?>
 Публикации 2020

Публикации лаборатории 2021 г.

Статьи в зарубежных журналах

  1. Effect of Particle Sizes on the Efficiency of Fluorinated Nanodiamond Neutron Reflectors,
    Aleksenskii,A; Bleuel,M; Bosak,A; Chumakova,A; Dideikin,A; Dubois,M; Korobkina,E; Lychagin,E; Muzychka,A; Nekhaev,G; Nesvizhevsky,V; Nezvanov,A; Schweins,R; Shvidchenko,A; Strelkov,A; Turly-bekuly,K; Vul’,A; Zhernenkov,K,
    Nanomaterials, v.11(11), 3067 (2021) Q1
    DOI: 10.3390/nano11113067

  2. Valence Band Structure Engineering in Graphene Derivatives,
    Shnitov,VV; Rabchinskii,MK; Brzhezinskaya,M; Stolyarova,DY; Pavlov,SV; Baidakova,MV; Shvidchenko,AV; Kislenko,VA; Kislenko,SA; Brunkov,PN,
    Small, v.17 ArtNo: #2104316 (2021) Q1
    DOI: 10.1002/smll.202104316

  3. Structure of Diffusion Polymer Membranes for Molecular and Ionic Transport,
    Lebedev,VT; Kulvelis,YV; Torok,G; Ivankov,OI; Polotskaya,GA; Vinogradova,LV; Vul,AY; Primachenko,ON; Marinenko,EA; Odinokov,AS
    J. Surf. Invest. X-ray, v.15, 5, pp.939-946 (2021) Q4
    DOI: 10.1134/S1027451021050098

  4. Diamond based nanostructures with metal-organic molecules,
    Lebedev,VT; Török,G; Kulvelis,YV; Soroka,MA; Fomin,EV; Vul,AYa; Garg,S
    Soft Materials, in Press (2021) PDF Q3
    DOI: 10.1080/1539445X.2021.1992425

  5. Small-angle neutron scattering study of graphene-nanodiamond composites for biosensor and electronic applications,
    Kulvelis, YuV; Rabchinskii, MK; Dideikin, AT; Trofimuk, AD; Shvidchenko, AV; Kirilenko, DA; Gudkov, MV; Kuklin,AI,
    Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, Vol. 15, No. 5, pp. 896–898 (2021)PDF Q4
    DOI: 10.1134/S1027451021050062

  6. The 20-Year Russian-Italian Scientific Collaboration in Industrial Applications of Neutrons and Prospects on High Flux Reactor “PIK” of Russian National Centre “Kurchatov Institute”,
    Rogante,M; Lebedev,VT; Kulvelis,Y; Vul,AY; Kozlov,VS; Konoplev,KA,
    Neutron News, v. 32, 3, pp. 9-15 (2021) PDF Q4
    DOI: 10.1080/10448632.2021.1946342

  7. Manganese-grafted detonation nanodiamond, a novel potential MRI contrast agent,
    Panich,AM; Shames,AI; Aleksenskii,AE; Yudina,EB; Vul',AYa,
    Diam. Relat. Mater., v. 119, 108590 (2021) PDF Q2
    DOI: 10.1016/j.diamond.2021.108590

  8. Clustering of Diamond Nanoparticles, Fluorination and Efficiency of Slow Neutron Reflectors,
    Aleksenskii,A; Bleuel,M; Bosak,A; Chumakova,A; Dideikin,A; Dubois,M; Korobkina,E; Lychagin,E; Muzychka,A; Nekhaev,G; Nesvizhevsky,V; Nezvanov,A; Schweins,R; Shvidchenko,A; Strelkov,A; Turlybekuly,K; Vul’,A; Zhernenkov,K
    Nanomaterials, 11(8), 1945 (2021) Q1
    DOI: 10.3390/nano11081945

  9. Long range interactions and related C-C bonds reconstruction between interior and surface defects in nanodiamonds,
    Boukhvalov,DW; Osipov,VYu; Takai,K,
    Phys. Chem. Chem. Phys.,v.23, pp. 14592-14600 (2021) PDF Q1
    DOI: 10.1039/D0CP05914E

  10. Calculation of Kapitza Resistance with Kinetic Equation,
    Meilakhs,AP; Semak,BV,
    Phys. Status Solidi B-Basic Solid State Phys. ArtNo: #2100018 (2021) Q3
    DOI: 10.1002/pssb.202100018

