?>
 Публикации 2018

Публикации лаборатории 2018 г.

Статьи в зарубежных журналах

  1. Dry Microwave-Chemistry Enabled Fabrication of Pristine Holey Graphene Nanoplatelets with Rich Zigzag Edges,
    Savaram K; Li Q; Takai K; Osipov V; He H,
    AMPERE Newsletter, 97, pp 2-6 (2018) PDF

  2. Non-thermal and low-destructive X-ray induced graphene oxide reduction, Mikoushkin VM, Kriukov AS, Nikonov SYu, Dideikin AT, Vul AYa, Vilkov OYu,
    J. Appl. Phys, J. Appl. Phys., 124(17), ArtNo: #175303 (2018)
    DOI: 10.1063/1.5047045 Q2

  3. Comment on ‘‘Angstrom-scale probing of paramagnetic center location in nanodiamonds by 3 He NMR at low temperatures’’ by V. Kuzmin, K. Safiullin, G. Dolgorukov, A. Stanislavovas, E. Alakshin, T. Safin, B. Yavkin, S. Orlinskii, A. Kiiamov, M. Presnyakov, A. Klochkov and M. Tagirov, Phys. Chem. Chem. Phys., 2018, 20, 1476,
    Shames AI, Osipov VYu, Panich AM,
    Phys. Chem. Chem. Phys., 20, pp. 27694-27696 (2018)
    DOI: 10.1039/C8CP03331E Q1

  4. Facile reduction of graphene oxide suspensions and films using glass wafers,
    Rabchinskii MK; Dideikin AT; Kirilenko DA; Baidakova MV; Shnitov VV; Roth F; Konyakhin SV; Besedina NA; Pavlov SI; Kuricyn RA; Lebedeva NM; Brunkov PN; Vul’ AYa,
    Sci. Rep., 8, 14154 (2018) PDF
    DOI: 10.1038/s41598-018-32488-x Q1

  5. Dry microwave heating enables scalable fabrication of pristine holey graphene nanoplatelets and their catalysis in reductive hydrogen atom transfer reactions,
    Savaram,K; Li,M; Tajima,K; Takai,K; Hayashi,T; Hall,G; Garfunkel,E; Osipov,V; He,H,
    Carbon, 139, pp. 861-871 (2018)
    DOI: 10.1016/j.carbon.2018.07.047 Q1

  6. Highly intensive emission of the NV- centers in synthetic HPHT microdiamonds at low nitrogen doping,
    Bogdanov,KV; Zhukovskaya,MV; Osipov,VY; Ushakova,EV; Baranov,MA; Takai,K; Rampersaud,A; Baranov,AV,
    APL Mater., 6(8) ArtNo: #086104 (2018)
    DOI: 10.1063/1.5045535 Q1

  7. Effective method for obtaining the hydrosols of detonation nanodiamond with particle size < 4 nm,
    Trofimuk,AD; Muravijova,DV; Kirilenko,DA; Shvidchenko,AV,
    Materials, 11(8), ArtNo: #1285 (2018)
    DOI: 10.3390/ma11081285 Q2

  8. Controllable spherical aggregation of monodisperse carbon nanodots,
    Kurdyukov,DA; Eurov,DA; Rabchinskii,MK; Shvidchenko,AV; Baidakova,MV; Kirilenko,DA; Koniakhin,SV; Shnitov,VV; Sokolov,VV; Brunkov,PN; Dideikin,AT; Sgibnev,YM; Mironov,LY; Smirnov,DA; Vul,AY; Golubev,VG,
    Nanoscale, 10(27), pp. 13223-13235 (2018)
    DOI: 10.1039/C8NR01900B Q1

  9. Properties of AlN single crystals doped with Beryllium via high temperature diffusion,
    Soltamov,VA; Rabchinskii,MK; Yavkin,BV; Kazarova,OP; Nagalyuk,SS; Davydov,VY; Smirnov,AN; Lebedev,VF; Mokhov,EN; Orlinskii,SB; Baranov,PG,
    Appl. Phys. Lett., v.113, 8 ArtNo: #082104 (2018)
    DOI: 10.1063/1.5043175 Q1

  10. Natural limit of the number of copper ions chemisorbed on the surface of a detonation nanodiamond,
    Osipov VYu, Gridnev ID,Panich AM,
    Mendeleev Commun., 28(4), 404-405 (2018)
    DOI: 10.1016/j.mencom.2018.07.021 Q2

