V.
Non-linear effects at the non-equilibrium fullerene aggregation |
152 |
P5.44 |
Gal'pern E.G, Stankevich
I.V.
Complexes Pdn(C60)m. Computer modeling
of structure and prediction of electron properties |
153 |
P5.46 |
Troyanov
S.I., Tamm N.B.
Derivatization and structure elucidation of higher fullerenes5 |
155 |
P5.47 |
Georgy Fedorov, Paola
Barbara, Dmitry Smirnov3, David Jimenez4, Stephan Roche
Selective [2+1]-cycloaddition of diazomethane to [60]fullerene assisted
by metal complex catalysts |
156 |
P5.48 |
Tuktarov
A.R., Akhmetov A.R., Dzhemilev U.M.
Catalytic [2+1]-cycloaddition of diazoacetates to [60]fullerene |
157 |
P5.49 |
Vinogradova L., Filippov
A., Shamanin V.
Methods of combination and functionalization of organolithium polymer
derivatives of fullerene in the precise synthesis of regular star-shaped
structures |
158 |
P5.50 |
Zverev
V.V., Kovalenko V.I., Romanova I.P., Sinyashin O.G.
The mechanism of interaction of azides with C60NR |
159 |
P5.51 |
Zverev V.V., Kovalenko
V.I.
DFT study of cycloaddition of alkyl azides to C60 and elimination
of N2 from adducts C60N3R |
160 |
|
|
|
6. Photoelectric and Optic Properties of fullerenes
|
|
P6.1 |
Basharin
A.Y., Dozhdikov V.S., Turchaninov M.A., Lysenko I.Y., Sobina O.A.
Mechanisms of the carbon crystallization from liquid and vapour |
161 |
P6.2 |
Brykalova X.O.,
Pavlychev A.A.
Size effects in X-ray absorption and inner-shell photoemission from
molecules encapsulated in fullerene |
162 |
P6.3 |
Brzhezinskaya
M.M., Krestinin A.V., Zvereva G.I., Kharitonov A.P., Vinogradov
A.S.
Electronic structure of fluorinated single-walled carbon nanotubes
studied by X-ray absorption and photoelectron spectroscopy |
163 |
P6.4 |
Brzhezinskaya M.M.,
Generalov A.V., Vinogradov A.S., Chernysheva M.V., Eliseev A.A., Kiselev
N.A., Lukashin A.V., Krestinin A.V., Tretyakov Yu.D.
Electronic structure of CuHal@SWCNTs (Hal=I, Cl, Br) studied by X-ray
absorption and photoelectron spectroscopy |
164 |
P6.5 |
Davydov
S.N., Gabdullin P.G., Ryumin M.A.
Apparatus for investigating physical nature of nanoporous carbon structure
field emission |
165 |
P6.6 |
Dymarchuk V.O.,
Zaulychnyy Ya.V., Khyzhun O.Yu., Ogenko V.M., Naboka O.V., Dubrovina
L.V., Volkov S.V.
An X-ray emission spectroscopy study of the electronic structure of
products of toluene diisocyanate carbonization in an Al2O3
matrix |
166 |
P6.7 |
Generalov
A.V., Brzhezinskaya M.M., Puttner R., Vinogradov A.S., Chernysheva
M.V., Eliseev A.A., Kiselev N.A., Lukashin A.V., Tretyakov Yu.D.
NEXAFS characterization of electronic structure for CuI@SWCNT nanocomposite
|
167 |
P6.8 |
Gorshkov K.V., Nevolin
V.K., Bobrinetskiy I.I., Tsarik K.A.
The nanographite 2D-structures investigation with making use of atomic-force
and ion-beam methods |
168 |
P6.9 |
Kiselyova
K.S., Devaux X., Tsareva S.Yu., Zharikov E.V., McRae E.
Morphological features of carbon nanostructures synthesized by pyrolysis
of benzene in the presence of sulphur |
169 |
P6.10 |
Klyushin A.Yu.,
Brzhezinskaya M.M., Generalov A.V., Puttner R. Vinogradov À.S.
Features of resonant F KLL Auger spectra from fluorinated multi-walled
carbon nanotubes |
170 |
P6.11 |
Komarova
N.S., Krivenko A.G., Stenina E.V., Sviridova L.N.
