?>
 Публикации 2020

Публикации лаборатории 2022 г.

Статьи в иностранных журналах

  1. Prediction of Diamene-based Chemo-Sensors
    Boukhvalov,DW;  Osipov, VYu 
    Chemosensors, 10(11), 480 (2022) Q2
    DOI: 10.3390/chemosensors10110480

  2. New Generation of Compositional Aquivion®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance,
    Primachenko,ON; Kulvelis,YV; Odinokov,AS; Glebova,NV; Krasnova,AO; Antokolskiy,LA; Nechitailov,AA; Shvidchenko,AV; Gofman,IV; Marinenko,EA; Yevlampieva,NP; Lebedev,VT; Kuklin,AI
    Membranes, v.12, 9 ArtNo: #827 (2022) Q2
    DOI: 10.3390/membranes12090827

  3. Pyrolysis mass-spectrometry study of detonation nanodiamonds surface chemistry,
    Yudina,EB; Romanov,PA; Chizhikova,AS; Aruev,NN,
    Fullerenes, Nanotubes and Carbon Nanostructures, In Press (2022) Q3
    DOI: 10.1080.153638X.2022.2120477

  4. Tracking nitrogen-to-nickel ratio and prevalent paramagnetic species in synthetic  diamonds by means of electron spin resonance at 90 K,
    Osipov,VYu;  Shakhov,FM; Romanov,NM;  Takai,K, Mendeleev Commun., 32, 645‒648 (2022) Q3
    DOI: 1016/j.mencom.2022.09.026

  5. CVD Nanocrystalline Diamond Film Doped with Eu,
    Yudina, EB; Aleksenskii, AE; Bogdanov, SA; Bukalov, SS; Leites, LA; Radishev, DB; Vikharev, AL; Vul', AY,
    Materials , v. 15, pp. 5788 (2022) Q2
    DOI: 10.3390/ma15165788

  6. Predictive estimate of the calorific value of substances with negative oxygen balance depending on the value of oxygen balance,
    Dolmatov,VYu; Ozerin,AN; Eidelman,ED; Kozlov,AS; Naryzhny,SYu; Martchukov,VA; Vehanen,A; Myllymaki,V,
    J. Adv. Mater. Technol., v.7, 2, pp.122-134 (2022) Q2
    DOI: 10.17277/jamt.2022.02.pp.122-134

  7. Enhancing the Strengthening Effect of Graphene-Nanoplates in Al Matrix Composites by Heterogeneous Matrix Design,
    Shao,P; Sun,K; Zhu,P; Liu,K; Zhang,Q; Yang,W; Wang,Z; Sun,M; Zhang,D; Kidalov,S; Xiao,H; Wu,G,
    Nanomaterials, 12, 1833 (2022) Q1
    DOI: 10.3390/nano12111833

  8. The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil,
    Kuznetsov,NM; Vdovichenko,AY; Bakirov,AV; Belousov,SI; Kamyshinsky,RA; Vasiliev,AL; Kulikova,ES; Svetogorov,RD; Chvalun,SN; Yudina,EB; Vul’,AY,
    Diam. Relat. Mat., v.125 ArtNo: #108967 (2022) Q2
    DOI: 10.1016/j.diamond.2022.108967

  9. Transition metal atoms grafted on the nanodiamonds surface: identification and guest-host spin-spin interactions,
    Gridnev,ID, Osipov,VYu,
    Mendeleev Comm., v. 32(2), pp. 143-151 (2022) Q2
    DOI: 10.1016/j.mencom.2022.03.0016

  10. Single crystal diamond particles formed by the reaction of amorphous carbon and organic compounds at high pressure and high temperature,
    Oshima,R; Iizuka,K; Vul’,AYa; Sakhov,FM,
    Journal of Crystal Growth, J. Cryst. Growth, v.587 ArtNo: #126646 Q2
    DOI: 10.1016/j.jcrysgro.2022.126646

  11. Development of Submicrocapsules Based on Co-Assembled Like-Charged Silica Nanoparticles and Detonation Nanodiamonds and Polyelectrolyte Layers,
    Palamarchuk,KV; Borodina,TN; Kostenko,AV; Chesnokov,YM; Kamyshinsky,RA; Palamarchuk,NP; Yudina,EB; Nikolskaya,ED; Yabbarov,NG; Mollaeva,MR; Bukreeva,TV,
    Pharmaceutics, v.14, 3 ArtNo: #575 (2022) Q1
    DOI: 10.3390/pharmaceutics14030575