  11. Stabilization of detonation nanodiamonds hydrosol in physiological media with poly(vinylpyrrolidone), Kulvelis,YV; Shvidchenko,AV; Aleksenskii,AE; Yudina,EB; Lebedev,VT; Shestakov,MS; Dideikin,AT; Khozyaeva,LO; Kuklin,AI; Torok,G; Rulev,MI; Vul,AY,
    Diam. Relat. Mater.,87, 78-89 (2018)
    DOI: 10.1016/j.diamond.2018.05.012 Q1

  12. Laser-induced breakdown spectroscopy: an advanced method for analysis of nanocarbon materials chemical composition, Lebedev VF; Rabchinskii MK; Kozlyakov MS; Stepanov DN; Shvidchenko AV; Nikonorova NV; Vul AYa, J. Anal. At. Spectrom., 33, 240-250 (2018)
    DOI: 10.1039/C7JA00331E Q1

  13. Effect of diamond nanoparticle chains on rheological properties of hydrosol,
    Kuznetsov NM, Belousov SI, Stolyarov DYu, Bakirov AV, Chvalun SN, Shvidchenko AV, Eidelman ED, Vul' AYa,
    Diam. Relat. Mater., 83, pp. 141-145 (2018)
    DOI: 10.1016/j.diamond.2018.02.006 Q1

  14. Ultracentrifugation for ultrafine nanodiamond fractionation,
    Koniakhin,SV; Besedina,NA; Kirilenko,DA; Shvidchenko,AV; Eidelman,ED,
    Superlattices Microstruct, 113, 204-212 (2018)
    DOI: 10.1016/j.spmi.2017.10.039 Q2

  15. Comment on "Carbon structure in nanodiamonds elucidated from Raman spectroscopy" by V.I. Korepanov et al.,
    Osipov,VY; Panich,AM; Baranov,AV,
    Carbon, 127, pp. 193-194 (2018)
    DOI: 10.1016/j.carbon.2017.11.004 Q1

  16. Auger recombination in quantum well laser with participation of electrons in waveguide region,
    Karpova,AA; Samosvat,DM; Zegrya,AG; Zegrya,GG; Bugrov,VE,
    Rev. Adv. Mater. Sci., 57(2) pp. 193-198 (2018)
    DOI: 10.1515/rams-2018-064 Q2

Статьи в российских журналах

  1. Дизайн градиентных композитных материалов на основе алюминия и графита методом центробежного литья,
    Эйдельман,ЕД; Дурнев МА,
    ЖТФ, 118(11) стр. 1667-71 (2018) PDF
    DOI: 10.21883/JTF.2018.11.46627.2531
    Design of Gradient Composites of Aluminum and Graphite by the Centrifugal-Casting Method,
    Eidel`man,ED; Durnev,MA,
    Tech. Phys., 63(11), pp. 1615-1619 (2018)
    DOI: 10.1134/S1063784218110105 Q3

  2. Resistance of reduced graphene oxide on polystyrene surface,
    Nikolaeva,MN; Bugrov,AN; Anan`eva,TD; Gushchina,EV; Dunaevskii,MS; Dideikin,AT,
    Nanosystems: physics, chemistry, mathematics, 9(4) стр. 496-499 (2018) PDF
    DOI: 10.17586/2220-8054-2018-9-4-496-499

  3. Resistance of UV-perforated reduced graphene oxide on polystyrene surface,
    Nikolaeva,MN; Bugrov,AN; Anan'eva,TD; Dideikin,AT; Rabchinskii,MK; Ionov,AN,
    Nanosystems: physics, chemistry, mathematics, 9(6) стр. 793-797 (2018) PDF
    DOI 10.17586/2220-8054-2018-9-6-793-797

  4. Структура и свойства полученных методом магнетронного распыления тонких графитоподобных пленок,
    Виноградов,АЯ; Грудинкин,СА; Беседина,НА; Коняхин,СВ; Рабчинский,МК; Эйдельман,ЕД; Голубев,ВГ,
    ФТП, 52(7) стр. 775-781 (2018) PDF
    DOI: 10.21883/FTP.2018.07.46051.8782
    Structure and Properties of Thin Graphite-Like Films Produced by Magnetron-Assisted Sputtering,
    Vinogradov,AY; Grudinkin,SA; Besedina,NA; Koniakhin,SV; Rabchinskii,MK; Eidelman,ED; Golubev,VG,
    Semiconductors, 52(7), pp. 914-920 (2018) PDF
    DOI: 10.1134/S1063782618070266 Q3