Electrochemical behavior of carbon nanostructures at camphor and sodium
cryptate adsorption |
171 |
P6.12 |
Kosticheva D.M.,
Voznyakovsky A.P., Sazanov Yu.N.
The use of cocarbonization processes for creation of the porous carbon
systems |
172 |
P6.13 |
Latypov
Z.Z., Golikov G.K., Pozdnyakov O.F., Gall L.N.
Separating of fullerenes and their compounds in impulse inhomogeneous
electric fields |
173 |
P6.14 |
Lebedev A.A., Kotousova
I.S., Lavrent'ev A.A., Lebedev S.P., Makarenko I.V., Petrov V.N.,
Smirnov A.N., Titkov A.N.
Investigation of nanocarbon films on SiC surface formed by sublimation
epitaxy in vacuum |
174 |
P6.15 |
Milyavskiy
V.V., Ten K.A., Borodina T.I., Basharin A.Yu., Dozhdikov V.S.,
Lukianchikov L.A., Pruuel E.R., Tolochko B.P., Zhulanov V.V.
Shock compressibility of C70 fullerene via synchrotron
radiation technique |
175 |
P6.16 |
Lad'yanov V.I., Nikonova
R.M., Merzlyakova M.A., Aksyonova V.V.
Thermal behavior of C60 and C70 fullerenes in
various environments |
176 |
P6.17 |
Osipova
I.V., Lopatin V.A., Vnukova N.G., Novikov P.V., Churilov G.N.
Emission spectroscopy as the main control method for carbon nanoparticles
synthesis |
177 |
P6.18 |
Papoular R.J., Dmitriev
V., Davydov V.A., Rakhmanina A.V., Agafonov V.
Study of the orthorhombic polymeric phase of C60 under
high-pressure using X-ray synchrotron radiation |
178 |
P6.19 |
Pavlenko
O.L., Dmytrenko O.P., Kulish M.P., Bulavin L.A., Bilyi M.M., Stashchuk
V.S. Grabovskyi Yu.E. Zabolotnyi M.A. Prylutskyi Yu.I., Scarff P.
Change of C60 fullerites properties under irradiation with
electrons and ions |
179 |
P6.20 |
Zaulychnyy Ya., Solonin
Yu., Prilutski E., Petrovska S.
X-ray spectral investigation of electronic structure peculiarities
in carbon onions, nanotubes and fullerenes |
180 |
P6.21 |
Rols
S., Papoular R.J., Davydov V.A., Rakhmanina A.V., Autret C. Agafonov
V.
Study of C60 peapods after high-pressure- high- temperature
treatment |
181 |
P6.22 |
Blagoveshchenskii N.M.,
Novikov A.N., Rozhkova N.N., Osawa E.
Diffusion characteristics of water in the vicinity of single-nano
buckydiamond as revealed by quasielastic neutron scattering |
182 |
P6.23 |
Shabanova
I.N., Terebova N.S.
Application of the x-ray photoelectron spectroscopy method for studying
the variation of the magnetic moment of the 3d-metal atoms in nanoforms
|
183 |
POSTER SESSION III
|
|
7. Carbon Cluster Formation and Phase Transitions in Nanocarbons
|
|
P7.1 |
Agafonov
S.S., Kokin I.F., Somenkov V.A.
Mechanoactivation of fullerites |
186 |
P7.2 |
Agafonov S.S., Glazkov
V.P., Kokin I.F., Somenkov V.A.
Polyamorphous transition in amorphous fullerenes |
187 |
P7.3 |
Blank
V.D., Alshevskiy Yu.L., Kazennov N.V., Kulnitskiy B.A., Tatyanin
Ye.V., Belousov Yu.A.
Synthesis of long multiwalled carbon nanotube strands |
188 |
P7.4 |
Avdeev M.V., Tropin
T.V., Bodnarchuk I.A., Yaradaikin S.P., Rosta L., Aksenov V.L.
On structural features of fullerene C60 dissolved in carbon
disulfide: complementary study by small-angle neutron scattering and
molecular dynamic simulations |
189 |
P7.5 |
Chernogorova
O.P., Drozdova E.I., Ovchinnikova I.N.
Effect of high-temperature annealing on the structure and properties
of the superelastic hard carbon particles obtained from fullerenes
under pressure |
190 |
P7.6 |
Davydov V.A., Shiryaev
A.A., Rakhmanina A.V., Filonenko V.P., Vasil`ev A.L., Autret C., Agafonov
V.N., Khabashesku V.N.
