Название:Формирование наноструктурированных оксидных материалов в условиях ограниченного массопереноса и их применение для фотоэлектрохимического получения водорода
Грантодатель:Гранты РНФ
Область знаний:03 - Химия и науки о материалах
Научная дисциплина:03-601 - Химия новых неорганических функциональных и наноразмерных материалов
Ключевые слова:оксиды, наноструктуры, нанокомпозиты, ограниченный массоперенос, растворное горения, ионное наслаивание, электроосаждение, фотокатализ, электрокатализ, выделение водорода, фотоэлектрохимическая ячейка
Тип:исследовательский
Руководитель(и):Попков,ВИ
Подразделения:
Код проекта:21-73-10070
Финансирование 2021-23 г.:18 000 000
Исполнители: Дмитриев,ДС: лаб. материалов и процессов водородной энергетики (Попкова,ВИ)
Лебедев,ЛА: лаб. материалов и процессов водородной энергетики (Попкова,ВИ)
Мартинсон,КД: лаб. материалов и процессов водородной энергетики (Попкова,ВИ)
Омаров,ШО: лаб. материалов и процессов водородной энергетики (Попкова,ВИ)
Теневич,МИ: лаб. материалов и процессов водородной энергетики (Попкова,ВИ)
Чебаненко,МИ: лаб. материалов и процессов водородной энергетики (Попкова,ВИ)
Переход к новым и возобновляемым источникам энергии и, в частности, к возобновляемой водородной энергетике тесно связан с необходимостью разработки соответствующих процессов получения так называемого «зеленого» водорода из источников с нулевым углеродным следом. В качестве одного из наиболее перспективных процессов в этом направлении все чаще рассматривается фотоэлектрохимический процесс утилизации энергии солнечного излучения в форме энергии химической связи молекулы водорода. Однако развитие и активное внедрение соответствующих технологий и решений в настоящее время сдерживается преимущественно материаловедческой проблемой поиска методов синтеза высокоэффективных, продуктивных, стабильных, доступных и экологичных фото- и электрокатализаторов, решение которой с использованием ранее разработанных каталитических материалов, а также традиционных подходов к их синтезу не представляется возможным. В рамках данного проекта предлагается проведение исследований по разработке теоретических основ формирования оксидных фото- и электрокатализаторов на основе процессов, протекающих в условиях ограниченного массопереноса. Предполагается, что в этом случае возможно образование оксидных наноструктур с необычными составом, структурой, морфологией и функциональными свойствами, что было ранее показано авторами проекта для некоторых систем на основе простых и сложных оксидов. При этом реализацию ограничения массопереноса предполагается рассматривать в рамках одного или нескольких частных случаев – ограничение по температуре синтеза, его продолжительности, пространственные ограничения в зоне реакции или ограничение по количеству доступного для массопереноса вещества. В качестве методов синтеза, позволяющих реализовать условия таких ограничений будут использованы метод растворного горения, метод ионного наслаивания, метод электроосаждения металлов с последующей термообработкой, метода анодирования металлов и метод синтеза нанокристаллов в межслоевом пространстве углеродных 2D наноструктур. На основании результатов исследований будут предложены физико-химические модели, описывающие условия формирования и влияние ограничений массопереноса на состав, строение, размер и форму оксидных кристаллов на основе d-элементов 4-го и 5-го периодов таблицы Д.И. Менделеева. Выбор этих оксидных систем в качестве объектов исследования обусловлен широкими перспективами их дальнейшего применения в качестве основы материалов катода и фотоанода фотоэлектрохимических ячеек для получения водорода из возобновляемых водно-органических растворов. Таким образом в результате выполнения проекта планируется не только предложить оригинальные методы синтеза оксидных нанокристаллических частиц и получить новые наноматериалы, но и разработать подходы к физико-химическому конструированию высокоэффективных, стабильных и доступных каталитических материалов для решения задач перехода к возобновляемым методам получения водорода. Благодаря использованию широкого комплекса теоретических и экспериментальных методов анализа веществ на каждом из этапов их получения с участием современного аналитического оборудования планируется провести исчерпывающую характеризацию как самих материалов, так и определить особенности процессов их формирования в условиях ограниченного массопереноса. Это в совокупности с большим опытом авторов проекта в области синтеза и исследования наноструктурированных материалов обеспечит уверенное определение системных связей условий синтеза оксидных наноструктур с особенностями их состава, строения, фото- и электрокаталитических свойств. Эти разработки, полученные в результате комплекса проведенных исследований, станут основой перехода к новым технологиям получения оксидных функциональных материалов для получения водорода из возобновляемых источников. Ожидаемые результаты Будет проведено комплексное исследование процессов формирования наноструктурированных простых и сложных оксидов, а также нанокомпозитов на их основе в условиях ограниченного массопереноса; будут установлены ключевые аспекты влияния ограничения времени протекания и температуры процесса синтеза веществ после образования зародыша новой фазы, а также пространственных ограничений и ограничений по количеству вещества в реакционной зоне на состав, структуру, морфологию продуктов синтеза; будет установлена связь перечисленных особенностей формирующихся оксидных нанокристаллов с их фото- и электрокаталитической активностью в