  5. Самоорганизующиеся композитные полимер-наноалмазные покрытия вакуумных катодов,
    Лебедев-Степанов,ПВ; Дидейкин,АТ; Чвалун,СН; Васильев,АЛ; Григорьев,ТЕ; Коровин,АН; Белоусов,СИ; Молчанов,СП; Юрасик,ГА; Вуль,АЯ,
    Поверхность, 2, 46-50 (2018)
    DOI: 10.7868/S0207352818020075
    Self-Assembling Polymer–Nanodiamond Composite Coatings for Vacuum Cathodes,
    Lebedev-Stepanov,PV; Dideykin,AT; Chvalun,SN; Vasiliev,AL; Grigoryev,TE; Korovin,AN; Belousov,SI; Molchanov,SP; Yurasik,GA; Vul',AY,
    J. Surf. Invest. X-ray, 12(1), 135-138 (2018) PDF
    DOI: 10.1134/S1027451018010287 Q3

  6. Упрочнение поверхности композиционного материала методом центробежного литья,
    Эйдельман ЕД; Дурнев МА,
    Письма в ЖТФ, 44(7), стр. 23-29 (2018) PDF
    DOI: 10.21883/PJTF.2018.07.45881.16902
    Surface Hardening of Composite Material by the Centrifugal-Casting Method,
    Eidelman,ED; Durnev,MA,
    Tech. Phys. Lett., 44(4), pp. 284-286 (2018) PDF
    DOI: 10.1134/S1063785018040041 Q2

  7. Эволюция триплетных парамагнитных центров в алмазах, получаемых спеканием детонационных наноалмазов при высоком давлении и температуре,
    Осипов,ВЮ; Шамес,АИ; Ефимов,НН; Шахов,ФМ; Кидалов,СВ; Минин,ВВ; Вуль,АЯ,
    ФТТ, 60(4), 719-725 (2018) PDF
    DOI: 10.21883/FTT.2018.04.45682.262
    Evolution of Triplet Paramagnetic Centers in Diamonds Obtained by Sintering of Detonation Nanodiamonds at High Pressure and Temperature,
    Osipov,VY; Shames,AI; Efimov,NN; Shakhov,FM; Kidalov,SV; Minin,VV; Vul',AY,
    Phys. Solid State, 60(4) 723-729 (2018) PDF
    DOI: 10.1134/S1063783418040236 Q3

  8. Идентификация квази-свободных и связанных нитрат-ионов на поверхности алмазных наночастиц методами инфракрасной и рентгеновской фотоэлектронной спектроскопии,
    Осипов,ВЮ; Романов,НМ; Шахов,ФМ; Takai,K,
    Оптич. ж., 85(3) стр. 3-11 (2018)
    Identifying quasi-free and bound nitrate ions on the surfaces of diamond nanoparticles by IR and x-ray photoelectron spectroscopy,
    Osipov,VY; Romanov,NM; Shakhov,FM; Takai,K,
    J. Opt. Technol., 85(3), 122-129 (2018) PDF
    DOI: 10.1364/JOT.85.000122 Q3

  9. Chemical composition of surface and structure of defects in diamond single crystals produced from detonation nanodiamonds,
    Kidalov,SV; Shnitov,VV; Baidakova,MV; Brzhezinskaya,M; Dideikin,AT; Shestakov,MS; Smirnov,DA; Serenkov,IT; Sakharov,VI; Sokolov,VV; Tatarnikov,NI; Vul,AYa,
    Nanosystems: physics, chemistry, mathematics, 9(1), pp. 21-24 (2018) PDF
    DOI: 10.17586/2220-8054-2018-9-1-21-24

  10. Исследование NV(–) центров и интерфейсов кристаллитов в синтетических моно- и поликристаллических наноалмазах методами оптической флуоресцентной и микроволновой спектроскопии,
    Осипов,ВЮ; Романов,НМ; Богданов,КВ; Treussart,F; Jentgens,С; Rampersaud,A,
    Оптич. ж., 85(2), стр. 3-14 (2018)
    Investigation of NV(−) centers and crystallite interfaces in synthetic single-crystal and polycrystalline nanodiamonds by optical fluorescence and microwave spectroscopy,
    Osipov,VY; Romanov,NM; Bogdanov,KV; Treussart,F; Jentgens,C; Rampersaud,A,
    J. Opt. Technol., 85(2), 63-72 (2018) PDF
    DOI: 10.1364/JOT.85.000063 Q3

  11. Atomic Force Microscopy Study of Monodisperse Carbon Nanoparticles,
    Muravijova,DV; Ermakov,IA; Eurov,DA; Kirilenko,DA; Kurdyukov,DA; Rabchinskii,MK; Shvidchenko,AV; Trofimuk,AD; Baidakova,MV,
    Semiconductors, v.52, 16, pp. 2065-2067 (2018)
    DOI: 10.1134/S1063782618160224 Q3