Polyhedral nanosize carbon particles at high pressures and temperatures
|
191 |
P7.7 |
Basharin
A.Y., Dozhdikov V.S., Turchaninov M.A., Sobina O.A.
Ostwald rule of stages applied to the supercooled liquid carbon |
192 |
P7.8 |
Kataeva E.A., Bozhko
A.D., Ishchenko T.V., Shupegin M.L., Demishev S.V.
Electric field-enhanced charge transport in amorphous carbon films
|
193 |
P7.9 |
Kyzyma
O.A., Avdeev M.V., Aksenov V.L., Korobov M.V., Snegir S.V., Bulavin
L.A., Rosta L.
Cluster formation and solvatochromism in fullerene C60
solutions based on nitrogen-containing solvents |
194 |
P7.10 |
Bykov N.Y., Leshchev
D.V.
Modeling of water clusters formation processes in the inner atmosphere
of 67P/Churyumov-Gerasimenko comet |
195 |
P7.11 |
Bykov
N.Y., Leshchev D.V.
Collision models of monomer-cluster and cluster-cluster interaction
for the direct simulation Monte Carlo method |
196 |
P7.12 |
Mezhov-Deglin L.P.,
Efimov V.B., Kolmakov G.V., Levchenko A.A., Lokhov A.V., Izotov A.N.,
Nesvizhevsky V.V.
Novel nanocluster systems in superfluid helium |
197 |
P7.13 |
Afrosimov
V.V., Basalaev A.A., Panov M.N., Smirnov O.V.
Formation of carbonic cluster ions at the ionization of fullerenes
and multiatomic molecules of hydrocarbons |
198 |
P7.14 |
Rud A.D., Kuskova
N.I., Ivaschuk L.I., Uvarov V.N., Zelinskaya G.M., Perekos A.E., Belyi
N.M.
Structure state of carbon nanomaterials produced by high-energy electric
discharge techniques |
199 |
P7.15 |
Tropin
T.V., Avdeev M.V., Kyzyma O.A., Aksenov V.L.
Kinetics of fullerene cluster growth in nitrogen-containing solvents
|
200 |
P7.16 |
Zhilinskaya E.A.,
Aboukais A., Abi-Aad E., Rakhmanina A.V., Davydov V.A., Agafonov V.
Comparative EPR study of monomer and polymer C60 phases
|
201 |
P7.17 |
Zuev
V.V., Potalyzin M.G., Kostromin S.V., Shlikov A.V.
Polymer nanocomposites containing fullerene C60 nanofillers
|
202 |
8.Photoelectric and Optic Properties of Fullerenes and Nanotubes
|
|
P8.1 |
Bekhterev
A.N.
FTIR and DRS – spectroscopy of nanocarbon vibration states |
203 |
P8.2 |
Dmytrenko O.P.,
Kulish M.P., Kobus O.S., Olasiuk O., Bilyi M.M., Zabolotnyi M.A.,
Prylutskyi Yu.I., Shlapatska V.V.
Photoluminescence of organic semiconductors sensitized by fullerenes
C60 |
204 |
P8.3 |
Lewandowska
K., Wrobel D., Milczarek G.
Nanolayers of donor-acceptor systems composed of fullerene and chromophor
|
205 |
P8.4 |
Lopatin M.A., Klapshina
L.G., Grigoryev I.S., Semenov V.V.
Fullerene C60 as effective luminescence quencher of Yb
(III) phenyltetracyanoporphyrazine complexe |
206 |
P8.5 |
Makarets
N., Mikoushkin V.M.
Monte-Carlo model of formation of a swarm of low energy electrons
in fullerite C60 under electrons in the keV- energy range
|
207 |
P8.6 |
Bazhenov A.V., Bashkin
I.O., Maksimuk M.Yu., Fursova T.N., Moravskii A.P.
C60H42 Oxidation in Air |
208 |
P8.7 |
Meletov
K.P., Arvanitidis J., Christofilos D., Kourouklis G.A., Iwasa
Y.
High temperature depolymerization of the 2D(R) C60 polymer
studied by Raman spectroscopy |
209 |
P8.8 |
Mikoushkin V.M.,
Nikonov S.Yu., Shnitov V.V., Gordeev Yu.S.