процессе получения водорода из воды и водно-органических источников; комплекс полученных результатов и установленных закономерностей лягут в основу разрабатываемого физико-химического подхода к конструированию новых функциональных наноматериалов, формирующихся в условиях ограничения массопереноса. Будут разработаны и экспериментально исследованы новые наноматериалы на базе многокомпонентных ферритов-шпинелей типа AxM1-(x+y)M’yFe2O4 (A – Ni, Co, Zn; M, M’ – Cu, Mg, Mn) с высокой фото- и электрокаталитической активностью в процессах получения водорода из возобновляемых источников; соответствующие вещества будут получены методами растворного горения и термообработки аморфных продуктов растворного горения; будут изучены физико-химические основы формирования ферритов перечисленных составов в условиях растворного горения, изучены механизмы направленного контроля их морфологических и структурных особенностей в условиях ограниченного массопереноса и установлена связь электрокаталитических и фотокаталитических свойств с составом, структурой и морфологией веществ и композитов на их основе; полученные результаты и материалы будут применены для сборки фотоэлектрохимической ячейки в качестве фотоанода и катода которых планируется использовать наилучшие составы синтезированных оксидов; таким образом по результатам выполнения проекта будут не только сформулированы общие закономерности формирования многокомпонентных никелевых, кобальтовых и цинковых ферритов в условиях растворного горения, но и получены функциональные материалы имеющие важное прикладное значение. Будут разработаны новые маршруты послойного синтеза методом ионного наслаивания для создания 2D нанокристаллов оксидов переходных металлов TiO2, ZnO, CeO2, Co3O4, MOx (M = Ni, Co, Sn) и их нанокомпозитов с углеродными материалами (восстановленный оксид графена, азотированный графен, g-C3N4), как высокоэффективных электрокаталитических материалов для фотоэлектрокатализа; будет впервые изучена закономерность влияния параметров синтеза на состав, структуру, морфологию и стехиометрию синтезированных соединений и предложены модели, описывающие процессы роста нанокристаллов данных соединений на поверхности подложек, что в свою очередь создаст теоретические основы для разработки новых маршрутов синтеза двумерных неорганических соединений с заданными параметрами; на основе полученных экспериментальных данных будут построены зависимости изменения каталитических характеристик от параметров синтеза и выбраны условия, которые задают максимальные значения практически важных свойств; полученные результаты будут обобщены и проанализированы и на этом основании будут сделаны выводы о влиянии состава, структуры, морфологии и стехиометрии 2D нанокристаллов оксидов на электрокаталитические свойства материалов на их основе; будут предложены новые способы получения перспективных фотоэлектродных материалов с улучшенными электрохимическими характеристиками, которые могут быть использованы в современных недорогих и экологически безопасных устройствах получения водорода. Будут разработаны составы комплексных электролитов и режимы электроосаждения для получения нанокристаллов в рамках биметаллических систем Ni-М и Co-M (М = Ag, Cu, Zn, Mn) с последующей термической обработкой и их переводом в оксидные формы. Будут разработаны составы электролитов и режимы электрохимического оксидирования нанокристаллов биметаллических систем Ni-М и Co-M (М = Ag, Cu, Zn, Mn) с целью получения нанокристаллических оксидов Ni-М-О и Co-M-О (М = Ag, Cu, Zn, Mn). Будут разработаны составы электролитов и режимы анодирования металлического титана (Ti), циркония (Zr), молибдена (Mo), ниобия (Nb) и тантала (Ta) с целью получения соответствующих оксидных покрытий различного состава, структуры и морфологии. Полученные таким образом оксидные нанокристаллы и композиты на их основе будут исследованы в качестве электрокатализаторов выделения водорода и фотокатализаторов окисления органических веществ из водных растворов. На основании сравнительного анализа характеристик всех полученных в рамках проекта новых оксидных материалов будут выбраны оптимальные пары материалов фотоанод-катод и разработаны фотоэлектрохимические ячейки соответствующего строения, функционирующие под действием видимого, ультрафиолетового и комбинированного (в том числе солнечного) света. Ожидается, что по эффективности работы полученные фотоэлектрохимические системы и ячейки на их основе покажут функциональные характеристики сопоставимые и в некоторых случаях превосходящие лучшие мировые результаты для оксидных материалов, не содержащих в своем составе элементов подгруппы платины. Выполнение данного исследования, несомненно, способствует решению многих практически важных задач, в частности эти разработки позволят повысить эффективность фотоэлектрохимического преобразования воды и водно-органических растворов (в том числе загрязненных водных ресурсов) в водород, что будет способствовать созданию научных основ новых технологий синтеза фотоэлектрокаталитических материалов для устройств преобразования солнечной энергии и более активному переходу к экологически чистой и ресурсосберегающей водородной энергетике в части разработки материалов и процессов получения возобновляемого водорода. Кроме того, комплекс проведенных исследований и полученные результаты позволят заложить физико-химические основы формирования оксидных веществ и материалов на их основе в условиях ограниченного массопереноса, что впоследствии позволит расширить предлагаемые в проекте подходы на другие области функционального материаловедения.