  12. A Quantitative Chemical Method for Determining the Surface Concentration of Stone–Wales Defects for 1D and 2D Carbon Nanomaterials,
    Voznyakovskii,A; Neverovskaya,A; Vozniakovskii,A; Kidalov,S,
    Nanomaterials, v.12, pp. 883 (2022) Q1
    DOI: 10.3390/nano12050883

  13. Rational Synthesis of Solid-State Ultraviolet B Emitting Carbon Dots via Acetic Acid-Promoted Fractions of sp3 Bonding Strategy,
    Xu,J; Liang,Q; Li,Z; Osipov, VYu; Lin,Y; Ge,B; Xu,Q; Zhu,J; Bi.H,
    Advanced Materials, Adv. Mater., v.34 ArtNo: #2200011 (2022) Q1
    DOI: 10.1002/adma.202200011

  14. Biocompatible acid-degradable micro-mesoporous CaCO3:Si:Fe nanoparticles potential for drug delivery,
    Eurov,DA; Kurdyukov,DA; Boitsov,VM; Kirilenko,DA; Shmakov,SV; Shvidchenko,AV; Smirnov,AN; Tomkovich,MV; Yagovkina,MA; Golubev,VG,
    Microporous Mesoporous Mater., v.333 ArtNo: #111762 (2022) Q1
    DOI: 10.1016/j.micromeso.2022.111762

  15. Hardness and thermal conductivity of a composite based on aluminum modified with a hybrid material detonation nanodiamond/few-layer graphene,
    Vozniakovskii,A; Kidalov,S; Voznyakovskii,A; Podlozhnyuk,N,
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 205-210 (2022) Q3
    DOI: 10.1080/1536383X.2021.2014455

  16. Thermal Conductivity of Composite Materials Copper-Fullerene Soot, ,
    Koltsova,T; Bobrynina,E; Vozniakovskii,A; Larionova,T; Klimova-Korsmik,O,
    Materials, v.15, 4 ArtNo: #1415 (2022) Q2
    DOI: 10.3390/ma15041415

  17. Magnetic resonance tracking of copper ion fixation on the surface of carboxylatednanodiamonds from viewpoint of changes in carbon-inherited paramagnetism,
    Osipov,VYu; Romanov,NM; Suvorkova,IE; Osipova,EV; Tsuji,T; Ishiguro,Y; Takai,K,
    Mendeleev Commun., v.32, pp. 132-135 (2022) PDF Q3
    DOI: 10.1016/j.mencom.2022.01.043

  18. New Way of Synthesis of Few-Layer Graphene Nanosheets by the Self Propagating High-Temperature Synthesis Method from Biopolymers, ,
    Voznyakovskii,A; Vozniakovskii,AA; Kidalov,SV,
    Nanomaterials, v.12, 4, 657 (2022)
    DOI: 10.1021/acs.jpcc.1c09026 Q1

  19. Spatially Resolved Spin−Lattice Relaxation Times and Line Widths in Manganese-Grafted Detonation Nanodiamonds, ,
    Panich,AM; Aleksenskii,AE; Yudina,EB; Vul’,AYa,
    J. Phys. Chem. C, v.126, 3, pp. 1489-1495 (2022) PDF
    DOI: 10.3390/nano12040657 Q1

  20. Fluorinated carbon dots/carboxyl methyl cellulose sodium composite with a temperature-sensitive fluorescence/phosphorescence applicable for anti-counterfeiting marking,
    Xu,M; Chen,D; Xu,J; Sajid ur Rehman; Wang,Q; Osipov,VYu; Jiang,Kai; Wang,J; Bi,H,
    Carbon, v.189, 459-466 (2022)
    DOI: 10.1016/j.carbon.2021.12.077 Q1

  21. Diamond powders synthesized at high pressure and high temperature from graphite with nickel in the presence of aluminum. Applicability of methods for analyzing nitrogen concentration in diamonds,
    Shakhov,FM; Osipov,VYu; Krasilin,AA; Iizuka,K; Oshima,R
    J. Sol. State Chem., v. 307, 122804  (2022) Q2
    DOI: 10.1016/j.jssc.2021.122804

  22. Low-threshold field electron emission from graphene nanostructures,
    Voznyakovskii,A; Fursei,G; Vozniakovskii,A; Polyakov,M; Neverovskaya,A; Zakirov,I,
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 53-58 (2022) Q3
    DOI: 10.1080/1536383X.2021.1995366

  23. Phenomenological model of synthesis of few-layer graphene (FLG) by the selfpropagating high-temperature synthesis (SHS) method from biopolymers,
    Voznyakovskii,A; Vozniakovskii,A; Kidalov,S
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 59-65 (2022) Q3
    DOI: 10.1080/1536383X.2021.1993831