Correlation of plasmon and Auger energies and its use for diagnostic
of irradiated and degraded fullerite C60 |
210 |
P8.9 |
Mikoushkin
V.M., Bryzgalov V.V., Nikonov S.Yu., Shnitov V.V., Gordeev Yu.S.,
Boltalina O., I.V. Gol'dt, Brzhezinskaya M.M.
Electronic structure and radiation instability of C60F48 |
211 |
P8.10 |
Mikoushkin V.M.,
Solonitsina A.P.
Diffluence of solid C60 film due to high rate surface diffusion
of fullerenes |
212 |
P8.11 |
Nikitenko
S.L., Spitsina N.G., Kaplunov M.G., Tomilova L.G.
New photovoltaic materials based on composites of conjugated polymer
with tetra-substituted metallophthalocyanines and [60]fullerene |
213 |
P8.12 |
Lad'yanov V.I., Aksyonova
V.V., Nikonova R.M.
The FT-IR spectroscopic studies of the destruction of the fullerites
C60 and C70 under heating in the air |
214 |
P8.13 |
Pavlychev
A.A., Brykalova X.O.
"Windows" in 1s shell photoemission from 1D crystalline structures
encapsulated in carbon nanotubes |
215 |
P8.14 |
Sheka E.F., Razbirin
B.S., Starukhin A.N., Nelson D.K., Degunov M.Yu., Lyubovskaya
R.N., Troshin P.A., Fazleeva G.M., Gubskaya V.P., Nuretdinov I.A.
Dependence of nanophotonics of fullerene solutions on molecular structure
|
216 |
P8.15 |
Razbirin
B.S., Sheka E.F., Starukhin A.N., Nelson D.K., Degunov M.Yu.,
Troshin P.A., Lyubovskaya R.N.
Shpolskii effect in optical spectra of frozen toluene solutions of
organic C60-fullerene derivative |
217 |
P8.16 |
Sabirov D.Sh., Bulgakov
R.G., Khursan S.L., Razumovskii S.D.
Chemiluminescent test for oxofullerenecarbonyl oxides generated by
fullerenes ozonolysis |
218 |
P8.17 |
Sporysh
I., Frolov V., . Gogotsi H., Kysil O., Buzaneva E., Lukashuk L.,
Penkova L., Ritter U., Scharff P., Erb T., Gobsch G.
Photospectroscopy revealing of interface organization of fullerol
molecule and molecular metal ion complex with protein amino-acid molecule
as novel fullerene derivative for single molecular biosensor |
219 |
P8.18 |
Kysil1O., Sporysh I.,
Buzaneva E., Erb T., Gobsch G., Ritter U., Scharff P.
Design and testing of fullerene photoprobes for ds-, ss-DNA molecules
|
220 |
P8.19 |
Uvarov
M.N., Kulik L.V., Dzuba S.A.
Spin relaxation of fullerene C70 photoexcited triplets
in glassy matrices |
221 |
P8.20 |
Belousova I.M., Kislyakov
I.M., Videnichev D.A., Rozhkova N.N., Tupolev A.G.
Shungite carbon as a material for optical limiting of high intensity
laser radiation in the visible and near infrared region |
222 |
P8.21 |
Zakharova
I.B., Kvyatkovskii O.E., Ermolaeva G.M., Shilov V.B., Spitsyna
N.G.
Nonlinear optical properties of fullerene-porphyrin complexes |
223 |
9. Biological and Medical Aspects of Nanocarbons
|
|
P9.1 |
Abdullin
T.I., Nikitina I.I., Bulatov E.R., Bondar O.V.
Carbon nanotube-based separation and analysis of nucleic acids |
224 |
P9.2 |
Goryunov A., Borisova
A., Rozhkov S., Rozhkova N.
Spontaneous haemoglobin Fe(II) oxidation in fullerene C60
water dispersion |
225 |
P9.3 |
Ichkitidze
L.P., Podgaetsky V.M., Selishchev S.V.
Bulk biocompatible composite nanomaterial |
226 |
P9.4 |
Ichkitidze L.P.,
Podgaetsky V.M., Ponomarova O.V., Selishchev S.V.
Research of durability of seams of the cartilage tissue with composite
nanomaterial in the laser solder |
227 |
P9.5 |
Kisel
V.P.