  12. Внутризонное поглощение излучения дырками в квантовых ямах InAsSb/AlSb и InGaAsP/InP,
    Павлов,НВ; Зегря,ГГ; Зегря,АГ; Бугров,ВЕ,
    ФТП, 52(2), 207-220 (2018)
    DOI: 10.21883/FTP.2018.02.45445.8645
    Intraband Radiation Absorption by Holes in InAsSb/AlSb and InGaAsP/InP Quantum Wells, Pavlov,NV; Zegrya,GG; Zegrya,AG; Bugrov,VE, Semiconductors, 52(2), 195-208 (2018)
    DOI: 10.1134/S1063782618020112 Q3

  13. Механизм генерации синглетного кислорода в присутствии возбужденного нанопористого кремния,
    Самосват,ДМ; Чикалова-Лузина,ОП; Хромов,ВС; Зегря,АГ; Зегря,ГГ,
    Письма ЖТФ, 44(11), 53-62 (2018)
    DOI:
    The Mechanism of Generation of Singlet Oxygen in the Presence of Excited Nanoporous Silicon,
    Samosvat,DM; Chikalova-Luzina,OP; Khromov,VS; Zegrya,AG; Zegrya,GG,
    Tech. Phys. Lett., 44(6) pp. 479-482 (2018)
    DOI: 10.1134/S1063785018060093 Q2

Труды конференций

  1. Probing the electrocatalytic behavior of zigzag edges in holey graphene nanoplatelets,
    Li,QD; Savaram,K; Li,MJ; Tajima,K; Takai,K; Hayashi,T; Garfunkel,E; Osipov,V; He,HX,
    in: 256TH NATIONAL MEETING AND EXPOSITION OF THE AMERICAN-CHEMICAL-SOCIETY (ACS) - NANOSCIENCE, NANOTECHNOLOGY AND BEYOND Abstr. Pap. Am. Chem. Soc., v.256, pp. #ENFL4-, 2018 (256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond; Boston, USA; 19-23 August 2018)

  2. Catalytic hydrogenation of nitrobenzene via intrinsic holey graphene nanoplatelets with rich zigzag edges, Savaram,K; Li,MJ; Tajima,K; Takai,K; Hayashi,T; Garfunkel,E; Osipov,V; Ma,N; He,HX, in: 256TH NATIONAL MEETING AND EXPOSITION OF THE AMERICAN-CHEMICAL-SOCIETY (ACS) - NANOSCIENCE, NANOTECHNOLOGY AND BEYOND Abstr. Pap. Am. Chem. Soc., v.256, pp. #ENFL249-, 2018 (256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond; Boston, USA; 19-23 August 2018)

  3. Microwave-enabled scalable fabrication of holey graphene nanoplatelets and their catalysis in reductive hydrogen atom transfer reactions, Savaram,K; Li,MJ; Tajima,K; Takai,K; Hayashi,T; Hall,G; Garfunkel,E; Osipov,V; He,HX, in: 256TH NATIONAL MEETING AND EXPOSITION OF THE AMERICAN-CHEMICAL-SOCIETY (ACS) - NANOSCIENCE, NANOTECHNOLOGY AND BEYOND Abstr. Pap. Am. Chem. Soc., v.256, pp. #ENFL290-, 2018 (256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond; Boston, USA; 19-23 August 2018)

  4. Laser-induced breakdown spectroscopy as an effective approach for study of nanocarbon materials,
    Rabchinskii,MK; Lebedev,VF; Kozlyakov,MS; Stepanov,DN; Shvidchenko,AV; Nikonorov,NV; Vul,AYa,
    in: PROCEEDINGS - INTERNATIONAL CONFERENCE LASER OPTICS 2018, ICLO 2018 (2018 International Conference Laser Optics, ICLO 2018; St.Petersburg, Russian Federation; 4-8 June 2018), pp. #8435718-2018, IEEE ISBN: 978-1-5386-3612-1. PDF
    DOI: 10.1109/LO.2018.8435718

  5. Singlet oxygen generation mechanism in the presence of excited nanoporous silicon,
    Samosvat,DM; Chikalova-Luzina,OP; Khromov,VS; Zegrya,AG; Zegrya,GG,
    in: 5TH INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES, SAINT PETERSBURG OPEN 2018 J. Phys.: Conf. Ser., v.1124, 3, p. #031025- (2018)
    DOI: 10.1088/1742-6596/1124/3/031025