  11. Solid-state reaction of niobium with diamond carbon at high pressure and high temperature to form superconducting composite,
    Osipov,VYu; Shakhov,FM; Romanov,NM; Takai,K,
    Mendeleev Commun., v.31, 3, pp. 415-418 (2021) PDF Q3
    DOI: 10.1016/j.mencom.2021.04.044

  12. Fluorine-defects induced solid-state red emission of carbon dots with an excellent thermosensitivity,
    Ding,H; Xu,J Jiang,L; Dong,C; Meng,Q; Sajid ur Rehman; Wang,J; Ge,Z; Osipov,VYu; Bi,H,
    Chinese Chemical Letters, v. 32, 11, pp. 3646–3651 (2021) PDF Q1
    DOI: 10.1016/j.cclet.2021.04.033

  13. Graphene oxide chemistry management via the use of KMnO4/K2Cr2O7 oxidizing agents,
    Shiyanova,KA; Gudkov,MV; Rabchinskii,MK; Sokura,LA; Stolyarova,DYu; Baidakova,MV; Shashkin,DP; Trofimuk,AD; Smirnov,DA; Komarov,IA; Timofeeva,VA; Melnikov,VP,
    Nanomaterials, 11(4), p. 915 (2021) Q1
    DOI: 10.3390/nano11040915

  14. PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI,
    Panich,AM; Salti,M; Prager,O; Swissa,E; Kulvelis,YuV; Yudina,EB; Aleksenskii,AE; Goren,SD; Vul',AYa; Shames,AI
    Magnetic Resonance in Medicine, v. 86, 2, pp. 935-942 (2021) Q1
    DOI: 10.1002/mrm.28762

  15. Irradiation of detonation nanodiamonds with γ-rays does not produce long living spin radicals,
    Osipov, VYu; Romanov, NM; Takai, K
    Mendeleev Communications, v. 31, pp. 227-229 (2021) PDF Q3
    DOI: 10.1016/j.mencom.2021.03.027

  16. Deagglomeration of polycrystalline diamond synthesized from graphite by shock-compression,
    Aleksenskii,AE; Kirilenko,DA; Trofimuk,AD;Shvidchenko,AV; Yudina,EB
    Fullerenes, Nanotubes and Carbon Nanostructures, v.29(10), pp.779-782 (2021) PDF Q3
    DOI: 10.1080/1536383X.2021.1892077

  17. Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: Effect of nanodiamonds surface,
    Kuznetsov,NM; Belousov,SI; Kamyshinsky,RA; Vasiliev,AL; Chvalun,SN; Yudina,EB; Vul,AYa,
    Carbon, v.174, pp. 138-147 (2021) PDF Q1
    DOI: 10.1016/j.carbon.2020.12.014

  18. Hole-matrixed carbonylated graphene: Synthesis, properties, and highly-selective ammonia gas sensing,
    Rabchinskii,MK; Varezhnikov,AS; Sysoev,VV; Solomatin,MA; Ryzhkov,SA; Baidakova,MV; Stolyarova,DY; Shnitov,VV; Pavlov,SS; Kirilenko,DA; Shvidchenko,AV; Lobanova,EY; Gudkov,MV; Smirnov,DA; Kislenko,VA; Pavlov,SV; Kislenko,SA; Struchkov,NS; Bobrinetskiy,II; Emelianov,AV; Liang,P; Liu,Z; Brunkov,PN,
    Carbon, v.172, pp. 236-247 (2021) PDF Q1
    DOI: 10.1016/j.carbon.2020.09.087

Статьи в российских журналах

  1. About Incorrect and Unrepresentative Citation in the Review “High Thermal Conductive Copper/Diamond Composites: State of the Art” by S.J.Jia, F.Yang and in Other Papers,
    Abyzov,AM; Shakhov,FM,
    Известия СПбГТИ (ТУ), т.58, стр. 51-55 (2021)
    DOI: 10.36807/1998-9849-2021-58-84-51-55

  2. Модификация механизма протонной проводимости перфторированного мембранного сополимера при помощи наноалмазов,
    Кульвелис,ЮВ; Примаченко,ОН; Гофман,ИВ; Одиноков,АС; Швидченко,АВ; Юдина,ЕБ; Мариненко,ЕА; Лебедев,ВТ; Вуль,АЯ,
    Изв. АН, сер. хим., т.9,  стр. 1713-1717 (2021)
    Modification of the mechanism of proton conductivity of the perfluorinated membrane copolymer by nanodiamonds,
    Kulvelis,YV; Primachenko,ON; Gofman,IV; Odinokov,AS; Shvidchenko,AV; Yudina,EB; Marinenko,EA; Lebedev,VT; Vul,AY, Russ. Chem. Bull., v.70, 9, pp. 1713-1717 (2021) Q3
    DOI: 10.1007/s11172-021-3274-4