Antipodal effects of fullerene nanoparticles on biological tissues
are determined by deformation hardening or softening |
228 |
P9.6 |
Povarov N.I., Yakutseni
P.P.
Fullerenes and bioions: ensembles of structures for nanobio |
229 |
P9.7 |
Sharonova
L.V., Melenevskaya E.Yu., Podosenova N.G., Kuznetsov A.S.
Investigation of specific adsorption properties of silica gel in respect
to blood plasma lipoproteides in the presence of fullerene |
230 |
P9.8 |
Ulanova L.S., Piotrovsky
L.B., Dumpis M.A., Litasova E.V., Shavlovsky M.M., Kiselev O.I.
Complexes of pristine fullerene C60 with proteins |
231 |
10. Industrial Applications of Nanocarbons
|
|
P10.1 |
Obolensky
M.A., Basteev A.V., Bazyma L.A.
Hydrogen storage in irradiated low dimensional structures |
232 |
P10.2 |
Bobrinetskiy I.I.,
Nevolin V.K.
Carbon nanotubes in electronics and sensor devices |
233 |
P10.3 |
Mordkovich
V.Z., Karaeva A.R., Zaglyadova S.V., Maslov I.A., Don A.K.
Higher yield growth of multiwall carbon nanotubes at Fe-based catalysts
|
234 |
P10.4 |
Kiselev V.M., Kislyakov
I.M., Pavlova A.L.
Development and study of new modified fullerene coatings for the singlet
oxygen generation |
235 |
P10.5 |
Penkova
A.V., Toikka A.M., Pientka Z., Polotskaya G.A.
MWCNT/poly(phenylene-iso-phtalamide) nanocomposite membranes for pervaporation
of organic mixtures |
236 |
P10.6 |
Sapurina I.Yu.,
Stejskal J.
Nanocomposites based on carbon materials and polyaniline for various
applications |
237 |
P10.8 |
Vershinin
N.N. , Efimov O.N., Bakaev V.A., Korobov I.I., Gusev A.L., Alexenskii
A.E., Vul' A.Ya.,
Newcatalytic systems based on nanodiamonds for CO oxidation |
238 |
11. Others
|
|
P11.1 |
Alekseyev
N.I., Aleshin A.N., Aleshin P.A., Charykov N.A., Namasbaev V.I., Potalitsin
M.G., Zuev V.V.
Conductivity of polyamids, 6, modified with fullerenes and nanoplanar
carbon. |
240 |
P11.2 |
Alekseyev N.I.,
Goncharov V.D.
Mechanism for carbon nanotube assembly to the bundles and calculation
of existence domains for different nanotube structures on the diagram
" temperature – catalytic particle diameter " |
241 |
P11.3 |
Bazhenov
A.V., Fursova T.N., Grazhulene S.S. Red'kin A.N., Telegin G.F.
Sorption of metals on multiwall carbon nanotubes |
242 |
P11.4 |
Bozhko A.D., Kataeva
E.A., Glushkov V.V., Ishchenko T.V., Shupegin M.L., Demishev S.V.
Inelastic tunnelling of electrons in amorphous metal-carbon nanocomposites
|
243 |
P11.5 |
|
244 |
P11.6 |
Davletova O.A.,
Zaporotskova I.V.
Impact of pyrolized polyacrylonitrile structure on the process of
oxidation |
245 |
P11.7 |
Davletova
O.A., Zaporotskova I.V.
Fluorination of carbon nanostructures on the base of pyrolized polyacrylonitrile
|
246 |
P11.8 |
Davydov V.Ya., Kalashnikova
E.V.
Comparison of adsorption properties of some nanocarbon materials surfaces
|
247 |
P11.9 |
Diudea
M.V.
C60 family and related lattices |
248 |
P11.10 |
Efremenkova V.M.,
Krukovskaya N.V., Ustinova E.A.
Visualisation of the cutting edge applied research in the field of
fullerenes and nanotubes |
249 |
P11.11 |
Fedorov
G., Barbara P., Smirnov D, Jimenez D., Roche S.
Exponential magnetoresistance of carbon nanotube devices |
250 |
P11.12 |
Sominski G.G., Svetlov
I.A., Tumareva T.A.
Ion treatment of field emitters having fullerene coatings |
251 |
P11.13 |
Sajko
D.S., Ganzha V.V.