  24. Complexes of nanodiamonds with Gd-fullerenols for biomedicine,
    Lebedev,VT; Török,G; Kulvelis,YV; Soroka,MA; Fomin,EV; Vul,AYa; Garg,S
    Fuller. Nanotub. Carbon Nanostruct.,v.30(1), pp. 36-45 (2022) Q3 PDF
    DOI: 10.1080/1536383X.2021.1993443

  25. Thermal conductivity and heat capacity of nanofluid based on water modified by hybrid material of composition detonation nanodiamonds-carbon nanotubes,
    Vozniakovskii,A; Voznyakovskii,A; Kidalov,S; Ovchinnikov,E; Kalashnikova,E,
    Fuller. Nanotub. Carbon Nanostruct., v.30(1), pp. 5-9 (2022) Q3
    DOI: 10.1080/1536383X.2021.1994951

  26. Sonication assisted advanced oxidation process: hybrid method for deagglomeration of detonation nanodiamond particles,
    Shestakov,MS; Shvidchenko,AV; Yudina,EB; Besedina,NA; Koniakhin,SV; Kirilenko,DA; Dideikin,AT,
    Fuller. Nanotub. Carbon Nanostruct, 30(2), pp. 283-289 (2022) Q3 PDF
    DOI: 10.1080/1536383X.2021.1935887

Статьи в российских журналах

  1. Влияние знака поверхностного потенциала наноалмазных частиц на морфологию композитов "графен - детонационный наноалмаз" в форме суспензий и аэрогелей,
    Рабчинский,МК; Трофимук,АД; Швидченко,АВ, Кульвелис,ЮВ; Кириленко,ДА; Павлов,СИ; Байдакова,МВ; Гудков,МВ; Шиянова,КА; Коваль,ВС; Петерс,ГС; Мельников,ВП; Брунков,ПН,
    ЖТФ, т.92, 12, стр. 1853-1868 (2022)
    DOI: 10.21883/JTF.2022.07.52649.31-22

  2. Детонационный синтез как современный экологичный метод получения 2D наноуглеродов,
    Возняковский,АП; Возняковский,АА; Шугалей,ИВ; Долматов,ВЮ; Илюшин,МА; Неверовская,АЮ
    Экологическая химия, т.31, 3, стр. 167-174 (2022)

  3. Малослойные графеновые структуры как перспективный сорбент микотоксинов,
    Возняковский,АП; Карманов,АП; Кочева,ЛС; Неверовская,АЮ; Возняковский,АА; Канарский,АВ; Семенов,ЭИ; Кидалов,СВ,
    ЖТФ, т.92, 12, стр. 1853-1868 (2022)
    DOI: 10.21883/JTF.2022.12.53913.208-22

  4. Идентификация NV-центров в синтетических флуоресцентных наноалмазах и контроль дефектности кристаллитов методом электронного парамагнитного резонанса,
    Осипов,ВЮ; Богданов, КВ; Баранов,АВ; Treussart, F; Rampersaud, A,
    Оптика и спектроскопия, том 130, вып. 2, стр. 332-341 (2022) PDF
    DOI:  10.21883/OS.2022.02.52004.2872-21
    Identification of NV Centers in Synthetic Fluorescent Nanodiamonds and Control of Defectiveness of Crystallites Using Electron Paramagnetic Resonance
    Osipov,VYu; Bogdanov,KV; Treussart,F; Rampersaud,AA; Baranov,AV
    Optics and Spectroscopy, v.130, 2, pp. 296-305 (2022)
    DOI: 10.21883/EOS.2022.02.53968.2872-21

  5. Исследование влияния содержания водорода на проводимость нанокристаллических алмазных пленок,
    Иванов,ОА; Вихарев,АЛ; Богданов,СА; Овечкин,НМ; Логинов,ВП; Яковлев,ЮА; Вуль,АЯ,
    Письма ЖТФ, т.48, 2, стр. 37-40 (2022)
    DOI: 10.21883/PJTF.2022.02.51920.18923
    Investigation of the effect of hydrogen content on the conductivity of nanocrystalline diamond films,
    Ivanov,OA; Vikharev,AL; Bogdanov,SA; Ovechkin,NM; Loginov,VP; Yakovlev,YA; Vul',AYa,
    Tech. Phys. Letters, v.48, 2, pp. 37-40 (2022)
    DOI: 10.21883/TPL.2022.01.52477.18923

Table

DOC