  3. Теплопроводность наножидкостей: влияние формы частиц,
    Эйдельман,ЕД; Вуль,АЯ,
    Письма ЖТФ, т.47, 20, стр. 45-47 (2021) Q3
    DOI: 10.21883/PJTF.2021.20.51617.18920

  4. Влияние графеновых наноразмерных пластин, синтезированных методом самораспространяющегося высокотемпературного синтеза, на твердость и теплопроводность алюминиевого композита,
    Возняковский,АА; Возняковский,АП; Кидалов,СВ; Заваринский,ВИ,
    Хим. физ., т.40, 6, стр. 14-17 (2021)
    DOI: 10.31857/S0207401X21060169
    Influence of Graphene Nanoplatelets Synthesized by Self-Propagating High-Temperature Synthesis on the Hardness and Thermal Conductivity of an Aluminum Composite,
    Voznyakovsky,AA; Wozniakovsky,AP; Kidalov,SV; Zavarinsky,VI,
    In: XXXI SYMPOSIUM “MODERN CHEMICAL PHYSICS” Russ. J. Phys. Chem. B, v.15, 3, pp. 377-380, PLEIADES PUBLISHING ISSN: 1990-7931 (2021) Q3
    DOI: 10.1134/S1990793121030325

  5. Термоэлектрический эффект и термоэлектрический генератор на основе углеродных наноструктур: достижения и перспективы,
    Эйдельман,ЕД, УФН, т.191, 6, стр. 561-585 (2021) PDF
    DOI: 10.3367/UFNr.2020.06.038795
    Thermoelectric effect and a thermoelectric generator based on carbon nanostructures: achievements and prospects,

    Eidelman,ЕD, Physics-Uspekhi 64(6), pp. 535-557 (2021)Q3 PDF
    DOI: 10.3367/UFNe.2020.06.038795

  6. Композитные пленки на основе углеродных квантовых точек в матрице проводящего полимера PEDOT : PSS,
    Ненашев, ГВ; Истомина МС; Щербаков, ИП; Швидченко АВ; Петров ВН; Алешин АН,
    ФTT, том 63, вып. 8, 1183-1188 (2021)
    DOI: 10.21883/FTT.2021.08.51176.090
    Composite Films Based on Carbon Quantum Dots in a Matrix of PEDOT:PSS Conductive Polymer,
    Nenashev G.V., Istomina M.S., Shcherbakov I.P., Shvidchenko A.V., Petrov V.N., Aleshin A.N.,
    Phys. Solid State, v. 63, pp. 1276-1282 (2021) Q3
    DOI: 10.1134/S1063783421080229

  7. Темплатный метод синтеза монодисперсных наночастиц MoS2,
    Стовпяга,ЕЮ; Курдюков,ДА; Кириленко,ДА; Смирнов,АН; Швидченко,АВ; Яговкина,МА; Голубев,ВГ,
    ФТП, т.55, 5, стр. 475-480 (2021) PDF Q3
    DOI: 10.21883/FTP.2021.05.50841.9587
    Synthesis of Monodisperse MoS2 Nanoparticles by the Template Method,
    Stovpiaga,EYu; Kurdyukov,DA; Kirilenko,DA; Smirnov,AN; Shvidchenko,AV; Yagovkina,MA; Golubev,VG,
    Semiconductors, v.55, 6, pp. 525-530 (2021) Q3
    DOI: 10.1134/S106378262105016X

  8. Исследование нелегированных нанокристаллических алмазных пленок, выращенных из газовой фазы в плазме СВЧ разряда,
    Вихарев,АЛ; Богданов,СА; Овечкин,НМ; Иванов,ОА; Радищев,ДБ; Горбачев,АМ; Лобаев,МА; Вуль,АЯ; Дидейкин,АТ; Краев,СА; Королев,СА,
    ФТП, т.55, 1, стр. 49-58 (2021) PDF
    DOI: 10.21883/FTP.2021.01.50387.9520
    Study of Undoped Nanocrystalline Diamond Films Grown by Microwave Plasma-Assisted Chemical Vapor Deposition,
    Vikharev,AL; Bogdanov,SA; Ovechkin,NM; Ivanov,OA; Radishev,DB; Gorbachev,AM; Lobaev,MA; Vul,AY; Dideikin,AT; Kraev,SA; Korolev,SA,
    Semiconductors, 55, 1, pp. 66-75 (2021) Q3
    DOI: 10.1134/S106378262101019X

Table

PDF