Simulation of adsorption of wet steams on a surface of non-metallic
nanocrystals using cluster methods |
252 |
P11.14 |
Meschi B.Ch., Ryzkin À.À.,
Ilyasov V.V., Nikiforov I.Ya., Ershov I.V., Velikochatzkii
D.À.
Zone structure and chemical bonds of two-dimensional system MG/MnO(001):
Ab initio study |
253 |
P11.15 |
Katin
K.P., Podlivaev A.I.
Dependence between the frequency factor of fullerene C20
thermal decay and buffer gas pressure |
254 |
P11.16 |
Komarov I.A.
Nanotube analysis with the desktop educational and research nanotechnological
complex |
255 |
P11.17 |
Voznyakovsky
A.P., Kudoyarova V.Kh., Kudoyarov M.F., Lebedev V.M., Lebedev
V.T.
Structure of modified polysiloxan block–copolymers in neutron scattering
|
256 |
P11.18 |
Kulbachinskii V.A.,
Bulychev B.M., Lunin R.A., Kytin V.G.
Superconductivity of fullerides AnHgxC60
(A = K, Rb; n = 2, 3) synthesised from amalgams |
257 |
P11.19 |
Makarova
T.L., Kvyatkovskii O.E., Zakharova I.B., Buga S.G., Volkov A.P.,
Shelankov A.L.
Reversible magnetic ordering in fullerene films |
258 |
P11.20 |
Maslov M.M.
Numerical simulation of hydrocarbon cubane-based nanostructures |
259 |
P11.21 |
Matzuy
L., Vovchenko L., Prylutskyy Yu., Oliynyk V., Launetz V., Eklund
P.
Electrodynamic properties of nanocarbon-epoxy composites |
260 |
P11.22 |
Moliver S.S.
Magnetic ordering in abruptly compressed FCC fullerite |
261 |
P11.23 |
Nasibulin
A.G., Anisimov A.S., Jiang H., Shandakov S.D., Launois P., Cambedouzou
J., Kauppinen E.I.
Investigations of single-walled carbon nanotube formation mechanism
|
262 |
P11.24 |
Nasibulin Albert G. Prokofyeva
E.V., Zaporotskova I.V.
Ñapillary introduction of elementary fluorine and oxygen into single-walled
carbon nanotube: semi-empirical research |
263 |
P11.25 |
Rodin
V.M., Emelianov G.A., Vozniakovskii A.P., Udin V.E.
Stabilization iron nanoparticles for magnetic fluids |
264 |
P11.26 |
Sabirov D.Sh., Bulgakov
R.G., Khursan S.L.
Fullerenes reactivity in terms of local curvature and polarizability
|
265 |
P11.27 |
Sheka
E.F.
Broken spin-symmetry HF and DFT approaches. À comparative analysis
for nanocarbons |
266 |
P11.28 |
Shpilevsky E.M.
Mass transfer in the metal-fullerene structures |
267 |
P11.29 |
G.G.
Sominski, T.A.Tumareva, V.E. Sezonov, S.K. Gordeev, S.B. Korchagina,
D.A. Sakseev
Field emitters on the base of nanocarbon composite materials |
268 |
P11.30 |
Talyzin A.V., Solozhenko
V.L., Kurakevych O.O., Szabo T., Dékány I., Kurnosov A., Dmitriev
V.
Expansion of graphite oxide lattice due to high pressure induced water
insertion |
269 |
P11.31 |
Terekhov
A.I.
Scientometric indicators for evaluating the carbon nanotechnology
development |
270 |
P11.32 |
Udovyk O.O.
Solar fullerenes and carbon nanotubes |
271 |
P11.33 |
Yagafarov
O.F., Gromnitskaya E.L., Lyapin A.G., Brazhkin V.V., Kondrin M.V.,
Bogdan A.V.
New data on compressibility of molecular fullerites C60
and C70 |
272 |
P11.34 |
Zagainova V.S., Makarova
T.L., Spitsina N.G., Yagubskii E.B.
Magnetization training effect in fullerene-containing single molecular
magnet |
273 |
P11.35 |
Zakharova
I.B., Suprun E.I., Makarova T.L.
C60CdS thin film as a bulk heterojunction |
274 |
AUTHOR INDEX |
275 |
CONTENTS |
280 |
|